CN102215821B - 用于制备聚合物微颗粒的方法 - Google Patents

用于制备聚合物微颗粒的方法 Download PDF

Info

Publication number
CN102215821B
CN102215821B CN2008801126635A CN200880112663A CN102215821B CN 102215821 B CN102215821 B CN 102215821B CN 2008801126635 A CN2008801126635 A CN 2008801126635A CN 200880112663 A CN200880112663 A CN 200880112663A CN 102215821 B CN102215821 B CN 102215821B
Authority
CN
China
Prior art keywords
polymer
nozzle
drop
inclined surface
microparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008801126635A
Other languages
English (en)
Other versions
CN102215821A (zh
Inventor
M·R·博默
J·A·M·斯蒂恩巴克斯
S·H·P·M·德温特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN102215821A publication Critical patent/CN102215821A/zh
Application granted granted Critical
Publication of CN102215821B publication Critical patent/CN102215821B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • B01J2/08Gelation of a colloidal solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/18Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using a vibrating apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明描述在药物递送领域中尤为令人感兴趣的,用于制备单分散聚合物微颗粒种群的方法和工具。

Description

用于制备聚合物微颗粒的方法
技术领域
本发明涉及用于生产尤为适于药物递送的单分散微颗粒种群(population)的方法和设备。
背景技术
在许多药物递送应用中要求对颗粒尺寸和颗粒尺寸分布的严格控制。一个实例为从导管递送药物释放颗粒,更具体地为要求递送到诸如肝肿瘤的肿瘤的毛细管床内的情形。在这种药物递送应用中,颗粒被认为在最小毛细管内栓塞,这些颗粒从最小毛细管可释放诸如细胞抑制剂的药物或者提供局部的β或γ辐射。对于加载有钬乙酰丙酮的颗粒,情况就是如此。颗粒的尺寸在治疗功效中起重要作用。如果颗粒太小,它们在例如肺的其它区域中循环和累积。如果颗粒太大,它们将不到达最小的毛细管。因此利用精确且均匀定制的颗粒将实现最有效的疗法。
一种从生物可降解聚合物得到非常严格定义颗粒的方式是使用这样的技术,即,具有溶解的聚合物以及药物的液体被推动经过毛细管,例如通过应用来自压电元件或者类似装置的频率,液体射流由此分解成液滴。这种系统已经在US6,669,916、US6,998,074和WO2006/003581以及Berkland等(2001)J.Control.Release 73,59-74中描述。在US6,669,916中,喷射伴随着附加的向下的力或者加速度以使得可以生产比喷嘴直径小的液滴。这种向下的力的实例为聚乙烯醇溶液的同流。US6,669,961中提到的问题是从直径小于30μm的喷嘴产生颗粒,这种喷嘴容易阻塞。US6,669,961中公开的技术允许使用相当浓缩的溶液(5%的聚合物)来生产在期望尺寸范围内的颗粒。然而,由于需要附加的力,该生产系统变得更加复杂。再者,对于显著小于50μm的颗粒,尺寸分布宽于大约50μm的颗粒。类似的载流已经公开于US6,599,627,该载流旨在包封例如含水相(aqueousphase),而不是将流分解成液滴。这种技术产生较大的,即大于100μm的囊状物。
尺寸为65μm的颗粒已经使用如Radulescu等(2003,Proc.11th Int.Symp.Control.Rel.Soc)所描述的65μm的按需滴落喷嘴来生产。此处,辅助压力可被应用以提高生产速度。来自同一研究组的US6,998,074描述了使用无辅助压力的按需滴落喷墨方法,喷嘴沉浸在液体中以制作聚合物微球。
WO2006/003581描述了比本领域已知颗粒小的颗粒可以使用沉浸喷嘴(该沉浸喷嘴上应用了频率),优选地与辅助压力结合来生产。所喷射的乳化剂液滴仔细收缩得到小至2μm的颗粒。单分散中空囊状物也可以如
Figure GPA00001109400300021
等(2006)(Colloids and Surfaces 289,96-104)中所述来获得。在所描述的系统中,辅助压力不仅允许更高的喷射速率,而且防止装置喷嘴的阻塞。如果不使用附加压力,诸如聚乳酸的聚合物将淀积在待喷射流体和连续相之间的界面处。WO2006/003581中描述的工艺使用的聚合物浓度低于US6,669,961或US6,767,637中描述的工艺,导致乳化剂液滴收缩到更小尺寸。
所有上文引用的现有技术文档中描述的方法利用诸如聚乙烯醇的添加剂来稳定乳化剂液滴和所得到的颗粒。添加聚乙烯醇对从生物可降解聚合物制备聚合物颗粒有两个效应。它既稳定乳化剂液滴又稳定由其形成的颗粒。
除了尺寸和均匀性事宜,喷墨颗粒中的另一问题在于接收流体中乳化剂液滴的易碎性。在溶剂萃取期间搅动必须非常柔和地进行,否则液滴容易破碎。
Figure GPA00001109400300022
等(2006)Colloids & Surfaces,Physicochem.Eng.Aspects 289,96-104描述了一种系统,其中微颗粒在从喷嘴释放之后不进行搅动。
发明内容
本发明的具体和优选方面在所附独立和从属权利要求中给出。来自从属权利要求的特征可以与独立权利要求的特征以及与其它从属权利要求的特征恰当地且不是仅仅如权利要求中所明确给出的那样来组合。
本发明的一个方面涉及一种用于生产聚合物颗粒的设备,所述设备包括:
-第一贮存器(2),用于保持乳化剂(3),
-第二贮存器(4),用于保持接收流体(5),
-喷射模块,具有至少一个喷嘴(6),当该第二贮存器(4)被填充时,该至少一个喷嘴(6)沉浸在该接收流体(5)内,允许将液滴直接喷射到该接收流体(5)内,
-倾斜表面(7),放置于该第二贮存器(4)内或关联到该第二贮存器(4),使得液滴当从该喷嘴(6)喷射到该第二贮存器(4)中的该接收流体(5)内时沿着该倾斜表面(7)运动,其中该倾斜表面(7)具有垂直地开始且以介于10度至45度之间的角度结束的渐变斜坡。
在另一方面,本发明涉及其中利用这种设备的,用于制备聚合物颗粒的方法。
在一特定方面,本发明涉及用于制备尺寸介于1μm和100μm之间的单分散水凝胶聚合物微颗粒的方法,其中所述微颗粒包括生物活性剂,其中利用了根据本发明的设备,所述方法包括下述步骤:
a)制备包括所述生物活性剂的水凝胶形成的聚合物的乳化剂,
b)使用辅助压力和应用频率,从沉浸在含水接收流体内的该喷嘴(6)喷出步骤(a)的乳化剂的液滴,以及,
c)通过允许该液滴在该接收流体内运动一时间段,该时间段确保所述液滴除去溶剂以及用水来饱和,将该液滴膨胀和硬化成微颗粒,其中在步骤(c)中,该膨胀和硬化是通过允许该颗粒在该接收流体内从具有至少10度的斜坡的倾斜表面向下运动来执行的。
在根据本发明这个方面的该方法的一个实施例中,聚合物的浓度介于1-3%之间,喷嘴的直径介于1-50μm之间,以及液滴在接收流体内运动的时间段介于2秒和60秒之间。
在这些方法的具体实施例中,步骤(c)被确保不搅动接收流体内的微颗粒。
在这些方法的另外具体实施例中,步骤(c)中的膨胀和硬化是通过允许颗粒在接收流体内从具有至少10度的斜坡的倾斜表面向下运动来执行的。
在这些方法的再一实施例中,倾斜表面具有渐变斜坡。
本发明的另一方面涉及用于制备介于1μm和100μm之间,更具体地介于1μm和50μm之间的单分散聚合物微颗粒的方法,其中这些微颗粒包括生物活性剂,该方法包括下述步骤:(a)制备生物活性剂和聚合物的溶液的乳化剂,(b)使用辅助压力和应用频率,从沉浸在接收流体内的喷嘴喷射步骤(a)的乳化剂的颗粒或液滴,以及(c)通过允许颗粒在接收流体内在倾斜表面上运动,将这些颗粒或液滴硬化成微颗粒,其中倾斜表面的斜坡为渐变斜坡以及其中该斜坡在每个点具有至少10度,更具体地至少20度的角度。
在这些方法的具体实施例中,聚合物为水凝胶聚合物。在根据本发明这个方面的方法的那些实施例中,其中所使用的聚合物为水凝胶聚合物,可设想另外的具体实施例,其中步骤(c)包括下述步骤:允许该颗粒在接收流体内在倾斜表面上运动一时间段,该时间段确保除去溶剂以及用水来饱和。
