CN102237853A - 可重新配置希莱克斯放大器的电源控制及方法 - Google Patents

可重新配置希莱克斯放大器的电源控制及方法 Download PDF

Info

Publication number
CN102237853A
CN102237853A CN2011101157158A CN201110115715A CN102237853A CN 102237853 A CN102237853 A CN 102237853A CN 2011101157158 A CN2011101157158 A CN 2011101157158A CN 201110115715 A CN201110115715 A CN 201110115715A CN 102237853 A CN102237853 A CN 102237853A
Authority
CN
China
Prior art keywords
power
power amplifier
combiner
supply voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101157158A
Other languages
English (en)
Other versions
CN102237853B (zh
Inventor
马克·范·德·海登
慕斯塔法·阿卡
杨·索菲亚·弗罗芒斯
梅丽娜·阿波斯托李杜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samba Holdco Netherlands BV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/773,498 external-priority patent/US8203386B2/en
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN102237853A publication Critical patent/CN102237853A/zh
Application granted granted Critical
Publication of CN102237853B publication Critical patent/CN102237853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

描述了涉及用于高功率基站的可重新配置集成数字希莱克斯反相功率放大器的各种实施例以及所述设计的相关方法。所述功率放大器可以包括具有多个功率晶体管和并联电路(L1C1、L2C2)的功率晶体管电路,具有希莱克斯补偿元件的宽带组合器,以及阻抗匹配滤波器。在一个实施例中,为了方便希莱克斯补偿元件的集成,所述功率放大器实现为实际开关模式,以便使希莱克斯功率放大器可调。还描述了一种驱动希莱克斯功率放大器结构的方法。在一些实施例中,可变电源电压可以给基于希莱克斯功率放大器的期望输出功率的晶体管电路供电。在一些实施例中,可变电源电压可以依赖于晶体管电路中的两个驱动器之间的反相角。