在上述方法的具体实施例中,乳化剂中水凝胶聚合物的浓度被调节从而获得直径大于40%,更具体地大于65%的喷嘴直径的水凝胶颗粒。
在上述方法的另一具体实施例中,乳化剂中水凝胶聚合物的浓度低于3%。
在本发明的方法的另一实施例中,乳化剂中水凝胶聚合物的浓度介于0.5%至1.5%之间,喷嘴具有介于10μm和40μm之间的直径。
在所有本发明的方法的具体实施例中,生物活性剂是疏水的。
在本发明的方法的其它实施例中,生物活性剂是亲水生物活性剂以及上述方法步骤(a)包括如下步骤:制备含亲水生物活性剂的水溶液和聚合物溶液的油包水乳化剂。
在本发明的方法的具体实施例中,微颗粒具有介于范围10μm和20μm之间的尺寸。
在本发明的方法的具体实施例中,聚合物为聚(乙撑氧)对苯二甲酸酯和聚(1,4丁二醇)对苯二甲酸酯(PEGT/PBT)共聚物。
在其中使用倾斜表面的本发明方法的具体实施例中,倾斜表面的长度和斜坡配置成使得从喷嘴喷出的颗粒沿着倾斜表面运动介于2秒至60秒之间的时间段。
在本发明方法的另外具体实施例中,该方法包括在步骤(c)之后的附加步骤(d),其中该颗粒通过搅动而进一步硬化。
在本发明方法的具体实施例中,喷嘴具有小于30μm的直径。
在本发明方法的具体实施例中,聚合物为水凝胶聚合物且该方法是在接收流体中不存在稳定剂的情况下执行的。
本发明的另一方面提供尺寸介于1μm和100μm之间且更具体地介于1μm和50μm之间的单分散聚合物微颗粒种群,这些颗粒包括一种或多种生物活性剂。这些种群可通过上述方法获得。
在本发明的单分散聚合物微颗粒种群的具体实施例中,聚合物为水凝胶聚合物,且大于90%的微颗粒具有在种群的平均值0.5μm之内的直径。
在单分散聚合物微颗粒种群的具体实施例中,水凝胶聚合物为PEGT/PBT共聚物。
在本发明的单分散聚合物微颗粒种群的另外具体实施例中,大于90%的颗粒是在4%的数目平均直径之内。
在本发明提供的单分散聚合物微颗粒种群的具体实施例中,这些微颗粒包括亲水生物活性剂或者包括疏水生物活性剂。
本发明还包括使用上文详述的单分散微颗粒种群用于药物递送。本发明还提供包括上文详述的单分散微颗粒种群的药品成分。
在本发明的设备的具体实施例中,渐变斜坡以介于20度和30度之间的角度结束。
本发明的上述和其它特性、特征和优点将从结合附图进行的下述详细描述而变得显而易见,附图通过实例的方式说明本发明的原理。此说明书仅仅是出于实例的原因而给出,而不限制本发明的范围。下文引用的参考图是指附图。
附图说明
图1示出根据本发明一个实施例的设备(1)的示意图示,该设备(1)包括第一贮存器(2)、包括或连接到倾斜表面(7)的第二贮存器(4),该倾斜表面(7)连接到收集槽(collection bath)(8)。设备进一步包括喷嘴(6),该喷嘴配置成使得乳化剂液滴在从喷嘴(6)挤出时落在倾斜表面(7)上,从该表面向下滑动/滚动,直到它们到达收集槽。在本发明的方法中,使用喷嘴(2)将引入到第一容器(2)内的乳化剂(3)注射到第二容器(4)内成为接收流体(5)。可选地,第二容器(4)内的垂直壁(9)允许首先将喷嘴偏移到第一隔室之内/上方的位置以设置频率、脉冲幅值和压力,而液滴不到达收集槽(8)。当参数被设置时,喷嘴可同时保持沉浸地偏移到第二隔室之内/上方的位置,该第二隔室连接到/包括倾斜表面(7)。在本发明的方法的具体实施例中,从喷嘴(6)喷出的乳化剂液滴落在倾斜表面(7)上,乳化剂液滴在该倾斜表面上滑动约2秒后到达用流体(10)填充的收集槽(8)。在倾斜表面上向下滑动的乳化剂液滴被示出。
图2示出根据本发明的设备(1)的具体实施例的示意图示,该设备包括第一贮存器(2)、包括或连接到具有渐变斜坡的倾斜表面(7)(例如管状物的形式)的第二贮存器(4),该倾斜斜面连接到收集槽(8)。设备进一步包括喷嘴(6)。在本发明的方法的具体实施例中,由喷嘴(6)从包括乳化剂(3)的第一贮存器(2)喷出的乳化剂液滴被具有渐变斜坡的倾斜表面引导朝向收集槽。倾斜表面(被描述成具有曲率的管状物)的斜坡垂直地开始,并与水平成约20度的角结束于收集槽(8)。
图3示出根据下述沉浸喷墨的具体实施例而制备的颗粒的尺寸分布:从在二氯乙烷中1%的PEG-PBT(聚(乙撑氧)对苯二甲酸酯和聚(1,4丁二醇)对苯二甲酸酯)溶液,从20μm喷嘴在四种不同频率(空心圆:10kHz;三角形:12kHz;实心圆:17kHz;方形:27.6kHz)沉浸喷墨。
图4示出根据从在二氯甲烷中1%的PEG-PBT溶液沉浸喷墨的具体实施例而制备的颗粒的尺寸分布(实心方形)以及通过沉浸喷墨含有1%PEG-PBT、1%水和98%二氯甲烷的主乳化剂而获得的尺寸分布(空心圆)。
图5示出根据从在二氯甲烷中1%的PEG-PBT溶液沉浸喷墨的具体实施例制备的颗粒(左画板)以及通过沉浸喷墨含有1%PEG-PBT、1%水和98%二氯甲烷的主乳化剂而获得的尺寸分布(右画板)的SEM照片。右侧底部的条代表50μm。
图6示出根据从在二氯甲烷中、不添加稳定剂的1%的PEG-PBT溶液沉浸喷墨的具体实施例制备的颗粒的SEM照片。右侧底部的条代表50μm。
图7示出在10%和50%放大率下的,使用结合了荧光蛋白的乳化水从在二氯甲烷中1%的PEG-PBT溶液制备的喷射微颗粒的荧光显微照片。
图8示出在二氯乙烷中通过含有0.45%聚乳酸羟基乙酸共聚物(plga)和0.35%聚乳酸聚环氧乙烷(PLA-PEO)的二氯乙烷的沉浸喷墨而制备的颗粒的尺寸分布(黑色圆)以及通过含有0.45%plga和0.35%pla-peo的主乳化剂以及0.5%水的沉浸喷墨而获得的尺寸分布(灰色三角形)。
图9示出通过从二氯乙烷溶液沉积喷墨印刷获得的含有碘化油、辛-2-基2,3,5-三碘苯甲酸的PLGA聚合物颗粒的尺寸分布。上画板示出尺寸分布,底画板示出代表性颗粒的整体形状。
在不同的图中,相同的参考符号指代相同或相似元件。
具体实施方式
本发明将结合具体实施例并参考特定图示予以描述,但是本发明不限于此而仅由权利要求书限定。权利要求书中的任何参考符号不应解读为限制范围。所描述的图仅仅是示意性的而非限制性的。在图中,出于说明目的,某些元件的尺寸可夸大且不按比例绘制。在本说明书和权利要求书中使用术语“包括”的场合中,不排除其它元件或步骤。在当引用单数名词时使用的例如″一″或″一个″、″该″的不定冠词或定冠词的场合中,包括多个该名词,除非另外明确地规定。
再者,说明书和权利要求中的术语第一、第二、第三等被用于对相似元件进行区分,而不一定用于描述按次序或者时间顺序。应理解,这样使用的术语在恰当情形下是可互换的以及本文描述的本发明实施例能够按照本文所描述或说明的以外顺序来操作。
下述术语和定义被提供仅仅是为了辅助理解本发明。这些定义不应解读成具有小于本领域普通技术人员所理解的范围。
本文使用的术语″微颗粒″指代直径介于1μm和100μm之间的颗粒。对于不规则形状的颗粒,直径是颗粒的两个外表面之间的最长距离。
术语″生物活性剂″总体上指代任何生理学或药理学活性物质或者适于探测的物质。
术语″亲水的″在本文中用作″水溶性的″的同义词且在本文中用于描述吸引水分子的倾向性和增加的水溶性。如果在25℃下在大气压力下,每升水可以溶解0.2克或更多的试剂(=0.2mg/ml),则亲水生物活性剂在本文被认为是水溶性的。本文使用的术语″单分散″在指代多个微颗粒时是指尺寸分布的标准偏差小于10%。
本文使用的术语″水凝胶″指代天然或合成聚合物链的网络,其中该网络在与水接触时膨胀到一点,在这一点由于网络内的共价或非共价结合畴,聚合物链的物理化学属性防止进一步膨胀。依赖于聚合物中可水合基团的数量,脱水水凝胶在水合时体积膨胀,膨胀系数为3至10,典型地系数介于约3和约4之间(在本文中称为水合度)。
本发明提供了新颖和改进的适合于药物递送的微颗粒以及用于生产它们的方法。
本发明的一个方面提供一种用于制备多个包括一种或多种生物活性剂的单分散聚合物微颗粒的方法。更具体地,微颗粒平均尺寸为1μm至100μm,更具体地介于2-50μm之间,最具体地介于15-30μm之间。在更具体实施例中,微颗粒平均尺寸为10μm至20μm。
根据本发明的方法,包括亲水生物活性剂的聚合物微颗粒使用喷墨技术来形成。诸如US6,669,961中描述的已知喷墨方法的缺点在于喷墨的乳化剂液滴的易碎性。在溶剂萃取时的搅动必须非常柔和地进行,否则液滴容易破碎。
根据本发明,喷墨技术被使用,藉此通过允许微颗粒在液体(接收流体)内落下而使聚合物微颗粒硬化。接收流体为含水溶液,其可以被稀释且可以含有多达2%、10%或20%的诸如盐、表面活性剂稳定剂、有机化合物的附加化合物,或者含有其它添加剂。在此初始膨胀和/或硬化期间,接收流体典型地不搅动以避免例如由于颗粒相互碰撞引起的机械损伤。通过选择恰当的容器高度,可以确保乳化剂液滴由于重力下降特定距离由此硬化到特定程度,之后它们可以从容器移除且可以搅动以进一步硬化。
根据本发明一个方面,提供用于喷墨微颗粒的方法和设备,藉此从喷嘴喷出的乳化剂液滴与位于接收流体内的向下倾斜表面接触,并且在这个表面上向下滚动或滑动时开始膨胀和/或硬化。最具体地,倾斜表面具有渐变斜坡。实际上,已经发现,通过允许乳化剂液滴在接收流体内以渐变斜坡向下滚动或滑动,而不是受重力而下降,可以获得乳化剂液滴在接收流体内老化指定的时间段且具有增加的均匀性的单分散颗粒。
倾斜表面的长度可以改变且将例如通过液滴的尺寸来确定。同样地,斜坡的结构以及用于该斜坡的材料可以影响膨胀和/或硬化的颗粒的性能,举例来说其材料的粗糙度和疏水性具有影响且可由技术人员调节以进一步控制液滴在倾斜表面向下运动所需的时间。在具体实施例中,表面的长度及其倾角(inclination)设计成确保乳化剂液滴的逐渐减速度,使得乳化剂液滴沿着斜坡通过滚动或滑动的运动耗时介于2秒和60秒之间。在具体实施例中,选择其中颗粒沿着斜坡的运动耗时小于10秒或者甚至小于5秒的条件。在具体实施例中,倾斜表面的长度设想为介于1cm和2cm之间,或者更大。
在具体实施例中,倾斜表面的斜坡固定。更具体地,表面的斜坡介于10度和45度之间,介于10度和30度之间,或者介于20度和40度之间。倾斜表面可以是线性的,例如直管状物。典型地倾斜表面从喷嘴下方的位置(允许液滴与倾斜表面接触或者落下在倾斜表面上)延伸到用于收集以及可选地进一步处理所获得的微颗粒的第二容器。喷嘴的开口与倾斜表面之间的距离(或者液滴从喷嘴到达倾斜表面需要的时间)被包括在针对本发明的方法设想的最佳硬化/膨胀距离(膨胀时间)内。倾斜表面可以完全或者部分地置于喷射喷嘴沉浸在其中的容器内,或者可以按照下述方式关联到该容器,至少在喷嘴的具体位置,从喷嘴喷出的乳化剂液滴自动地(例如作为重力的结果或者通过喷嘴和倾斜表面之间的直接连接)与倾斜表面接触。
在具体实施例中,设想具有渐变斜坡的倾斜表面。具体地设想在渐变斜坡同时维持至少10度的倾角,更具体地在斜坡的每个点维持至少20°。典型地,倾斜表面的斜坡从90°(对应于从喷嘴的垂直落下)逐渐改变到位于倾斜表面端部处(微颗粒在这里被收集在例如收集槽(8)内)的至少10°,更具体地至少20°。
在具体实施例中,更具体地当设想具有延伸长度的表面时,倾斜表面弯曲或螺旋以在小体积内创建所要求的长度。
倾斜表面可以是平坦的或者可包括弯曲边缘以防止液滴跌落该表面。在具体实施例中,表面为连接到收集槽(8)的凹槽或者管状物,该收集槽含有诸如接收流体的流体(10)。
在从倾斜表面向下滚动或滑动之后,乳化剂液滴充分地硬化/膨胀且可以可选地通过规则搅动来进一步处理。因此,液滴可被收集在收集槽(8)内。附加或备选地,液滴可以从接收流体取出并复原。
本发明的被动处理步骤具有规避对所喷射液滴损伤的优点,且在具体实施例中是在不存在诸如典型地用于稳定乳化剂液滴或所形成微颗粒的聚乙烯醇的添加剂情形下实施的。
本发明的方法和工具在产生用于生物活性剂递送的微颗粒中是特别令人感兴趣的,因而可选地包括一种或多种生物活性剂。
根据本发明一个实施例,本发明的工具和方法被用于产生包括疏水生物活性剂的微颗粒。根据此实施例,疏水生物活性剂使用聚合物混合在一起成为有机溶剂以制备乳化剂,该乳化剂随后根据本发明的方法被喷墨。制备聚合物和疏水剂的乳化剂的方法对于技术人员而言是公知的。
根据本发明的另一实施例,本发明的方法和工具被用于产生包括亲水或者水溶性生物活性剂的微颗粒。包括亲水生物活性剂的聚合物微颗粒使用双重乳化技术来形成。在第一步骤,亲水生物活性剂溶解在含水溶液中且与封装聚合物在第一溶剂中的溶液混合以形成油包水(water-in-oil)的主乳化剂,第一溶剂与水不互溶或者在水中具有有限溶解度(小于5%或2%),诸如在水中溶解度为1.3%的二氯甲烷。主乳化剂添加到含水第二溶剂以形成次乳化剂且继续均质化。第一和第二溶剂被选择为使得第一溶剂与第二含水溶剂不互溶或者部分互溶,但是聚合物与第二溶剂不互溶。在引入油包水乳化剂之后,第一溶剂将迁移到第二溶剂内。按照这种方式获得聚合物微颗粒,该聚合物微颗粒含有多个包括水溶性生物活性剂的裂隙。随后进行溶剂蒸发或萃取。根据本发明,提供了工具和方法,藉此可获得均匀性增加的微颗粒。在本发明的方法和工具中,含水相中的微颗粒从喷嘴(1)落到位于含水接收流体(4)内的倾斜表面(6)上。更具体地,如上所述,倾斜斜坡具有渐变斜率。
因此,本发明的方法被设想用于生产包括亲水或疏水生物活性剂的微颗粒。核酸、碳水化合物、以及一般来说,蛋白质和肽是水溶性的或者亲水的,且通常使用如上所述双乳化剂技术而最佳地被结合到微颗粒内。然而,包括某些肽(例如当肽内的大部分氨基酸携带疏水侧链时)的疏水药物可以与聚合物一起直接溶解在有机溶剂内以制备根据本发明方法用于喷墨的乳化剂。因此,本发明包括含有本发明可获得的微颗粒的药品成分。
尽管鉴于蛋白质和肽的脆弱性,本方法和工具对于制作用蛋白质和肽加载的聚合物是尤为有用的,当然也可设想用蛋白质和肽以外的物质来加载聚合物。举例来说,还可设想为小分子、脂质、脂多糖、多核苷酸和反义核苷酸(基因治疗剂)的生物活性剂。因而可被结合的这样的生物活性剂包括非肽、非蛋白质药物。在本发明的范围内可结合聚合物性质的药物,也可结合具有小于1500或者甚至小于500的较小分子量的药物。
因此,在本发明上下文中被设想用作生物活性剂的化合物包括任何具有治疗或预防作用的化合物。它可以是影响或参与组织生长、细胞生长、细胞分化的化合物;能够唤起诸如免疫响应的生物学行为的化合物;或者在一种或多种生物学过程中扮演任何其它角色的化合物。实例的非限制性列表包括抗微生物剂(包括抗菌剂、抗病毒剂和抗真菌剂)、抗病毒剂、抗肿瘤剂、凝血酶抑制剂、抗凝血剂、血栓溶解剂、纤维蛋白溶解剂、血管痉挛抑制剂、钙通道阻断剂、血管舒张剂、抗高血压剂、抗微生物剂、抗生素、表面糖蛋白受体的抑制剂、抗血小板剂、抗有丝分裂剂、微管抑制剂、抗分泌剂、肌动蛋白抑制剂、重塑抑制剂、抗代谢剂、抗增殖剂(包括抗血管生成剂)、抗癌化疗剂、抗炎类固醇或非类固醇抗炎剂、免疫抑制剂、生长激素受体拮抗剂、生长因子、多巴胺促动剂、放射治疗剂、细胞外基质成份、ACE抑制剂、自由基清除剂、螯合剂、抗氧化剂、抗聚合酶以及光动力治疗剂。
如上所指示,可用于加载根据本发明的聚合物的具体化合物群组是由肽和蛋白质形成,原则上根据本发明可以结合任何类型的肽和蛋白质。相对较小的肽可由氨基酸的数目来指代(例如二、三、四肽)。具有相对较小数目的酰胺键(多至50个氨基酸)的肽也可称为寡肽,而具有相对较大数目的肽(多于50个氨基酸)可称为多肽或蛋白质。除了是氨基酸残基的聚合物之外,某些蛋白质可进一步由所谓的四元结构来表征,这种四元结构为许多多肽的聚集物,这些多肽不一定通过酰胺键来化学链接,而是通过技术人员通常知晓的诸如静电力和范德瓦尔斯力的力来结合。本文中使用的术语肽、蛋白质或其混合物包括所有上述可能性。
通常,蛋白质和/或肽基于其生物学活性来选择。依赖于所选择的聚合物的类型,由该处理可获得的产物非常适合于蛋白质和肽的受控释放。在具体实施例中,蛋白质或肽为生长因子。
可有利地被包括在加载聚合物中的肽或蛋白质或者包括肽或蛋白质的实体的其它实例包括但不限于免疫肽或免疫蛋白质,其包括但不限于下述:
毒素,诸如白喉毒素和破伤风毒素。
病毒表面抗原或部分病毒、诸如腺病毒、艾伯斯坦-巴尔病毒、甲型肝炎病毒、乙型肝炎病毒、疱疹病毒、HIV-1、HIV-2、HTLV-III、流感病毒、日本脑炎病毒、麻疹病毒、乳头状瘤病毒、副粘病毒、脊髓灰质炎病毒、狂犬病、病毒、风疹病毒、牛痘(天花)病毒和黄热病病毒。
细菌表面抗原或部分细菌,诸如百日咳杆菌、幽门螺旋杆菌、破伤风杆菌、白喉棒状杆菌、大肠杆菌、流感嗜血杆菌、克雷伯菌属、嗜肺军团菌、牛型结核菌、麻风分支杆菌、牛分枝杆菌、淋球菌、脑膜炎奈瑟菌、变形杆菌物种、绿脓杆菌、沙门氏菌、痢疾杆菌、金黄色葡萄球菌、化脓性链球菌、霍乱弧菌及鼠疫菌。
引起疾病的寄生虫的表面抗原或部分寄生虫,诸如间日疟原虫(疟疾)、恶性疟原虫(疟疾)、卵形(疟疾)、疟原虫(疟疾)、利什曼原虫特罗皮卡(利什曼病)、利什曼原虫(利什曼病)、巴西利什曼原虫(利什曼病)、罗得西亚锥虫(昏睡病)、布氏冈比亚锥虫病(昏睡病)、枯氏锥虫(南美锥虫病)、曼氏血吸虫(血吸虫病)、埃及血吸虫(血吸虫病)、日本血吸虫(血吸虫病)、旋毛虫(旋毛虫病)、十二指肠粪类圆线虫(钩虫)、十二指肠犬钩口线虫(钩虫)、美洲板口线虫(钩虫)、班氏丝虫(丝虫病)、马来丝虫(丝虫病)、罗阿丝虫(丝虫病)、常现丝虫(丝虫病)、麦地那龙线虫(丝虫病)、和盘尾丝虫(丝虫病)。
免疫球蛋白,诸如IgG、IgA、IgM、抗狂犬病免疫球蛋白和抗牛痘免疫球蛋白。
抗毒素,诸如肉毒抗毒素、白喉抗毒素、气性坏疽抗毒素、破伤风抗毒素。
引起针对手足口病的免疫响应的抗原。
荷尔蒙和生长因子,诸如卵泡刺激素、催乳素、血管生成素、表皮生长因子、降钙素、促红细胞生成素、促甲状腺激素释放激素、胰岛素、生长荷尔蒙、胰岛素样生长因子1和2、骨骼的生长因子、人绒毛膜促性腺激素、促黄体激素、神经生长因子、促肾上腺皮质激素(ACTH)、促黄体激素释放激素(LHRH)、甲状旁腺激素(PTH)、促甲状腺激素释放激素(TRH)、加压素、胆囊收缩素、和促肾上腺皮质激素释放激素;细胞因子、诸如干扰素、白细胞介素、集落刺激因子、肿瘤坏死因子:纤维蛋白溶解酶、诸如尿激酶型纤溶酶原激活物肾脏;以及凝血因子、诸如蛋白质C、因子VIII、因子IX、因子VII和抗凝血酶III。