Description

可重新配置希莱克斯放大器的电源控制及方法
技术领域
在此公开的各种典型实施例通常涉及功率放大器。更具体地是涉及希莱克斯(Chireix)反相功率放大器和方法。 
相关申请的交叉应用 
本申请是2010年5月4日递交的题为“RECONFIGURABLE OUTPHASINGCHIREIX AMPLIFIERS AND METHODS”的美国专利申请No.12/773,498的部分接续申请。本申请通过参考其全部内容予以援引。 
背景技术
功率放大器被广泛应用于通信系统,例如蜂窝通信系统和蜂窝基站,其中高频通信信号被放大用于传输。 
带宽和效率是功率放大器设计中的重要考虑因素。在蜂窝基站的情况下,对改进的功率放大器(PA)效率的需求日益增长。由于越来越多的标准以及对不影响整体功率放大器的效率和线性的向后兼容的需求,还需要可重新配置蜂窝基站。常规功率放大器,诸如B类放大器,通常提供达到或者接近其最大饱和功率输出水平的最大效率。为了准确地再现变振幅信号,峰值输出信号水平应当等于或者小于最大饱和功率水平。当瞬时信号输出水平小于峰值输出水平时,常规的B类功率放大器通常工作在小于最大功率下。 
最新的蜂窝通信标准,诸如在3GPP(第三代合作伙伴计划)中产生的UMTS(通用移动通信系统)和LTE(长期演进),采用复杂的调制方案,其振幅分量在发射器的瞬时载波输出功率中产生较大的变化。峰值载波输出功率与平均输出功率的比值(定义为“峰值因子”(crest factor)),当用分贝(dB)表示时,可以达到10dB的数量级。有了这样大小的峰值因子,基站功率放大器的效率严重减小。为了能够处理大峰值载波功率, 常规线性功率放大器在大多数工作时间内工作在比其最大输出功率能力低几分贝下(例如几分贝功率回退(back-off))。 
已经提出了各种方法来解决上述问题。在其中一种方法中,提出了由希莱克斯(按照RCA公司的品牌名“Ampl iphase”出售)改进的反相技术。术语“反相”涉及一种通过组合若干(通常是两个)相位调制恒定幅度信号获得振幅调制(AM)的方法,将进一步描述如下。这些信号在“信号分量分离器(signal component separator)”(SCS)中产生,并且随后通过射频链(混频器滤波器和放大器)上变频和放大之后进行组合以便在输出组合器网络中形成放大的线性信号。因为利用由两个信号之间的相位差导致的加或减的程度来实现振幅调制,选择这些恒定幅度信号的相位使得其矢量求和的结果带来期望的振幅。 
在如上所述的希莱克斯方法中,预期输出信号的低水平副本(low-level copy)被分解为两个等幅分量,具有由预期输出信号瞬时振幅确定的相位差。然后这两个等幅分量被一对工作在用于最佳功率效率的饱和或者开关模式下的射频功率放大器放大。然后在低损失希莱克斯组合器中组合这两个功率放大器的输出以便重建全调制射频载波。这样,两个功率放大器的电阻负载阻抗有效地变成了输出相位角的函数并且导致了输出功率的包络调制,表示为: 
| P OUT ( t ) | ∝ v DD 2 2 R ( θ ( t ) ) ∝ v DD 2 2 R L cos 2 ( θ ( t ) ) - - - ( 1 )
在上述希莱克斯方法中,开关模式而非线性模式功率放大器的使用是有益的。 
常规的希莱克斯反相功率放大器在带宽和效率方面具有缺点。功率组合器(例如1/4波长传输线)和固定的电纳补偿元件(±jBc,如下所述)造成了频率限制。常规希莱克斯功率放大器中的另一个缺点是它通常源自饱和线性功率放大器(例如AB类)或者调谐的功率放大器(例如F类),它们不使用匹配网络中的谐波势阱(harmonic trap)则不能理想地提供100%效率。 
基于E类和其他基于开关模式(例如DE类)反相的其他方法具有其他的缺点,因为它们不能考虑整体性,具有宽的射频带宽并且不能将 可重新配置方面考虑在内。此外,其他方法,诸如n路多尔蒂(Doherty)功率放大器,由于使用若干1/4波传输线通常需要更多的可调元件。 
发明内容
根据对具有增强的功率放大器效率和可重新配置性的基站的通信网络的现有需求,提供了各种典型实施例的简述。在以下简述中做出一些简化和省略,其目的在于强调和引入各种典型实施例的某些方面,但不限制实施例的范围。将在后面的章节中说明足以允许本领域普通技术人员理解和使用本发明概念的优选典型实施例的详细描述。 
一方面,集成数字希莱克斯功率放大器设备可以包括具有接收可变电源电压的多个功率晶体管和并联-串联(shunt-series)电路的功率晶体管电路,其中所述功率晶体管电路产生与可变电源电压成比例的输出功率。所述集成希莱克斯功率放大器设备还可以包括具有希莱克斯补偿元件的宽带组合器和阻抗匹配滤波器,其中所述功率晶体管电路、宽带组合器和阻抗匹配滤波器设置集成在统一封装(unified package)中。 
另一方面,公开了一种具有数字希莱克斯功率放大器结构的蜂窝基站终端。 
还有一方面,公开了一种驱动希莱克斯功率放大器结构的方法。所述方法包括提供含有多个接收可变电源电压的功率晶体管和并联-串联电路的功率晶体管电路,其中所述功率晶体管电路产生与可变电源电压成比例的输出功率。所述方法还可以包括提供在统一封装中的具有希莱克斯补偿元件的宽带组合器和阻抗匹配滤波器。所述方法还可以包括调谐并联-串联网络使得能够重新配置功率放大器结构。所述方法还可以包括按照实际开关模式驱动功率晶体管电路。 
附图说明
为了更好地理解各种典型实施例,参考附图其中: 
图1A是常规希莱克斯放大器的框图,以及图1B示出了一种具有希莱克斯组合器拓扑的常规开关模式E类反相功率放大器; 
图2示出了具有可变并联电感器、宽带组合器和匹配网络的反相功 率放大器的示意图; 
图3(a)是一张图表,示出了对于图2所示的功率放大器以及对于没有补偿的具有13dB输出功率回退的希莱克斯补偿,效率是以dB为单位的标称输出功率的函数; 
图3(b)是一张图表,示出了对于图2所示的功率放大器以及对于根据表1提供的信息在频带边缘的频率下通过调整电容实现补偿的具有13dB输出功率回退的希莱克斯补偿,效率是以dB单位的标称输出功率的函数; 
图4是一张图表,示出了对于图2所示的功率放大器以及对于根据表2提供的信息在频带边缘的频率下利用占空比控制实现补偿的具有13dB输出功率回退的希莱克斯补偿,效率是以dB为单位的标称输出功率的函数; 
图5示出了根据实施例所述具有可变并联电感器、宽带组合器和匹配网络的反相功率放大器的示意图; 
图6A和图6B示出了根据另一个实施例所述具有可变并联电感器、宽带组合器和匹配网络的反相功率放大器的示意图; 
图7示出了对于图2所示的功率放大器具有集成希莱克斯元件的不对称马绍尔德不平衡变压器(Marchand balun)的电路示意图; 
图8A和图8B示出了对于理想的基于变压器的组合器、图1B所示的1/4波长组合器以及图7所示的马绍尔德组合器,输入阻抗与频率的关系曲线; 
图9示出了对于理想的基于变压器的组合器、图1B所示的1/4波长组合器以及图7所示的马绍尔德组合器,希莱克斯组合器效率与频率的关系曲线; 
图10示出了根据实施例所述的具有可变并联电感器、宽带组合器和匹配网络的反相功率放大器的示意图; 
图11示出了根据实施例所述的具有可变并联电感器、宽带组合器和匹配网络的反相功率放大器的示意图; 
图12示出了图6A和图6B所示的功率放大器的具体实现; 
图13示出了漏极效率与图12所示并且实现为CMOS-GaN的E类反 相功率放大器的放大器输出功率的关系曲线; 
图14示出了根据实施例所述的具有可变并联电感器、宽带组合器和匹配网络的反相功率放大器的示意图; 
图15示出了根据实施例所述的具有可变电源电压、可变并联电感器、宽带组合器和匹配网络的反相功率放大器的示意图; 
图16示出了由具有可变峰值电压的功率放大器的典型前置驱动器产生的典型电压信号; 
图17A示出了对于图14所示的反相功率放大器,漏极效率与输出功率的关系曲线; 
图17B示出了对于图14所示的反相功率放大器,功率放大器效率(PAE)与输出功率的关系曲线。 