其它蛋白质或肽的实例为白蛋白、心钠素、肾素、超氧化物歧化酶、α1抗胰蛋白酶、肺表面活性剂蛋白质、崔西杆菌素、苯丁抑制素、环孢霉素、睡眠诱导肽(DSIP)、内啡肽、胰高血糖素、短杆菌肽、黑素细胞抑制因子、神经降压素、催产素、生长抑素、替普罗肽、血清胸腺因子、胸腺素、去氨加压素、皮啡肽、蛋氨酸脑啡肽、肽聚糖、饱满素、胸腺五肽、纤维蛋白降解产物、des脑啡肽-α-内啡肽、促性腺激素释放激素、亮丙瑞林、α-促黑色素细胞激素和美克法胺。
抗肿瘤剂,诸如六甲蜜胺、氟尿嘧啶、安吖啶、羟基脲、门冬酰胺酶、异环磷酰胺、博来霉素、洛莫司汀、白消安、美法仑、苯丁酸氮芥、巰基嘌呤、氮芥、甲氨蝶呤、顺铂、丝裂霉素、环磷酰胺、丙卡巴肼、阿糖胞苷、替尼泊苷、达卡巴嗪、塞替派、放线菌素、硫鸟嘌呤、柔红霉素、曲奥舒凡、阿霉素、硫代磷酸酰胺、雌莫司汀、长春碱、依托格鲁、长春新碱、依托泊苷、长春地辛和紫杉醇。
抗菌剂,包括:
抗生素,诸如氨苄青霉素、奈夫西林、阿莫西林、苯唑西林、阿洛西林、青霉素G、羧苄青霉素、青霉素V、双氯西林、非奈西林、氟氯西林、哌拉西林、美西林、磺苄西林、甲氧西林、替卡西林、美洛西林、头孢菌素:头孢克洛、头孢菌素、头孢羟氨苄、头孢匹林、头孢孟多、头孢拉定、头孢三嗪、头孢磺啶、头孢唑啉、头孢他啶、头孢雷特、头孢三嗪、头孢西丁、头孢呋辛、头孢乙腈、拉氧头孢、和头孢氨苄。氨基糖苷类诸如丁胺卡那霉素、新霉素、地贝卡星、卡那霉素、庆大霉素、奈替米星、卡那霉素、妥布霉素。大环内酯类诸如两性霉素B、新生霉素、杆菌肽、制霉菌素、克林霉素、多粘菌素、粘菌素、螺旋霉素、红霉素、大观霉素、林可霉素、万古霉素。四环素诸如金霉素、土霉素、地美环素、罗利环素、强力霉素、四环素、米诺环素。其它抗生素诸如氯霉素、利福霉素、利福平和甲砜霉素。
化疗剂,诸如磺胺类药物磺胺嘧啶、磺胺甲二唑、磺胺二甲基嘧啶、复方新诺明、磺胺二甲嘧啶、磺胺甲氧嗪、磺胺异恶唑、磺胺苯吡唑、磺胺林、磺胺索嘧啶、磺胺甲基嘧啶、磺胺异恶唑和具有复方新诺明或磺胺美曲的甲氧苄啶。
尿路防腐剂,诸如甲胺、喹诺酮类(氟哌酸、西诺沙星)、萘啶酸、硝基化合物(呋喃妥因、硝呋妥因醇)和欧索林酸。
用于厌氧菌感染的药物,诸如甲硝唑。
用于肺结核的药物,诸如氨基水杨酸、异烟肼、环丝氨酸、利福平、乙胺丁醇、硫卡利特、乙硫异烟胺和紫霉素。
用于麻风病的药物,诸如胺苯硫脲、利福平、氯法齐明、硫福宋钠和二氨基二苯(DDS、氨苯砜)。
抗真菌剂,诸如两性霉素B、酮康唑、克霉唑、咪康唑、益康唑、纳他霉素、氟胞嘧啶、制霉菌素和灰黄霉素。
抗病毒剂,诸如阿昔洛韦、碘苷、金刚烷胺、美替沙腙、阿糖胞苷、阿糖腺苷和更昔洛韦。
变形虫病的化疗,诸如氯喹、双碘喹啉、氯碘羟喹、甲硝唑、去氢依米丁、巴龙霉素、二氯尼特、糠替硝唑和吐根碱。
抗疟疾剂,诸如氯喹、乙胺嘧啶、羟氯喹、奎宁、甲氟喹、磺胺/乙胺嘧啶、喷他脒、苏拉明钠、伯氨喹、甲氧苄啶和氯胍。
抗蠕虫剂,诸如酒石酸锑钾、尼立达唑、锑酸钠二巯基丁、奥沙尼喹、苄酚宁、哌嗪、双氯酚、吡喹酮、乙胺嗪、双羟萘酸噻嘧啶、海恩酮、扑蛲灵、左旋咪唑、睇波芬、甲苯咪唑、四咪唑、美曲膦酯、噻菌灵和氯硝柳胺。
抗炎剂,诸如乙酰水杨酸、甲芬那酸、双氯芬酸、萘普生、偶氮丙酮、尼氟灭酸、苄达明、羟布宗、双氯芬酸、吡罗昔康、非诺洛芬、吡洛芬、氟比洛芬、水杨酸钠、布洛芬舒林酸、消炎痛、噻洛芬酸、酮洛芬和托美丁。
抗痛风剂,诸如秋水仙碱和别嘌呤醇。
作用于中枢神经的(鸦片)镇痛剂,诸如阿芬太尼、美沙酮、苯腈米特、吗啡、丁丙诺啡、尼可吗啡、布托啡诺、喷他佐辛、可待因、杜冷丁、右吗拉胺、氰苯双哌酰胺、右旋丙氧吩、舒芬太尼和芬太尼。
局部麻醉药诸如阿替卡因、甲哌卡因、布比卡因、普鲁卡因、依替卡因、普鲁卡因、利多卡因和丁卡因。
用于帕金森氏病的药物,诸如金刚烷胺、苯海拉明、阿朴吗啡、普罗吩胺、甲磺酰苯扎托品、麦角腈、比哌立登、左旋多巴、溴隐亭、麦角乙脲、卡比多巴、美噻吨、氯苯沙明、奥芬那君、赛克立明、丙环定、右苄替米特和苯海索。
中枢神经活性的肌肉松弛剂,诸如巴氯芬、卡立普多、氯美扎酮、氯唑沙宗、环苯扎林、丹曲林、地西泮、非巴氨酯、美芬诺酮、美芬新、美他沙酮、美索巴莫和托哌酮。
皮质类固醇包括:
盐皮质类固醇,诸如皮质醇、去氧皮质酮和氟氢可的松。
糖皮质类固醇,诸如氯地米松、倍他米松、可的松、地塞米松、氟轻松、醋酸氟轻松、氟可龙、氟米龙、氟泼尼龙、丙酮缩氟氢羟龙、氯氟舒松、氢化可的松、甲羟松、甲泼尼龙、帕拉米松、泼尼松龙、泼尼松和曲安奈德(安奈德)。
雄激素包括:
用于治疗的雄激素类固醇,诸如达那唑、氟甲睾酮、美睾酮、甲睾酮、睾酮及其盐。
用于治疗的合成类固醇,诸如卡普睾酮、去甲睾酮及其盐、屈他雄酮、氧甲氢龙、乙雌烯醇、羟甲烯龙、美雄醇、康力龙美雄酮和睾内酯。
抗雄激素,诸如醋酸环丙孕酮。
用于治疗的包括雌激素类固醇的雌激素,诸如己烯雌酚、雌二醇、雌三醇、炔雌醇、美雌醇和炔雌醚。
抗雌激素,诸如氯烯雌醚、氯米芬、乙胺氧三苯醇、萘福昔定和他莫昔芬。
孕激素类,诸如烯丙雌醇、去氧孕烯、地美炔酮、利奈孕醇、利奈孕酮、炔孕酮、双醋炔诺醇、双醋炔诺醇、羟孕酮、左炔诺孕酮、利奈孕酮、甲羟孕酮、甲地孕酮、炔诺酮、炔诺酮、异炔诺酮、甲基炔诺酮和孕酮。
甲状腺药物包括:
用于治疗的甲状腺药物,诸如甲状腺素和碘塞罗宁。
用于治疗的抗甲状腺药物,诸如卡比吗唑、甲巯咪唑、甲硫氧嘧啶和丙基硫氧嘧啶。
根据具体实施例,生物活性剂为诸如造影剂或者标签的标记物物质。优选地,造影剂或者标签为疏水的,或者具有特定性质。这些类型的制剂可以非常有效地被结合且直到其已经降解到大的程度才会从聚合物基体从释放。尤为合适的制剂为液体形式的碘化X射线造影剂。出于此目的,举例来说可以使用产品Ethiodol,其为碘化的罂粟子油。对于更高的碘负荷,可以合成例如碘含量大于1000mg/ml的辛-2-基2,3,5-三碘苯甲酸的碘化油。
聚合物微颗粒可包括一种或多种生物活性剂或者可包括治疗剂和造影剂的组合。除了水溶性的生物活性剂之外,还可结合诸如抗氧化剂、离子、螯合剂、染料、成像化合物的其它水溶性化合物。另外,除了疏水生物活性化合物之外,其它化合物可被添加到被用于溶解该聚合物的溶剂。这些疏水化合物可以是抗氧化剂、离子、螯合剂、染料或者成像化合物。如上所述,本发明的方法和工具可以用于产生含有疏水和亲水剂的聚合物微颗粒。疏水剂被直接结合到聚合物溶液内,以及亲水剂经由双乳化剂技术被结合。
对于根据本发明这个方面的方法,可以使用任何类型的生物兼容性聚合物。在某些实施例中,生物兼容性聚合物也是生物可降解。生物可降解的生物兼容性聚合物的实例为聚乳酸、聚乙交酯、聚乳酸乙交酯、聚已酸内酯、聚碳酸酯、聚酰胺酯、聚酸酐、聚氨基酸、聚原酸酯、聚二恶烷酮、聚亚烷基烷基化物、聚缩醛、聚氰基丙烯酸酯、生物可降解聚氨酯及其溶合物和共聚物。典型地包括聚乳酸、乳酸和乙交酯的共聚物、其溶合物或者其混合物的聚合物被使用。这些聚合物可以由单一异构型或者异构体混合物的单体形成。
非生物可降解的生物兼容性聚合物的实例为聚丙烯、乙烯醋酸乙烯酯和其它酰基取代醋酸纤维素的聚合物、非可降解聚氨酯、聚苯乙烯、聚氯乙烯、聚氟乙烯、聚乙烯基咪唑、氯磺酸聚烯烃、聚环氧乙烷(PEO)、其溶合物和共聚物。
在具体实施例中,聚合物为PLA-PEO(聚乳酸聚环氧乙烷)共聚物。
本发明的另一方面涉及用于使用喷墨来制备包括生物活性剂的单分散聚合物微颗粒的方法和工具,该微颗粒尺寸介于1μm和100μm之间,更具体地介于2μm和50μm之间,其中聚合物为水凝胶。已经发现,使用水凝胶聚合物允许从低浓度聚合物产生小于30μm的颗粒,这对于先前公开的技术(例如US6,669,961)来说是个问题。在液体中膨胀和/或硬化喷墨的聚合物颗粒时,有机溶剂从颗粒扩散出来,同时存在水到微颗粒内的反扩散。在水凝胶颗粒形成中,这个反扩散的有利结果尚未被认识到。在水凝胶液滴注射到含水接收流体内之后,大量的水被水凝胶颗粒吸收,导致显著的膨胀。此膨胀不依赖于液滴与含水接收流体接触的时间。平衡值几乎即刻得到。在离开喷嘴时,液滴具有略大于喷嘴直径的直径,依赖于所应用的压力和所喷射聚合物的量。实践中,从直径为例如30微米的喷嘴喷射产生直径约为45μm的液滴。水凝胶颗粒的最终直径将依赖于聚合物浓度和水凝胶水合度的组合,其中水凝胶水合度是由聚合物上可水合的基团数目确定。由水对脱水水凝胶颗粒在体积上的补偿膨胀一般为3至4的因子,但是可以多达5、6、8或10的值。
一般而言,由于除去溶剂的结果,直径为50μm、聚合物浓度为1%至3%的喷射的水凝胶液滴,首先以100至33的因子收缩体积,并在直径上收缩成直径约为11μm至16μm的颗粒。这些颗粒在水合且以因子3增大体积时,膨胀成直径约为15μm至22μm的颗粒。颗粒在水合且以因子4增大体积时,膨胀成直径分别约为17μm和25μm的颗粒。依据结果的水合水凝胶聚合物颗粒的期望尺寸来选择聚合物的类型(即水合度)和聚合物浓度,这是在技术人员的能力范围之内。
水凝胶聚合物因而具有这样的优点,可以喷射具有相对较小体积的聚合物液滴,同时在膨胀之后获得相对较大的微颗粒。通过使用更小的液滴,存在于水凝胶中的溶剂从液滴向外扩散显著增加。结果聚合物颗粒的膨胀和/或硬化所需的总时间显著下降。再者,由于接收流体较少地被溶剂污染,颗粒和接收流体之间的溶剂的更陡梯度得以维持,再次促进聚合物颗粒的膨胀和/或硬化。
因此,在本发明的具体实施例中,设想使用具有低浓度水凝胶聚合物的乳化剂,例如0.5%至3%,更具体地0.5%至2%,诸如乳化剂中的1.5%的水凝胶聚合物。在另外具体实施例中,这种乳化剂从喷嘴喷射,喷嘴直径介于1μm和100μm之间,更具体地介于10μm和50μm之间,甚至更具体地介于20μm和30μm之间。通过调节喷嘴直径,水凝胶乳化剂的喷墨液滴的受控膨胀允许产生这样的微颗粒,其直径介于喷嘴直径的40%和120%之间,更具体地直径为大于喷墨使用的喷嘴直径的70%至85%(具体地大于75%,大于80%,或者大于85%)。在具体实施例中,在膨胀之后获得的水凝胶颗粒的直径可以与喷嘴直径一样大或者更大。
实例部分演示了,从直径为20μm的喷嘴喷射的约1%的水凝胶聚合物浓度可用于获得直径约为17μm的聚合物颗粒,该直径对应于85%的喷嘴直径。
如上所述,使用水凝胶形成的聚合物来制造微颗粒,这允许使用聚合物浓度低于3%,或者甚至低于2%的乳化剂,该浓度显著低于传统上使用的聚合物浓度。这种乳化剂具有更低的粘性,这利于喷墨,因为迫使乳化剂通过喷墨装置所需的压力更少。使用水凝胶形成的聚合物还具有这样的优点,在喷墨期间,喷嘴污染减少。
本发明因而提供用于生产包括生物活性剂的、尺寸范围介于1μm和50μm之间的水凝胶聚合物微颗粒的方法。典型地,本发明的方法包括步骤:制备如上所述的水凝胶形成的聚合物的乳化剂,该乳化剂包括生物活性剂;以及使用辅助压力和应用频率,从沉浸在含水接收流体内的喷嘴喷出乳化剂液体。通过允许液滴在接收流体内运动一时间段,该时间段确保所述液滴除去溶剂以及用水来饱和,液滴被硬化成微颗粒。典型地,大于30%,具体地大于40%,更具体地大于50%,最具体地介于60%和98%或更多之间的溶剂被除去且全部或者部分被水替代。在本发明方法的具体实施例中,颗粒在接收流体内运动,没有进行搅拌。最具体地,通过如本文所描述允许颗粒在倾斜表面上滑动,使颗粒在接收流体内运动。
因此,本发明提供水凝胶聚合物颗粒的单分散种群,颗粒直径介于1μm和100μm之间,更具体地直径在介于10μm和30μm之间的范围内,最具体地介于10μm和20μm之间。尺寸介于10μm和20μm之间的颗粒尤为适合于诸如在最细血管内形成栓塞的医学应用。
根据具体实施例,水凝胶聚合物微颗粒包括一种或多种生物活性剂。在具体实施例中,水凝胶颗粒包括亲水生物活性剂。备选地,生物活性剂是疏水的以及双乳化剂技术如上所述被使用。生物活性剂的性质不是关键的,以及所设想的生物活性剂的合适实例在上文公开。
根据另一具体实施例,水凝胶微颗粒是通过喷墨到溶剂内来生产的,其中微颗粒落在具有渐变斜坡的倾斜表面上,如前所述。
水凝胶对于特别是亲水材料的受控递送是尤为有用的,因为聚合物的水溶区域使得水能够接近包埋在聚合物内的材料。依赖于聚合物内的特征孔径,可以通过在降解之前材料从聚合物扩散和/或通过在降解时材料从聚合物扩散来进行释放,该特征孔径是由交联之间的分子量以及交联密度控制的。由于凝胶体的固定和保护性效应,包埋材料的去活性被降低,并且与其它受控释放系统相关联的突发灾难性效应得以避免。聚合物的退化通过末端酯链接而逐渐水解,利于体内最终受控释放自由大分子。一般而言,水凝胶由生物可降解可聚合的大分子单体形成,该大分子单体包括核心、在核心每个端部上的延伸以及每个延伸上的端盖。核心是亲水聚合物或寡聚物;每个延伸为生物可降解寡聚物;以及每个端盖为能够交联成大分子单体的寡聚物、二聚体或者单体。在另一具体实施例中,核心包括分子量介于约400Da和30,000Da之间的亲水的聚乙二醇寡聚物;每个延伸包括分子量介于约200Da和1200Da之间的生物可降解的聚(α-羟基酸)寡聚物;以及每个端盖包括分子量介于约50Da和200Da之间的丙烯酸酯类单体或寡聚物(即,含有碳-碳双键),其在共聚物之间能够交联和聚合。另一实施例结合了:由分子量约为10,000Da的聚乙二醇寡聚物组成的核心;由分子量约为250Da的聚羟基乙酸寡聚物组成的延伸;以及由分子量约为100Da的丙烯酸酯基体组成的端盖。
合适用作核心水溶区域的材料的实例为聚乙二醇,聚环氧乙烷,聚乙烯醇,聚乙烯吡咯烷酮,聚乙基唑啉,聚环氧乙烷共聚环氧丙烷的嵌段共聚物,诸如透明质酸、右旋糖酐、肝素酶、软骨素硫酸盐、肝素或藻酸盐的多糖或碳水化合物,或者诸如明胶、胶原质、白蛋白或卵清蛋白的蛋白质。
生物可降解区域可以使用诸如酯、肽、酸酐、原酸酯和磷酸酯键的易受生物降解的链接,由聚合物或单体来构造。
可水解的生物可降解成份的实例为乙醇酸、乳酸、ε-己内酯、其它α羟基酸的聚合物和寡聚物,以及产生无毒性或者作为正常代谢产物存在于体内的其它生物可降解聚合物。合适的聚(α-羟基酸)为聚羟基乙酸、聚(DL-乳酸)和聚(L-乳酸)。其它有用的材料包括聚氨基酸、聚酐、聚原酸酯和聚磷酸酯。诸如聚(ε-己内酯)、聚(ε(3己内酯)、聚(δ-戊内酯)和聚(γ-丁内酯)的聚内酯也是有用的。
其实例为PEG寡乳酸基丙烯酸酯。此处,聚乙二醇或者PEG中央结构单元(核心)基于其高的亲水性和水溶性以及附带的出色生物兼容性而是有用的。诸如聚羟基乙酸的短聚(α-羟基酸)是合适的链延伸,因为它通过酯链接水解成乙醇酸而快速降解,乙醇酸是一种无害的代谢产物。这些网络可用于包埋和均匀地分散水溶性药物和酶以及将它们按受控速率递送。其它合适的链延伸为聚乳酸、聚己内酯、聚原酸酯和聚酐。也可以使用多肽。
在具体实施例中,水凝胶微颗粒是从聚亚烷基二醇和芳香族聚酯的共聚物来制备的。此共聚物包括:基于共聚物的重量的,从约30wt.%至约99wt.%,特别是30wt.%至90wt.%的第一成份,该第一成份包括聚亚烷基二醇且具有分子式为-OLO-CO-Q-CO-的单元,其中L为在从聚氧化烯乙二醇除去末端羟基之后保留的二价有机自由基,以及Q为二价有机自由基;以及基于共聚物的重量的,从约1wt.%至约70wt.%,特别是10wt.%至70wt.%的第二成份,该第二成份为芳香族聚酯且具有分子式为-O-E-O-CO-R-CO-的单元,其中E为具有2至8个碳原子的取代或未被取代的亚烃基或氧化烯基自由基,以及R为取代或未被取代的二价芳香族自由基。
在一个实施例中,聚亚烷基二醇是选自聚乙二醇、聚丙二醇和聚乙二醇以及诸如聚羟亚烃的其共聚物。在一个实施例中,聚亚烷基二醇为聚乙二醇。术语亚烃基和聚亚烷基通常指代任何异构体结构,即丙烯包括1,2-丙烯和1,3-丙烯,丁烯包括1,2-丁烯、1,3-丁烯、2,3-丁烯、1,2-异丁烯、1,3-异丁烯和1,4-丁烯(环丁烷)以及对于更高的亚烃基同源物是类似的。如果需要,聚亚烷基二醇成份用二羧酸残留-CO-Q-CO-来终止以提供与聚酯成份的耦合。基团Q可以是具有与R相同定义的芳香基团,或者可以是诸如乙烯、丙烯、丁烯等的脂族基团。
在聚酯成份中,二价芳香基团R可以是亚苯基、吡啶亚基、亚萘基、联苯基、氧二苯基、硫二苯基、甲基二苯基,可选地被多至四个,具体地多至两个选自下述的取代基取代:氯基、硝基和C1-C4烷氧基,以及另外的氟基、羟基和C1-C4的烷基。典型地,芳香族自由基R不被取代,且具体地R为1,4-亚苯基。聚酯-O-E-O-CO-R-CO-的实例包括聚对苯二甲酸乙二醇酯、聚丙烯对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚间苯二甲酸丁二醇酯、聚(乙烯4,4′-二苯亚甲基二羧酸酯)、聚(丁烯5,6,7,8-四氢萘-1,4-二羧酸酯)等。
在具体实施例中,聚酯选自聚对苯二甲酸乙二醇酯、聚丙烯对苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯。更具体地,聚酯为聚对苯二甲酸丁二醇酯。在非常具体实施例中,共聚物为聚乙二醇/聚对苯二甲酸丁二醇酯嵌段共聚物。
聚亚烷基二醇可具有从约200到约20,000的分子量。聚(氧乙烯)乙二醇的确切分子量依赖于包括由基体封装的生物活性剂类型的各种因素。
在具体实施例中,水凝胶聚合物为聚对苯二甲酸环氧乙烷和聚(1,4丁二醇)对苯二甲酸的共聚物(PEGT/PBT)。其中PEGT/PBT重量比例可在从80/20到70/30至60/40的范围。在具体实施例中,70/30和60/40共聚物的聚乙二醇成份具有1,000的分子量。在其它具体实施例中,80/20共聚物的聚乙二醇成份的分子量分别为1,000、2,000和4,000。
其中水凝胶形成的聚合物在喷墨中被使用的本发明方法具有的附加优点为,不需要稳定用添加剂。一般在制备生物可降解聚合物的微颗粒中,需要添加剂。所使用的最常见添加剂为聚乙烯醇(PVA),其可以以不同的分子量和水解度而商业上获得。从混合生物可降解聚合物在具有水的有机溶剂中的溶液来制备微颗粒方面上,PVA具有三种功能。首先,PVA是用于在喷墨之后形成的乳化剂液滴的出色稳定剂。其次PVA用作硬化的微颗粒的稳定剂,其三PVA对于乳化剂液滴之间的剪切力具有影响。
在本发明的具体实施例中使用水凝胶形成的聚合物,这除去了PVA对乳化剂液滴稳定性和微颗粒稳定性的稳定作用的需要。类似地,不再需要粘性增强剂来控制微颗粒尺寸。根据本发明通过在含水溶液中的沉浸喷射和受控膨胀,不发生利用剪切力分解乳化剂液滴,因此该处理可以在不添加PVA到连续相的情况下进行。因此需要更少的清洗步骤且随后更快的处理可能引起更高效的封装。
本发明的方法另外允许使用双乳化剂技术,其中当水凝胶聚合物被使用时,诸如聚丙二醇与环氧乙烷的加聚物(Pluronic)的表面活性剂可以从第一乳化剂步骤略去。
在本发明的喷墨方法和工具中,使用喷嘴利用辅助压力与诸如喷墨头的压电设备组合,在聚合物乳化剂中的生物活性剂被引入流体(也称为接收流体)。根据已知的沉浸喷墨方法,喷嘴沉浸在接收流体内。