具体实施方式
参考附图,其中相似的数字表示相似的部件或者步骤,公开了各种典型实施例的广泛方面。 
图1A是常规希莱克斯放大器100的框图。关于希莱克斯放大器,反相被定义为一种在信号分量分离器102中通过组合两个相位调制恒定幅度信号获得振幅调制(AM)的方法。可以在射频电路104、106中上变频所述分离的信号分量,并且利用功率放大器108、110放大。然后组合所述异相信号以便在希莱克斯型输出网络112中形成放大的线性信号。选择恒定幅度异相信号的相位,使得其矢量求和的结果产生所需的幅度。所述希莱克斯输出网络112可以包括两个1/4波线λ/4(其中λ是放大器工作频带的中心频率的波长)和用于扩展高频区域以便包括较低输出功率水平的两个补偿电抗+jX和-jX。 
图1B示出了一种具有希莱克斯组合器拓扑的常规开关模式E类反相功率放大器。E类功率放大器可以用于高频,其中开关时间与功率晶体管的占空比相当。下面的设计方程适用于图1B所示的拓扑: 
R = Z D 2 2 R L · 1 cos 2 θ = R OPT · 1 cos 2 θ - - - ( 2 )
B C = R L Z o 2 sin ( 2 θ C ) = 1 2 R OPT sin ( 2 θ C ) - - - ( 3 )
θC=arcsin(10-80/20)    (4) 
其中,ROPT是最佳E类负载阻抗,BC是希莱克斯补偿元件,以及θC是希莱克斯补偿角度,在此我们非常需要100%效率用于相对于峰值功率的特定回退功率水平。 
图2示出了根据实施例所述的反相功率放大器200的示意图。在一个典型的实施例中,功率放大器(PA)200是一个占空比受控的开关模式反相功率放大器。所述PA 200可以包括可变并联电感器、宽带(例如宽频)组合器和匹配网络。所述功率放大器200可以包括晶体管电路202和宽带组合器电路204。所述晶体管电路202可以包括前置驱动器部件206、208以及并联电感电路210、212。 
所述晶体管电路202可以包括例如与氮化镓(GaN)功率晶体管相连的CMOS驱动器。本领域普通技术人员应当理解诸如CMOS驱动器与横向扩散金属氧化物半导体(LDMOS)功率晶体管或者BiCMOS驱动器与GaN功率晶体管之类的其他组合。 
所述宽带组合器电路204可以包括宽带组合器214和高级阻抗匹配滤波器电路216。在一些实施例中,所述PA 200可以与工作于恒定占空比,例如D=0.5(50%)的功率晶体管202一起工作。 
根据各种实施例的典型特征,其中一个如图2所示,包括例如有限的并联电感E类PA的使用,所述PA工作在对于给定的负载调制的最佳E类模式。该工作模式(在50%占空比下 
Figure BSA00000489492600062
其中q是LC电路的品质因子)使得当R变化时E类PA在输出功率的宽动态范围上维持100%的效率。该特征使得它成为基于负载调制系统的期望E类候选,例如动态负载调制或者诸如在希莱克斯PA中的反相,其中宽动态范围上的高效率是期望的。 
PA 200的附加特征是集成功率晶体管。所述晶体管电路202的集成功率晶体管和统一封装中的并联电感器210、212一起可以使用 “inshin”技术,如美国专利No.7,119,623(已转让于当前受让人)所述,在此援引其全部内容作为参考。所述并联电感器210、212有利于建立期望的E类操作模式以及期望的希莱克斯单位功率补偿(compensation-per-power)晶体管。 
在正常的构造和工作期间,可以通过改变有效并联电感(这可能需要例如变容二极管(即可变电容二极管)或者开关电容器组)来建立可重新配置希莱克斯反相功率放大器。至少一个变容二极管的调制可用于模拟调谐,而开关电容器组可用于数字调谐。在一些实施例中,可以同时实现希莱克斯PA的模拟和数字调谐。在一些实施例中,可以用静电电感器和晶体管以及开关功率晶体管的可变占空比建立可重新配置希莱克斯反相PA。 
可以通过马绍尔德不平衡变压器(Marchand balun)、其低频等效或者基于变压器的组合器来实现所述组合器电路204的宽带组合器214。 
在一些实施例中,可以从以下方程计算出两个PA支路211A、211B处的并联-串联网络的元件值: 
L 1 , OPT = L 1 + ω · L · B C (5) 
L 2 , OPT = L 1 - ω · L · B C
L = 1 ω 2 q 2 C DS - - - ( 6 )
C 1 ( ω ) = 1 ω 2 ( L 1 - L 1 , OPT ) = 1 ω ( ω L 1 1 q 2 ω C DS + B C ) (7) 
C 2 ( ω ) = 1 ω 2 ( L 2 - L 2 , OPT ) = 1 ω ( ω L 2 1 q 2 ω C DS - B C )
L 1 > 1 q 2 ω C DS + B C (8) 
L 2 > 1 q 2 ω C DS - B C
其中,品质因子q对于负载调制理想地为1.3,CDS是晶体管的输出 电容,ω是操作频率,并且希莱克斯补偿元件BC由方程(3)给出。 
例如,如果复杂调制信号(例如WCDMA或者LTE)具有10dB的峰值因子,那么复杂调制信号的第二效率峰值具有幅度大约等于10dB回退是优选的。在该实施例中,L1和L2可以是固定的并联-漏极电感器,其至少必须满足方程(8)。为了维持最优E类工作模式(q≈1.3)并且以及对于设计频率f0(目的在于重新配置PA)之外的频率进行的希莱克斯补偿,可以根据方程(7)改变210、212中的C1和C2的值。可以使用变容二极管的模拟调谐或者开关电容器组的数字调谐改变C1和C2的值。电容器C1和C2的调谐设置可以存储在表格中并且当安装基站放大器(未示出)时通过数字“字”设置。 
在其他实施例中,可以选择固定的L1和L2值,具有或者没有在并联电感器210、212中的串联电容器C1和C2,同时可以数字地改变占空比D1和D2来有效地改变品质因子q,以便补偿频率ω的变化,而无需改变在标称设计频率下由方程(3)和方程(6)计算出的元件值。 
在典型实施例中,当假定设备输出电容CDS=1pF并且回退水平为13dB时,表1列出了功率放大器200的最佳元件值。 
表1反相E类PA元件值(CDS=1pF,BO=13dB,D1=D2=0.5) 
Figure BSA00000489492600081
图3A是一张图表,示出了对于图2所示的功率放大器以及对于没有补偿的具有13dB输出功率回退的希莱克斯补偿,效率是以dB为单位的标称输出功率的函数; 
图3B是一张图表,示出了对于图2所示的功率放大器以及对于根据表1提供的信息在频带边缘的频率下通过调整电容实现补偿的具有13dB输出功率回退的希莱克斯补偿,效率是以dB单位的标称输出功率的函数; 
在另一个实施例中,可以使用固定的而非可调的希莱克斯组合器网络,其中可以通过改变所述占空比对于不同的频带重新配置所述功率放大器200。在该实施例中,改变占空比在重新配置PA中具有与改变有效并联电感L和串联在并联电感器210、212中的输出电容CDS相似的效果。在有关图2描述的示例实施例中,当对于除了D1=D2=0.5的占空比存在不同的品质因子q时是可以发生的。为了补偿频率的变化,可以改变占空比,没有对于新的工作频率根据方程(3)和(6)重新配置匹配网络中的元件。使用固定的元件,可以改变占空比来调制品质因子q直到找到对于新的工作频率的新的最佳值。 
在典型情况下,表2示出了当需要一个频率范围时对于图2所示的功率放大器200的元件值。具体地,表2列出了对于频率f0=2.1、2.4和2.7GHz的最佳占空比组合。所述设计的出发点再次为在设计频率f0=2.4GHz下优化的希莱克斯组合器的标称元件值。 
表2反相E类PA元件值(CDS=1pF,BO=13dB,C1=2.17pF,C2=1.43pF) 
Figure BSA00000489492600091
图4是一张典型图表,表示对于图2所示的固定功率放大器以及对于根据表2提供的信息在带缘频率下利用占空比控制实现补偿的具有13dB输出功率回退的希莱克斯补偿,漏极效率是以dB表示的标称输出功率的函数。具体地,图4的图表示出了当实施占空比控制来恢复2.1GHz和2.7GHz下的效率性能时在2.1GHz、2.4GHz和2.7GHz下效率与输出功率回退的关系曲线。在这种情况下,仅通过改变占空比就能在整个频率范围上的超过10dB的动态量程上恢复效率。比较该结果与通过控制可变串联电容器获得的结果,该典型占空比控制导致了在希莱克斯补偿水平 外的效率曲线的稍大扩张。正如下面将要关于图14-15的讨论,发明人通过模拟发现,当实施占空比控制时,电源电压VDD可能也会被调整和改变,以便适应由不同频率下开关占空比变化造成的输出功率水平的变化。 
图5示出了图2所示反相功率放大器的示意图,公开了根据一个实施例所述的宽带组合器电路204的具体实施。所述功率放大器500可以包括晶体管电路202和宽带组合器电路502。晶体管电路202的细节可以类似于图2中的晶体管电路202。所述宽带组合器电路502可以包括传输线分量504、506,LC匹配网络510以及可选的低阻抗供电偏置网络512。在一些实施例中,可以在晶体管电路202中提供所述供电偏置网络512。在本公开的情况下,不平衡变压器可以是用于在“平衡的”(对地平衡)与“不平衡的”(即单端)电信号之间进行转换的无源电子电路。 
在图5所示的实施例中,所述宽带组合器电路502可以是一个不平衡变压器,可由在单独的传输线之间需要紧密耦合的微型马绍尔德不平衡变压器(φ<<90度)实现,并且优选地可由在3层衬底(例如S-S-GND)中的宽边耦合线实现。在一些实施例中,所述紧密耦合可以以传输线之间高互电容或者电感的形式,其中能量通过两个传输线之间的电容和/或电感传输。可以设计所述宽带组合器电路502用于在感兴趣的带宽(例如巴特沃斯型)上提供恒定的实际阻抗水平。所述可选的偏置网络512(例如低通LC滤波器)可以提供附加阻抗匹配并且还可以使能对于E类操作期望的加载品质因子的建立。 
根据各种实施例的一个特征是在如图2所示的统一的功率放大器设备或者封装200中的可调并联网络210、212(图2)的集成。所述可调并联网络201、212可以与根据各种实施例所示的宽带组合中的任何一个组合。 
图6A和图6B示出了根据另一个实施例所述的反相功率放大器600、620的示意图。在图6A中,所述功率放大器600可以包括晶体管电路202和宽带组合器602,后者可以包括相连的部分604、606。所述晶体管电路202可以包括相等的并联网络,其中L1C1=L2C2。所述组合器602可以与组合器502(图5)相似。然而,希莱克斯补偿元件的一 部分可被移至组合器602中,因此使其不对称。可以通过使耦合部分604、606中的任一长度不相等实现所述不对称,如图6A所示。替代地,如图6B所示,使组合器622中的耦合部分608、610的阻抗不相等也可以实现所述不对称。在图6A和6B所示的两个实施例中,晶体管电路202的E类反馈电感器可以优选地通过位于输出的并联网络210、212(图2)实现。对于功率放大器的可重新配置性,根据各种实施例,至少经由电感器的E类条件为可调是优选的。 
图7示出了具有集成希莱克斯元件的不对称马绍尔德不平衡变压器的电路原理图700。电路原理图700可以是微型马绍尔德不平衡变压器的集总元件等效电路原理图。该实施例的优点是可以在LC匹配网络的内部吸收输出寄生效应(LS1和CP1)并且在晶体管输出电容中吸收并联输入电容(CP1,2·(1-km))。更具体地,位于组合器输出处的寄生并联电感和并联电容可以成为希莱克斯补偿和E类并联电感元件的一部分。然而,较低耦合线部分 
Figure BSA00000489492600111
的漏电感可以个别地由CS2解调(tuned out)。在一些实施例中,当线之间有足够的耦合时,漏电感LS2的数值非常低(并且谐振器的品质因子也是)。 
耦合线参数(电长度 
Figure BSA00000489492600112
奇偶模式特征阻抗ZOe,和ZOo)与集总等效电路之间的关系参见以下方程: 
Figure BSA00000489492600114
k m = Y oo - Y oe Y oo - Y oe
L S 1,2 = L p 1,2 ( 1 - k m 2 )
Figure BSA00000489492600117
这将导致输入终端S1和S2处的有效输入导纳: 
Y 1,2 = 1 jω L p 1,2 + jω C p 1,2 ( 1 - k m 2 ) + k m 2 Y L ( 2 cos 2 θ ± j sin 2 θ ) - - - ( 9 )
其中,前两项可视为不平衡变压器的有效并联导纳。第三项可视为负载调制项并且描述了如何通过反相角θ调制负载阻抗。 
在一个实施例中,当控制L1C1和L2C2并联时,期望不平衡变压器的有效并联导纳 
Figure BSA00000489492600122
足够小以便不对由L1C1和L2C2设定的值产生可察觉的影响。因此导致了电路原理图700与图5所示的功率放大器500相似。所述电路原理图700因此也符合方程(5)-(8)。 
在另一个实施例中,可以以零碎的方式进行电路原理图700的设计,区分E类和希莱克斯要求并且独立地实现它们。在这种方式中,希莱克斯补偿可以通过不平衡变压器中的不对称实现,而E类要求可以通过设定L1C1=L2C2来实现,类似于图6A-6B中的功率放大器600、620。此外,由于源自不对称的数值是最为重要的,因此所述有效并联导纳也可以很小。 
在另一个实施例中,当控制功率晶体管的占空比时,可以忽略L1C1和L2C2并联网络的使用。替代地,可以根据在标称设计频率下方程(3)和(6)的E类和希莱克斯要求设定有效并联导纳 
Figure BSA00000489492600123
的数值。 
另一个替代实施例除了控制功率晶体管的占空比外,还可以控制L1C1和L2C2并联串联网络。本领域普通技术人员应当理解用于组合上述设计技术的方法。 
图8A和图8B示出了对于理想的基于变压器的组合器、图1所示的1/4波长组合器以及图7所示的马绍尔德组合器,输入阻抗与频率关系曲线的示例图表。 
在图8A和8B的典型图表中,在10dB回退(R=10·Popt)下的并联电阻与频率的关系被绘制出,并且对于理想的基于变压器的组合器是恒 定的,对于微型马绍尔德组合器是几乎恒定的。由于输入端口阻抗水平在10dB回退功率下大约为10倍,自输出至输入的阻抗转换Q大约也是10倍。这样会在阻抗水平与频率的关系曲线中造成增大的变化,可被视为良好的设计因素。 
具有λ/4传输线(或其任何衍生)的经典希莱克斯组合器可能遭受在大回退功率水平下端口阻抗的高频率依赖行为的影响。这也可以被反映在10dB回退功率下的PA功率效率中,如图9的图表所示。从典型的图表可以看出,在覆盖了许多通信标准(UMTS,WiMax,LTE)的25%的带宽(2.1-2.7GHz)上,基于变压器的组合器或者微型马绍尔德组合器的效率几乎都为100%,而基于λ/4传输线的组合器的效率受限于频率。对于图8A、图8B和图9示出的图表,可以重新配置并联谐振器的电抗性部分(reactive part)来在感兴趣的RF频带上维持E类和希莱克斯补偿要求。 
图10和图11示出了根据另一个实施例所述并且基于传输线变压器的反相功率放大器的示意图。图10示出了功率放大器1000,具有晶体管电路202和包括传输线元件1004-1010的宽带组合器电路1002。所述组合器1002还可以包括LC匹配网络510和可选的低阻抗匹配网络512。如上所述,可以在组合器1002的输出处增加所述低阻抗匹配网络512(例如低通LC滤波器)来提供额外的阻抗匹配并且对于E类操作设置期望的加载品质因子。对于E类操作和希莱克斯补偿,传输线的电长度 
Figure BSA00000489492600131
和变容二极管设置一起(如结合图2的描述)可以设置期望的并联电感。串联电容CS可用于解调源自非理想磁耦合的漏电感。上行传输线组合器的漏电感可被移至输出匹配网络中。 