用于微颗粒的沉浸喷墨的设备在例如WO2006003581和US6599627中描述。
这种设备典型地包括:
-第一贮存器(2),用于保持生物活性剂和聚合物的乳化剂(3),
-第二贮存器(4),用于保持接收流体(5),以及
-喷射模块,具有用于将乳化剂喷射到接收流体内的至少一个喷嘴(6)。
在本发明的设备中,用于接收流体的第二贮存器(4)和喷嘴(6)置为使得,在用接收流体填满第二贮存器(4)后,喷嘴(6)沉浸在接收流体内。
喷嘴的直径可以依赖于将获得的颗粒的尺寸和/或所使用的聚合物浓度来调节,典型地介于1-100μm之间。在具体实施例中,本发明的设备包括直径介于20μm和50μm之间的喷嘴。
在一个实施例中,设备包括控制系统以将喷射控制在处于100kHz-1至0.1kHz-1范围内的喷射速率。在另一实施例中,控制系统布置成以脉冲方式操作喷射,具体地控制系统布置成应用方波形式激励脉冲到喷射模块。在另一实施例中,喷射系统包括若干喷嘴以及控制系统布置成针对单独喷嘴调节液滴尺寸。在另一实施例中,贮存器设有温度控制系统。
应用在本发明方法中的沉浸喷墨的具体实施例在
Figure GPA00001109400300221
等(2006)(上文引用)中描述。本文的实验是使用直径为50μm、30μm和20μm的压电驱动的微滴喷墨喷嘴(MK-140H)来进行。外部脉冲发生器(Fluke PM5139)被使用以获得20kHz范围的频率。可选的微滴驱动器(MD-E-201H)也允许采集脉冲触发图像以跟随滴形成过程。喷嘴置于贮存器的液体内。恒定压力被应用以防止堵塞喷嘴并允许大的液滴形成速率,因为墨贮存器的静态流体压力不充分。典型压力为针对50μm喷嘴的0.3bar、针对30μm喷嘴的0.8bar以及针对20μm喷嘴的1.6bar。在一个实施例中(图1中说明),贮存器含有两个由垂直壁(‘9’)分隔的隔室,其中一个隔室用于设置频率和压力,从而获得严格定义的乳化剂液滴阵列。当达到这一点时,喷嘴置于第二隔室内,同时保持喷嘴喷射和被沉浸,该第二隔室是用于生产乳化剂的隔室。在15分钟之后,喷嘴移回,且脉冲发生器关闭。喷嘴从溶液移除,而压力仍被应用。仅在喷嘴完全在空气中之后,辅助压力切断。这么做是为了确保含水溶液不回流到喷嘴内,这会导致堵塞。利用诸如上述的喷墨装置,液滴以约5000至100.000液滴/秒的速率被喷射。典型地生产速率为约25.000每秒。
根据本发明一个方面,提供这样的设备,其允许在喷墨之后对微颗粒的特定后处理。根据本发明这个方面的设备包括倾斜表面(7),其放置在第一贮存器(4)内或与之关联,用于保持接收流体(5)。倾斜表面(7)放置成使得从喷嘴(6)喷出的液滴接触或落在倾斜表面(7)的斜坡的起点上。如上所述,所形成的微颗粒极为脆弱且会由于例如通过在接收流体内搅动微颗粒的主动后处理而损伤。根据本发明,提供这样的设备,其中主动后处理被推迟或略去。更具体地,设备设计成确保被动后处理步骤,即通过允许所喷出的液滴在接收流体内在倾斜表面(7)上滑动。更具体地,本发明的设备包括倾斜表面,其中该倾斜表面具有介于10度和45度之间,更具体地介于20度和45度之间的斜坡。根据另一实施例,本发明的设备具有渐变斜坡,其垂直地开始且以介于10度到45度之间的角度结束。在图1和2中提供根据本发明具体实施例的设备的实例。
本发明的方法和设备允许产生是单分散,即具有非常窄尺寸分布的微颗粒种群。因而,本发明的另一方面涉及单分散微颗粒种群,其直径为1μm至100μm,更具体地2μm至50μm,具体地10μm至30μm,甚至更具体地10μm至20μm。在这种种群内,大于90%的微颗粒具有落在所述种群的平均值0.7μM内的直径。在具体实施例中,最具体地当水凝胶聚合物被使用时,种群是由这样的事实来表征,大于90%的微颗粒具有落在该种群的平均值0.5μM内的直径。在具体实施例中,在这种种群内大于90%的微颗粒具有落在平均直径的4%内的直径。根据具体实施例,微颗粒是水凝胶聚合物微颗粒。根据另一实施例,微颗粒含有生物活性剂。根据另一实施例,微颗粒含有亲水生物活性剂。
其中在最初膨胀和/或硬化期间微颗粒在倾斜表面上滚动或滑动的本发明方法,防止诸如在受搅动时软微颗粒碰撞期间发生的对颗粒的损伤。这种精细的处理对于由本发明方法可获得的微颗粒的整体形状具有有利的效应,更具体地该方法对于获得颗粒的整体球形形状和/或平滑(无凹陷)表面是有利的。因此本发明允许制造微颗粒种群,其中小于5%,更具体地小于2%或者最具体地甚至小于1%的种群颗粒具有偏离(大于10%,更具体地大于5%)整体球形形状的形状,和/或具有凹陷和/或具有其它类型的损伤表面。
本发明的另一方面涉及使用本发明的微颗粒用于将生物活性剂施用给哺乳动物。
本发明的微颗粒可以应用于各种医学应用。微颗粒可以被结合到药品成分内用于肠胃外和黏膜给药,诸如口服;皮下给药,静脉内给药,动脉内给药,腹腔给药,肌肉给药,阴道给药和直肠给药。
本发明微颗粒的优越属性使得它们尤为适于微颗粒的尺寸是关键的应用,以避免不期望的效应。对于例如栓塞疗法,例如在治疗子宫肌瘤中,情形是这样的。其它应用包括生物活性剂的受控释放,由于微颗粒(被更加均匀地封装)尺寸的事实,该生物活性剂被更精确地递送。
因而,本发明涉及治疗方法,该治疗方法包括将含有生物活性剂(其为治疗性化合物)的本发明的微颗粒施用给需要它的患者。附加地,本发明涉及诊断方法,该诊断方法包括将含有生物活性剂(其为造影剂或者标记物)的本发明的微颗粒施用给待诊断的患者。
实现本发明的系统和方法的其它布置对于本领域技术人员而言是明显的。
将理解,尽管本文已经针对根据本发明的设备描述了优选实施例、特定构造和配置以及材料,但是可以在形式和细节上进行各种改变或调整而不背离本发明的范围和精神。
实例
实例1:从20μm喷嘴注射PEGT/PBT共聚物乳化剂,频率变化。
1%PEG-PBT溶液使用包括0.3%pva 8/88的含水溶液内的沉浸微滴喷嘴来喷墨。20μm喷嘴被使用。喷墨在1.5bar的压力和27.6、17、12和10kHz的频率实施10分钟。在含水溶液中,倾斜表面被沉浸且允许液滴通过滚动或滑动经由此沉浸表面运动到另一容器内。在那里,微颗粒留待稳定,浮在表层的被除去且容器用水重新填充。在搅动1-2小时以通过溶解到含水相内而除去二氯乙烷之后,在库尔特粒度分析计数仪III上使用50μm孔口来测量微颗粒。体积权重和数目权重的模态直径为12.47、14.39、16.09和17.10μm。体积权重平均直径为12.40、14.32、15.60和17.05μm。尺寸分布在图3中给出。峰的宽度表明超过90%的颗粒(将10-20微米之间的库尔特计数的所有计数考虑在内)是在0.5μm的平均值内。
实例2:注射PEGT/PBT共聚物双乳化剂。
1%的水添加到1%PEG-PBT在二氯甲烷中的溶液。混合物使用Ultraturrax乳化60秒,得到强散射的乳化剂。使用沉浸30μm喷嘴在20.7kHz的频率和0.45bar的辅助压力将此乳化剂喷墨到第一容器内包括0.05%pva的含水溶液内。如实例1中所述,液滴被喷射到含水溶液内,位于第一容器内的沉浸倾斜表面上。液滴在斜坡上逐渐向下滚动或滑动到第二容器内,在那里留待稳定。浮在表层的被除去且第二容器用水重新填充。在搅动1-2小时以通过溶解到含水相内而除去二氯甲烷之后,在库尔特粒度分析计数仪III上使用50μm孔口来测量微颗粒。使用相同压力、频率和接收流体,从1%的PEG-PBT溶液制备参考样本。两个样本的尺寸分布在图4中给出且所得到的颗粒的SEM照片在图5中给出。对于双乳化剂以及对于参考颗粒,大于90%的颗粒是在数目加权直径的4%内。
实例3:喷墨PEG-PBT的双乳化剂:含有荧光蛋白。
实例2的制备被重复,但结合了荧光蛋白。蛋白质的FITC改性混合物(Sigma-Aldrich的荧光分子量标准F3526)被使用。含有蛋白质混合物的1%的水添加到二氯甲烷中的1%PEG-PBT溶液。紧接着喷墨之后,在显微镜下跟踪颗粒的收缩且在达到最终尺寸之后采集照片,如图6所示。
实例4:不添加稳定剂的喷墨。
二氯甲烷中1%PEG-PBT溶液使用沉浸30μm喷嘴在20.7kHz的频率和0.45bar的辅助压力而喷墨到水中,无任何另外添加剂。在清洗之后,采集样本,获得图7所示SEM照片。
实例5:喷墨plga和pla-peo。
含有0.35%pla-peo和0.45%plga的溶液(A)使用20微米喷嘴,在15kHz的频率在10分钟内喷墨到含水的0.2%pva溶液内。在喷墨之后,产物清洗两次且左搅动(left stirred)以蒸发剩余的溶剂。尺寸分布示于图8。
往溶液(A)添加含有3%表面活性剂的聚丙二醇与环氧乙烷加聚物(pluronic)F127的0.5%的水,且通过应用超声来制备乳化剂。这得到强散射的水液滴在聚合物溶液中的乳化剂。乳化剂使用20微米喷嘴在15kHz的频率在10分钟内喷墨在含水0.2%pva溶液中。在喷墨之后,产物清洗两次且左搅动以蒸发剩余的溶剂。尺寸分布示于图8。
实例6:制备含有囊作物的碘化液体。
含有14微米球体的辛-2-基2,3,5-三碘苯甲酸通过将plga和碘化油在二氯乙烷中的溶液以15kHz的速度喷墨到0.2%pva 8/88溶液内来制备。颗粒尺寸分布示于图9,显微照片在图9b中给出。