图11示出了功率放大器1100,包括具有单传输线的宽带组合器1102,而图10示出了具有多传输线的宽带组合器。 
图12A和图12B示出了图6A和图6B所示的功率放大器的具体实现,具有固定的C1和C2并且在10dB回退输出功率下导致了60%的功率放大器效率性能,如图13所示。图12示出了电路板1200,具有实现了的晶体管电路封装1202、宽带组合器1204和LC匹配电路1206。 
图14示出了根据一个实施例所述具有可变并联电感器、宽带组合 器和匹配网络的反相功率放大器的示意图。反相功率放大器1400类似于功率放大器500,包括类似于晶体管电路202的晶体管电路1402和宽带组合器电路502。晶体管电路1402可以包括前置驱动器部件206、208,功率晶体管1406、1408,以及并联电感电路210、212。 
在一些实施例中,所述功率晶体管1406、1408可以包括寄生栅极-源极电容(未示出),当产生较低功率输出时能够显著地并且负面地影响反相功率放大器1400的效率。当用于供给前置驱动器部件206、208的电源电压保持较高以便在需要时提供最大峰值电压时,尤其可能发生。例如,5V的电源电压(VDD,Driver)可以供给前置驱动器部件206、208来产生38dBm的输出功率(Pout),而功率晶体管1406和1408的电源电压(VDD)为28V。然而,当输出功率仅为30dBm时,部分由于功率晶体管1407、1408的栅极-源极电容,5V的电源电压将显著地降低功率放大器1400的整体效率。 
因此,在一些实施例中,前置驱动器部件206、208可以接收可变电源电压VDD,Driver以便在功率回退水平下维持高效率。在这种情况下,所述可变电源电压可以是反相角θ的函数(即VDD,Driver=f(θ))。可以与可调不平衡变压器或者可调占空比一起调制所述可变电源电压VDD,Driver。 
图15示出了根据实施例所述的具有可变电源电压(VDD,Driver)、可变并联电感器、宽带组合器和匹配网络的反相功率放大器的示意图。类似于图14中所述的反相放大器1400的功能,所述反相功率放大器1500包括第一模块1501、第二模块1503、开关模式功率放大器1506、1508,以及组合器1510。在一些实施例中,第一和第二模块1501、1503可用于产生供给功率放大器1506、1508的可变电源电压VDD,Driver,所述放大器的输出可以通过组合器1510组合以便产生基于输出电压vout的输出功率。在示意实施例中,所述第一模块1501可以包括基带(BB)和数字上变频(DUC)电路,而所述第二模块1503可以包括数字信号处理器(DSP)或者现场可编程门阵列(FPGA)以及射频(RF)调制器。 
第一模块1501可以包括基带以及提供一系列基于基带的同相(I)和正交相位(Q)对的数字上变频电路。每个(I,Q)对对应于在时间t 对于基带的同相值I(t),同时也对应于时间t的正交相位值Q(t),与初始基带成90度异相。 
第二模块1503可以包括数字信号处理器或者现场可编程门阵列以及RF调制器。第二模块1503可以提供基于接收自第一模块1501的(I(t),Q(t))数值对的可变电源电压VDD。在一些实施例中,在第二模块1503中的DSP或者FPGA可以产生相位调制信号以便用作功率放大器1506、1508的输入,以及由功率放大器1506、1508产生的信号的基带包络。所述相位调制信号可被表示为: 
Figure BSA00000489492600151
其中, 
Figure BSA00000489492600152
在一些实施例中,所述可变电源电压VDD可以基于A。因此,所述可变电源电压可以基于由第一模块1501产生的(I,Q)对。 
在一些实施例中,所述第二模块1503还可以包括RF调制器,该调制器可以使用相位调制信号来为功率放大器1506、1508产生一个或者多个恒定幅度相位调制信号。例如,所述RF调制器可以为功率放大器1506、1508产生两个信号: 
Figure BSA00000489492600154
其中,sgn是符号函数,以及ωc是RF载波频率。因此,每个功率放大器可以接收来自第二模块1503的方波,并且可以交替地产生与其增益相乘的正或负恒定值。 
在组合器1510的输出处,反相放大器1500可以产生并且输出基于信号的功率,该信号是功率放大器1506、1508的输出的组合。在一些实施例中,所述输出功率可以基于A,例如当功率放大器1506、1508具有相同的增益G时。例如,由于Pout成比例于vout,根据下面的方程所述输出功率可以是A的函数: 
Figure BSA00000489492600155
Figure BSA00000489492600156
由于这种关系,当在本示例中输出处的瞬时功率较低(即A(t)较低)时,需要来自反相功率放大器1500的较小功率来驱动进入饱和状态。因此,需要较小的可变电源电压VDD,Driver来达到期望的输出水平。因此,在较低的输出处,VDD,Driver较低。将如图17A-B所述,较低的电源电压导致在较低功率输出水平下效率的上升。例如这可能由于在功率晶体管1406、1408处较低的栅极-源极电容。 
图16示出了由具有可变峰值电压的功率放大器的典型前置驱动器产生的典型电压信号。图16示出了在前置驱动器206、208输出处的3个电压信号1601、1603、1605,它们被作用在前置驱动器206、208上的电源电压VDD,Driver改变。在示例实施例中,电压信号1601-1605可以是非理想方波,当在前置驱动器206、208上作用电源电压VDD,Driver时具有除了峰值时间段Tpeak之外的非零的上升时间段Tr和/或下降时间段Tf。电压信号1601-1605中Vpeak的差异可能是供电调制的结果,和反相角度依赖电源电压一起使能前置驱动器206、208,以便仅当提供有较高电源电压VDD,Driver时仅产生诸如1601的较高电压信号。 
图17A示出了对于图14所示的反相功率放大器,漏极效率与输出功率的关系曲线。如图所示,在确定的功率输出范围内,对于较高的电源电压,GaN功率晶体管漏极效率较低。例如,在示例实施例中,线1701绘制出了对于VDD,Driver=2.5V的漏极效率,而线1703和1705分别表示对于3.5V和5V的电源电压的效率。如图所示,在低功率输出范围,漏极效率在最高的电源电压下最低。然而,需要较高的电源电压来使能对于较高功率输出水平的高效率或者甚至提供足够的功率。例如,图表示出了对于提供34dBm的输出功率3.5V的VDD,Driver是优选的,而对于提供37dBm的输出功率5V的VDD,Driver是必须的。 
图17B示出了对于图14所示的反相功率放大器,功率放大器效率(PAE)与输出功率的关系曲线。所示图表通过效率线1751、1753、1755还示出了对于不同电源电压VDD,Driver反相功率放大器1400的对比功率效率。例如,线1751表示2.5V的较低VDD,Driver对于产生25-33dBm的输出功率水平是最有效的,而对于产生33-36dBm的输出功率3.5V是最有效的。当期望的功率水平高于36dBm时,5V的较高VDD,Driver对于产生 足够的输出功率是必须的。 
各种实施例的应用包括用于连通性和蜂窝应用的(可重新配置的)发射器,其中具有高峰均比(PAR)的调制标准要求功率放大器在大动态范围上是有效能的。对于在其中处理宽带复杂包络信号的系统,诸如EDGE、UMTS(WCDMA)、HSxPA、WiMAX(OFDM)和3G-LTE(OFDM),这些发射器是期望的。 
从前面的描述应当理解,各种典型实施例可以用在硬件和/或固件中。 
虽然详细描述了各种典型实施例的某些典型方面,但是应当理解其他实施例及其细节能够在各种显而易见的方面修改。正如本领域普通技术人员已经理解的,变化和修改会在保持在实施例精神和范围的情况受到影响。因此,前述公开、说明书和附图仅用于示例目的,并且不以任何形式限制所述实施例,所述限制只能由权利要求限定。 

Claims (15)

1.一种集成数字希莱克斯功率放大器设备,设备包括:
功率晶体管电路,包括:
多个功率晶体管,接收可变的电源电压,以及
并联-串联电路,其中所述功率晶体管电路产生与可变电源电压成比例的输出功率;
具有希莱克斯补偿元件的宽带组合器;以及
阻抗匹配滤波器,其中所述功率晶体管电路、所述宽带组合器和所述阻抗匹配滤波器集成在统一的封装中。
2.根据权利要求1所述的功率放大器设备,其中所述宽带组合器包括固定宽带网络,并且其中通过调节所述多个功率晶体管的至少一个的占空比来对不同的频带重新配置所述功率放大器。
3.根据权利要求1所述的功率放大器设备,其中所述宽带组合器包括具有小于90度相位角的马绍尔德不平衡变压器。
4.根据权利要求3所述的功率放大器设备,其中所述宽带组合器设置用于在感兴趣的带宽上提供恒定实际阻抗水平,并且其中所述宽带组合器还包括设置在宽带组合器输出节点处的低通LC滤波器,用于提供附加的阻抗匹配,并且建立用于功率放大器的E类操作的品质因子。
5.根据权利要求1所述的功率放大器设备,其中所述由前置驱动器产生的可变电源电压包括具有可变峰值电压(Vpeak)的方波信号。
6.根据权利要求5所述的功率放大器设备,其中所述由前置驱动器产生的可变电源电压包括非零上升时间段(tr)和下降时间段(tf),其中上升时间段和下降时间段的总和小于峰值电压时间段(tpeak)的20%。
7.根据权利要求1所述的功率放大器设备,还包括:
输入电路,向多个功率晶体管提供可变电源电压,所述输入电路包括:
数字信号处理器(DSP),接收同相(I)和正交相位(Q)信号对,并且基于所述(I,Q)值对于可变电源电压产生基带包络(A)。
8.根据权利要求7所述的功率放大器设备,其中所述输入电路还包括:
第一模块,提供所述(I,Q)值,所述第一模块包括:
基带(BB)电路,以及
数字上变频(DUC)电路。
9.根据权利要求7所述的功率放大器设备,其中所述输入电路还包括:
RF调制器,接收由DSP产生的相位调制信号,并且对于多个功率晶体管产生恒定幅度相位调制信号。
10.一种驱动集成希莱克斯功率放大器设备的方法,所述方法包括:
提供功率晶体管电路,所述功率晶体管电路包括在统一封装中的接收可变电源电压的多个功率晶体管和并联-串联电路、具有希莱克斯补偿元件的宽带组合器和阻抗匹配滤波器;
驱动宽带组合器中的可变电容器以便使能功率放大器结构的重新配置;以及
通过功率晶体管电路产生与可变电源电压成比例的输出功率。
11.根据权利要求10所述的方法,所述方法还包括:
通过调节所述多个功率晶体管的至少一个的占空比,重新配置所述宽带组合器工作在不同的频带下,其中所述宽带组合器包括固定宽带网络。
12.根据权利要求10所述的方法,所述方法还包括:
通过输入电路中的数字信号处理器(DSP)接收同相(I)和正交相位(Q)信号对;以及
通过DSP基于(I,Q)值产生用于可变电源电压的基带包络(A);以及
通过输入电路向多个功率晶体管提供可变电源电压。
13.根据权利要求12所述的方法,还包括:
通过包括基带(BB)电路和数字上变频(DUC)电路的输入电路中的第一模块提供(I,Q)值。
14.根据权利要求12所述的方法,还包括:
通过输入电路中的RF调制器接收由DSP产生的相位调制信号;以及
通过RF调制器产生用于多个功率晶体管的恒定幅度相位调制信号。
15.根据权利要求10所述的方法,其中所述宽带组合器包括具有小于90度相位角的马绍尔德不平衡变压器。
CN201110115715.8A 2010-05-04 2011-05-03 可重新配置希莱克斯放大器的电源控制及方法 Active CN102237853B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/773,498 US8203386B2 (en) 2010-05-04 2010-05-04 Reconfigurable outphasing Chireix amplifiers and methods
US12/773,498 2010-05-04
US13/052,722 US8174322B2 (en) 2010-05-04 2011-03-21 Power control of reconfigurable outphasing chireix amplifiers and methods
US13/052,722 2011-03-21