Claims (8)

1.一种用于生产聚合物颗粒的设备,所述设备包括:
-第一贮存器(2),用于保持乳化剂(3),
-第二贮存器(4),用于保持接收流体(5),
-喷射模块,具有至少一个喷嘴(6),当该第二贮存器(4)被填充时,该至少一个喷嘴(6)沉浸在该接收流体(5)内,允许将液滴直接喷射到该接收流体(5)内,
-倾斜表面(7),放置于该第二贮存器(4)内或关联到该第二贮存器(4),使得液滴当从该喷嘴(6)喷射到该第二贮存器(4)中的该接收流体(5)内时沿着该倾斜表面(7)运动,其中该倾斜表面(7)具有垂直地开始且以介于10度至45度之间的角度结束的渐变斜坡。
2.根据权利要求1的设备,其中该渐变斜坡以介于20度至30度之间的角度结束。
3.根据权利要求1的设备,其中该喷嘴具有小于30μm的直径。
4.一种用于制备尺寸介于1μm和100μm之间的单分散水凝胶聚合物微颗粒的方法,其中所述微颗粒包括生物活性剂,其中利用了根据权利要求1的设备,所述方法包括下述步骤:
a)制备包括所述生物活性剂的水凝胶形成的聚合物的乳化剂,
b)使用辅助压力和应用频率,从沉浸在含水接收流体内的该喷嘴(6)喷出步骤(a)的乳化剂的液滴,以及,
c)通过允许该液滴在该接收流体内运动一时间段,该时间段确保所述液滴除去溶剂以及用水来饱和,将该液滴膨胀和硬化成微颗粒,其中在步骤(c)中,该膨胀和硬化是通过允许该颗粒在该接收流体内从具有至少10度的斜坡的倾斜表面向下运动来执行的。
5.根据权利要求4的方法,其中该聚合物为水凝胶聚合物。
6.根据权利要求4或5的方法,其中步骤(c)包括允许该颗粒在该接收流体内在所述倾斜表面上运动一时间段,该时间段确保除去溶剂以及用水来饱和。
7.根据权利要求4至5任意一项的方法,其中该倾斜表面的长度和斜坡配置成使得从该喷嘴喷出的液滴沿着所述倾斜表面运动介于2秒至60秒之间的时间段。
8.根据权利要求4至5任意一项的方法,该方法进一步包括在步骤(c)之后的附加步骤(d),其中该颗粒通过搅动而进一步硬化。
CN2008801126635A 2007-10-23 2008-10-20 用于制备聚合物微颗粒的方法 Expired - Fee Related CN102215821B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07119102 2007-10-23
EP07119102.7 2007-10-23
PCT/IB2008/054300 WO2009053885A2 (en) 2007-10-23 2008-10-20 Methods for preparing polymer microparticles