Publications (2)

Publication Number Publication Date
CN102237853A true CN102237853A (zh) 2011-11-09
CN102237853B CN102237853B (zh) 2014-11-26

Family

ID=44653896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110115715.8A Active CN102237853B (zh) 2010-05-04 2011-05-03 可重新配置希莱克斯放大器的电源控制及方法

Country Status (3)

Country Link
US (1) US8174322B2 (zh)
EP (1) EP2388912B1 (zh)
CN (1) CN102237853B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107408923A (zh) * 2015-02-15 2017-11-28 天工方案公司 具有减小尺寸的多尔蒂功率放大器
CN107528554A (zh) * 2016-06-17 2017-12-29 英飞凌科技美国公司 紧凑的希莱克合并器和阻抗匹配电路
CN109120233A (zh) * 2015-02-15 2019-01-01 天工方案公司 射频放大系统、装置和方法
CN110708029A (zh) * 2019-08-22 2020-01-17 杭州电子科技大学温州研究院有限公司 基于非等长传输线的双频带异向功率放大器及其设计方法
CN113824410A (zh) * 2021-09-28 2021-12-21 华南理工大学 一种功率放大器

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461335B1 (en) 2010-12-03 2015-09-23 Nxp B.V. Bond wire transformer
WO2013066466A2 (en) * 2011-08-12 2013-05-10 Bae Systems Integration And Electronic Systems Integration Inc. Low voltage high efficiency gallium arsenide power amplifier
EP2709275B1 (en) 2012-09-14 2016-02-10 Samba Holdco Netherlands B.V. An amplifier circuit
US8824978B2 (en) 2012-10-30 2014-09-02 Eta Devices, Inc. RF amplifier architecture and related techniques
US9537456B2 (en) 2012-10-30 2017-01-03 Eta Devices, Inc. Asymmetric multilevel backoff amplifier with radio-frequency splitter
US9166536B2 (en) 2012-10-30 2015-10-20 Eta Devices, Inc. Transmitter architecture and related methods
US8829993B2 (en) 2012-10-30 2014-09-09 Eta Devices, Inc. Linearization circuits and methods for multilevel power amplifier systems
US9160289B2 (en) * 2013-05-10 2015-10-13 Raytheon Company Broadband power amplifier having high efficiency
US9024691B2 (en) * 2013-05-17 2015-05-05 Georgia Tech Research Corporation Adaptive power amplifier and methods of making same
EP2838195B1 (en) * 2013-08-14 2018-10-03 Ampleon Netherlands B.V. Combiner circuit for a class-e outphasing power amplifier
KR20160077196A (ko) * 2013-10-31 2016-07-01 미쓰비시 덴끼 엔지니어링 가부시키가이샤 공진형 고주파 전원 장치
EP3066683B1 (en) * 2013-11-07 2019-04-24 NXP USA, Inc. Bond wire arrangement with adjustable losses
US9634494B2 (en) 2014-03-25 2017-04-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Power amplifier for wireless power transmission
US9385669B2 (en) * 2014-06-23 2016-07-05 Texas Instruments Incorporated Class-E outphasing power amplifier with efficiency and output power enhancement circuits and method
US9768731B2 (en) 2014-07-23 2017-09-19 Eta Devices, Inc. Linearity and noise improvement for multilevel power amplifier systems using multi-pulse drain transitions
US9979421B2 (en) 2015-03-02 2018-05-22 Eta Devices, Inc. Digital pre-distortion (DPD) training and calibration system and related techniques
US9590668B1 (en) 2015-11-30 2017-03-07 NanoSemi Technologies Digital compensator
EP3276827B1 (en) * 2016-07-25 2021-04-28 Comet AG Broadband matching network
WO2018067969A1 (en) 2016-10-07 2018-04-12 Nanosemi, Inc. Beam steering digital predistortion
WO2018156932A1 (en) 2017-02-25 2018-08-30 Nanosemi, Inc. Multiband digital predistorter
US10141961B1 (en) 2017-05-18 2018-11-27 Nanosemi, Inc. Passive intermodulation cancellation
US10581470B2 (en) 2017-06-09 2020-03-03 Nanosemi, Inc. Linearization system
US11115067B2 (en) 2017-06-09 2021-09-07 Nanosemi, Inc. Multi-band linearization system
US10931318B2 (en) * 2017-06-09 2021-02-23 Nanosemi, Inc. Subsampled linearization system
WO2019014422A1 (en) 2017-07-12 2019-01-17 Nanosemi, Inc. SYSTEMS AND METHODS FOR CONTROLLING RADIOS MADE WITH DIGITAL PREDISTORSION
WO2019070573A1 (en) 2017-10-02 2019-04-11 Nanosemi, Inc. DIGITAL PREDISTORSION ADJUSTMENT BASED ON DETERMINATION OF CHARGE CHARACTERISTICS
US10284202B1 (en) 2018-04-02 2019-05-07 Raytheon Company Generating analog output from a field programmable gate array by combining scaled digital outputs
US10644657B1 (en) 2018-05-11 2020-05-05 Nanosemi, Inc. Multi-band digital compensator for a non-linear system
KR20210008073A (ko) 2018-05-11 2021-01-20 나노세미, 인크. 비선형 시스템용 디지털 보상기
US11863210B2 (en) 2018-05-25 2024-01-02 Nanosemi, Inc. Linearization with level tracking
US10763904B2 (en) 2018-05-25 2020-09-01 Nanosemi, Inc. Digital predistortion in varying operating conditions
US10931238B2 (en) 2018-05-25 2021-02-23 Nanosemi, Inc. Linearization with envelope tracking or average power tracking
CN108923788A (zh) * 2018-06-06 2018-11-30 武汉博畅通信设备有限责任公司 一种基于阻抗匹配网络的30~88mhz四合一合路器
CN110011623A (zh) * 2019-03-28 2019-07-12 杭州电子科技大学温州研究院有限公司 一种双频带射频异向功率放大器
US10992326B1 (en) 2020-05-19 2021-04-27 Nanosemi, Inc. Buffer management for adaptive digital predistortion
CN112165306B (zh) * 2020-12-02 2021-03-05 深圳市南方硅谷半导体有限公司 一种多重增益低噪声放大器的切换电路
CN115842522B (zh) * 2023-02-14 2023-05-23 成都明夷电子科技有限公司 一种Doherty功率放大器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023647A1 (en) * 2002-09-06 2004-03-18 Telefonaktiebolaget Lm Ericsson Composite power amplifier
US20050001674A1 (en) * 2003-07-03 2005-01-06 Icefyre Semiconductor Corporation. Adaptive predistortion for a transmit system
CN1714500A (zh) * 2002-12-19 2005-12-28 艾利森电话股份有限公司 复合放大器结构
US7151407B2 (en) * 2003-07-08 2006-12-19 Grundlingh Johan M Switched-mode power amplifier using lumped element impedance inverter for parallel combining
CN101416383A (zh) * 2006-04-10 2009-04-22 艾利森电话股份有限公司 用于补偿复合放大器中信号失真的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133788A (en) * 1998-04-02 2000-10-17 Ericsson Inc. Hybrid Chireix/Doherty amplifiers and methods
US6285251B1 (en) 1998-04-02 2001-09-04 Ericsson Inc. Amplification systems and methods using fixed and modulated power supply voltages and buck-boost control
CN1625834B (zh) 2002-02-01 2010-05-26 Nxp股份有限公司 半导体放大器元件的输出电路
US6836183B2 (en) 2002-10-16 2004-12-28 Icefyre Semiconductor Corporation Chireix architecture using low impedance amplifiers
KR100473811B1 (ko) 2003-02-21 2005-03-10 학교법인 포항공과대학교 링크 전력 송신기
ATE545198T1 (de) * 2005-12-30 2012-02-15 Ericsson Telefon Ab L M Effizienter zusammengesetzter verstärker
US7724839B2 (en) 2006-07-21 2010-05-25 Mediatek Inc. Multilevel LINC transmitter
US7729445B2 (en) * 2006-09-27 2010-06-01 Intel Corporation Digital outphasing transmitter architecture
ES2653259T3 (es) 2006-10-12 2018-02-06 Topaz Pharmaceuticals Inc. Formulaciones tópicas de ivermectina y procedimientos de eliminación y profiláxis de piojos del cuerpo
US8384475B2 (en) * 2007-11-19 2013-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Composite amplifier, a radio terminal and a method for improving the efficiency of the composite amplifier
EP2274829B1 (en) 2008-05-05 2012-09-05 Nxp B.V. Efficient linear linc power amplifier
US7714649B1 (en) 2008-06-02 2010-05-11 Rockwell Collins, Inc. High-efficiency linear amplifier using non linear circuits
WO2010041181A1 (en) 2008-10-08 2010-04-15 Nxp B.V. Switching mode out-phasing amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023647A1 (en) * 2002-09-06 2004-03-18 Telefonaktiebolaget Lm Ericsson Composite power amplifier
CN1714500A (zh) * 2002-12-19 2005-12-28 艾利森电话股份有限公司 复合放大器结构
US20050001674A1 (en) * 2003-07-03 2005-01-06 Icefyre Semiconductor Corporation. Adaptive predistortion for a transmit system
US7151407B2 (en) * 2003-07-08 2006-12-19 Grundlingh Johan M Switched-mode power amplifier using lumped element impedance inverter for parallel combining
CN101416383A (zh) * 2006-04-10 2009-04-22 艾利森电话股份有限公司 用于补偿复合放大器中信号失真的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107408923A (zh) * 2015-02-15 2017-11-28 天工方案公司 具有减小尺寸的多尔蒂功率放大器
CN109120233A (zh) * 2015-02-15 2019-01-01 天工方案公司 射频放大系统、装置和方法
CN107408923B (zh) * 2015-02-15 2021-05-28 天工方案公司 具有减小尺寸的多尔蒂功率放大器
CN109120233B (zh) * 2015-02-15 2022-07-01 天工方案公司 射频放大系统、装置和方法
CN107528554A (zh) * 2016-06-17 2017-12-29 英飞凌科技美国公司 紧凑的希莱克合并器和阻抗匹配电路
CN107528554B (zh) * 2016-06-17 2021-02-09 英飞凌科技美国公司 紧凑的希莱克合并器和阻抗匹配电路
CN110708029A (zh) * 2019-08-22 2020-01-17 杭州电子科技大学温州研究院有限公司 基于非等长传输线的双频带异向功率放大器及其设计方法
CN110708029B (zh) * 2019-08-22 2023-05-02 杭州电子科技大学温州研究院有限公司 基于非等长传输线的双频带异向功率放大器及其设计方法
CN113824410A (zh) * 2021-09-28 2021-12-21 华南理工大学 一种功率放大器

Also Published As

Publication number Publication date
US8174322B2 (en) 2012-05-08
EP2388912A1 (en) 2011-11-23
CN102237853B (zh) 2014-11-26
EP2388912B1 (en) 2013-11-20
US20110273236A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
CN102237853B (zh) 可重新配置希莱克斯放大器的电源控制及方法
US8203386B2 (en) Reconfigurable outphasing Chireix amplifiers and methods
US7145387B2 (en) Composite power amplifier
US9853603B2 (en) Power amplifier for amplifying radio frequency signal
US8384475B2 (en) Composite amplifier, a radio terminal and a method for improving the efficiency of the composite amplifier
CN100542011C (zh) 具有高功效的集成多赫尔蒂型放大器装置
CN102017400B (zh) 高效线性linc功率放大器
US20170149391A1 (en) Variable Impedance Match and Variable Harmonic Terminations for Different Modes and Frequency Bands
Cho et al. Linear Doherty power amplifier with an enhanced back-off efficiency mode for handset applications
EP1583228B1 (en) Composite power amplifier
US20050248401A1 (en) Composite power amplifier
WO2015176077A2 (en) Systems and methods related to linear and efficient broadband power amplifiers
JP2004519126A (ja) 高調波が減少し効率が改善されたcmos電力増幅器
US20140152389A1 (en) Actively Tuned Circuit Having Parallel Carrier and Peaking Paths
US20140285264A1 (en) Reconfigurable Output Matching Network for Multiple Power Mode Power Amplifiers
Kim et al. A quasi-Doherty SOI CMOS power amplifier with folded combining transformer
CN115700998B (zh) 多尔蒂功率放大器及射频前端模块
Shim et al. A 1.85 GHz CMOS power amplifier with zero-voltage-switching contour-based outphasing control to improve back-off efficiency
RU2437206C1 (ru) Комбинированный усилитель, радиостанция и способ повышения кпд комбинированного усилителя
Osama et al. A 28GHz High Efficiency Inverse Class-F Series Doherty Power Amplifier
Liu et al. A compact tuneable output network for high efficient chireix outphasing power amplifier design
Zeng et al. Design of a High-Efficiency Outphasing Power Amplifier With Enhancing Back-Off Range for 5G Applications
Park et al. Dual-band transmitters using digitally predistorted frequency multipliers for software defined radios
Gao et al. An improved method of power control with CMOS class-E power amplifiers
WO2003036789A2 (en) Radio frequency amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151102

Address after: Holland Ian Deho Finn

Patentee after: NXP BV

Address before: Holland Ian Deho Finn

Patentee before: Koninkl Philips Electronics NV

C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Nijmegen

Patentee after: AMPLEON NETHERLANDS B.V.

Address before: Holland Ian Deho Finn

Patentee before: NXP BV