Publications (2)

Publication Number Publication Date
CN102215821A CN102215821A (zh) 2011-10-12
CN102215821B true CN102215821B (zh) 2013-05-08

Family

ID=40525268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801126635A Expired - Fee Related CN102215821B (zh) 2007-10-23 2008-10-20 用于制备聚合物微颗粒的方法

Country Status (5)

Country Link
US (1) US8313676B2 (zh)
EP (1) EP2205221A2 (zh)
JP (1) JP5733981B2 (zh)
CN (1) CN102215821B (zh)
WO (1) WO2009053885A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293690A1 (en) * 2010-05-27 2011-12-01 Tyco Healthcare Group Lp Biodegradable Polymer Encapsulated Microsphere Particulate Film and Method of Making Thereof
GB201016433D0 (en) 2010-09-30 2010-11-17 Q Chip Ltd Apparatus and method for making solid beads
GB201016436D0 (en) 2010-09-30 2010-11-17 Q Chip Ltd Method of making solid beads
CN102488619B (zh) * 2011-12-05 2014-08-06 上海交通大学 连续生产艾塞那肽微球的装置及控制微球释放速度的方法
WO2014139168A1 (en) * 2013-03-15 2014-09-18 Tuo Jin Preparation process of polymeric microspheres
US20140294944A1 (en) 2013-03-28 2014-10-02 Kimberly-Clark Worldwide, Inc. Microencapsulation of oxygen liberating reactants
KR101849157B1 (ko) * 2014-08-28 2018-04-16 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 분산체의 제조 방법 및 제조 장치
WO2016131363A1 (en) * 2015-02-20 2016-08-25 Tuo Jin Process for producing polymeric microspheres
DE102015006727A1 (de) * 2015-05-30 2016-12-01 Rainer Pommersheim Verfahren und technischer Prozess zur Herstellung von Mikro- und Nanopartikeln unterschiedlicher Größe
GB2551944B (en) * 2015-12-18 2021-09-01 Midatech Pharma Wales Ltd Microparticle production process and apparatus
IT201700090530A1 (it) * 2016-08-05 2019-02-04 Bonda Olga Foglio Dispositivo di maturazione di forme di dosaggio, macchina e procedimento di produzione di forme di dosaggio con il dispositivo
TWI643680B (zh) * 2016-10-25 2018-12-11 財團法人金屬工業研究發展中心 微粒噴頭
IT201600119699A1 (it) * 2016-11-25 2018-05-25 Eurotecnica Melamine Luxemburg Zweigniederlassung In Ittigen Impianto e processo di produzione di urea solida in granuli

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW262484B (zh) * 1993-11-10 1995-11-11 Nukem Gmbh
CN1135175A (zh) * 1994-08-03 1996-11-06 萨伊泰克公司 制备活性组分控释的固体剂型的装置和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379682A (en) * 1981-04-29 1983-04-12 Ortho Diagnostics, Inc. Reaction apparatus for the formation of microspheres or microcapsules
US4375347A (en) * 1981-04-29 1983-03-01 Ortho Diagnostics, Inc. Apparatus for promoting the formation of microparticles
EP1090928B1 (en) 1999-09-30 2004-05-26 Chienna B.V. Polymers loaded with bioactive agents
KR100867392B1 (ko) * 2000-08-15 2008-11-06 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 마이크로입자
WO2003053325A2 (en) 2000-12-13 2003-07-03 Purdue Research Foundation Microencapsulation of drugs by solvent exchange
US6767637B2 (en) 2000-12-13 2004-07-27 Purdue Research Foundation Microencapsulation using ultrasonic atomizers
US6669916B2 (en) 2001-02-12 2003-12-30 Praxair Technology, Inc. Method and apparatus for purifying carbon dioxide feed streams
WO2003079990A2 (en) 2002-03-19 2003-10-02 Purdue Research Foundation Microencapsulation using ultrasonic atomizers
US6998074B1 (en) 2002-08-30 2006-02-14 Microfab Technologies, Inc. Method for forming polymer microspheres
US20040166124A1 (en) 2003-02-25 2004-08-26 Dunfield John Stephen Fluid-jet pens configured for making modulated release bioactive agents
US7094045B2 (en) * 2003-12-09 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microencapsulation system and method
EP1763397A1 (en) 2004-06-29 2007-03-21 Koninklijke Philips Electronics N.V. System for manufacturing micro-spheres
EP1679065A1 (en) 2005-01-07 2006-07-12 OctoPlus Sciences B.V. Controlled release compositions for interferon based on PEGT/PBT block copolymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW262484B (zh) * 1993-11-10 1995-11-11 Nukem Gmbh
CN1135175A (zh) * 1994-08-03 1996-11-06 萨伊泰克公司 制备活性组分控释的固体剂型的装置和方法

Also Published As

Publication number Publication date
JP2011506271A (ja) 2011-03-03
JP5733981B2 (ja) 2015-06-10
CN102215821A (zh) 2011-10-12
WO2009053885A3 (en) 2010-10-14
EP2205221A2 (en) 2010-07-14
WO2009053885A2 (en) 2009-04-30
US20100237523A1 (en) 2010-09-23
US8313676B2 (en) 2012-11-20

Similar Documents

Publication Publication Date Title
CN102215821B (zh) 用于制备聚合物微颗粒的方法
JP2011506271A5 (zh)
JP6900416B2 (ja) コア−シェル生分解性粒子の製造方法
JP5984903B2 (ja) 微粒子を調製する乳剤基調プロセス、及び、プロセスで利用されるワークヘッド構造体
US5500161A (en) Method for making hydrophobic polymeric microparticles
ES2236503T3 (es) Recubrimiento para dispositivos medicos.
JP2011508733A (ja) 低残留溶媒濃度を有する微粒子を調製するためのプロセス
US20100173005A1 (en) Microparticle formulations for sustained-release of bioactive compounds
ES2644885T3 (es) Procedimiento continuo por emulsión doble para fabricar micropartículas
JP2012515791A (ja) ポリマー混成物由来の放出制御システム
JP2002526400A (ja) 無針シリンジにおける使用のためのスプレー被覆した微小粒子
WO2005061095A9 (ja) 微小球体の製造方法およびその製造装置
US8846035B2 (en) Methods for preparing polymer microparticles
AU2931200A (en) Delivery of microparticle formulations using needleless syringe device for sustained-release of bioactive compounds
JP6184508B2 (ja) 微粒子特性を調整するための乾燥方法
US20170290771A1 (en) Biodegradable in situ forming microparticles and methods for producing the same
EP4373899A1 (en) Methods of crosslinking polymers and hydrogel microparticles and of encapsulating biologically active compounds, compositions made therefrom and devices
WO2011007327A2 (en) Suspension for therapeutic use and device for delivering said suspension
Paradossi et al. Soft condensed matter in pharmaceutical design
El-Sherif et al. Ultrasound induced degradation of hollow PLGA microcapsules

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130508

Termination date: 20171020