CN102210096A - 异相和pwm功率放大器的可变占空比产生 - Google Patents

异相和pwm功率放大器的可变占空比产生 Download PDF

Info

Publication number
CN102210096A
CN102210096A CN2009801447452A CN200980144745A CN102210096A CN 102210096 A CN102210096 A CN 102210096A CN 2009801447452 A CN2009801447452 A CN 2009801447452A CN 200980144745 A CN200980144745 A CN 200980144745A CN 102210096 A CN102210096 A CN 102210096A
Authority
CN
China
Prior art keywords
phase
signal
clock signal
modulated
copy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801447452A
Other languages
English (en)
Other versions
CN102210096B (zh
Inventor
梅丽娜·阿波斯托李杜
马克·皮特·范德海登
慕斯塔法·阿卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN102210096A publication Critical patent/CN102210096A/zh
Application granted granted Critical
Publication of CN102210096B publication Critical patent/CN102210096B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals

Abstract

发射机中的功率减小是非常重要的。一种实现减小的方法是利用具有更好效率的开关功率放大器(PA)。开关PA构思仅在与合适的调制方法(如脉宽调制(PWM))和异相构思相结合的情况下才是可能的。然而,PWM和异相构思依赖于信号的精确相位控制和占空比。提出在不牺牲信号精度的前提下,数字地产生具有可变占空比和相位的信号。相应地,公开了一种异相功率放大器装置,其中,利用一组n比特数字输入字(D1,D2,D3,D4)来控制异相角(θ(t))和占空比(d1和d2)的产生。将基带相位信息
Figure DPA00001368812900011
相位调制回到射频,并用作数字电路的时钟信号,从而在以2n-1进行频率倍增之后产生相位和占空比。等同地,异相角和占空比的分辨率是2π/2n和2π/2n-1。相位信息
Figure DPA00001368812900012
的分辨率取决于PM实现方式。

Description

异相和PWM功率放大器的可变占空比产生
技术领域
本发明总体涉及异相功率放大器,具体涉及具有可变占空比的脉宽调制(PWM)异相信号的异相功率放大器。
背景技术
移动通信尤其是移动无线通信广泛用于多种应用领域,例如用在家庭、公共场所或办公场所,以及用于诸如语音、数据和/或多媒体通信等任何类型的通信。基本上,这样的应用具有两个主要问题。
事实上,由于一般性地缺少可用频谱,限制了用于传输信息的可用带宽。关于这一点,已知对载波的幅度和相位进行调制以减少所需的带宽。例如,用于调制幅度和相位的系统,即对宽带复包络信号进行处理的系统是EDGE、UMTS(WCDMA)、HSxPA、WiMAX(OFDM)以及3G-LTE(OFDM)。然而,在发射机输出级无失真地对幅度调制载波进行放大,这对输出级放大器带来显著的线性度约束。
此外,移动发射机的功率效率很重要,这是因为无线通信中移动终端典型地是便携式的,因此通常是由电池来供电的。在移动终端中,发射机单元的输出级通常是整个设备中最消耗功率的部分。因此,在输出级的功率效率方面的任何改进都是有好处的。已知的高效功率放大器拓扑或电路装置是例如C类和E类射频(RF)放大器,其中有源输出放大器件仅在(例如在晶体管的情况下)集电极-发射极电压处于最低值时传导电流。不幸地,C类和E类放大器是极为非线性的,因此引起幅度调制的很大失真。
对于RF信号的高效线性功率放大来说,使用非线性组件的线性放大(LINC)是公知的构思。例如从S.C.Crips的“Advanced Techniques in RF Power Amplifiers Design”,Artech House 2002中,或从D.C.Cox的“Linear Amplification with Nonlinear Components”,IEEE Transactions on Communications,December 1974,pp.1942-1945中,可以找到更详细的信息。
WO 01/45205公开了:在多个无线电频率上,从公共天线发送以相应的信息调制来调制的多个无线电信道频率信号。提供了多个调制器,分别与相应的一个无线电信道频率相对应。每个调制器在相应的无线电信道频率上,从相应的信息调制,产生至少一个恒定幅度且相位调制的驱动信号,使得所述至少要一个恒定幅度且相位调制的驱动信号与相应无线电频率的信息调制相对应。为所述至少一个恒定幅度且相位调制的驱动信号中的每一个提供至少一个饱和功率放大器。相应的饱和功率放大器响应于相应的恒定幅度且相位调制的驱动信号,以在该饱和功率放大器的输出处产生相应的放大输出信号。耦接网络将饱和功率放大器的输出串联起来,以产生施加到公共天线的组合信号,使得公共天线发射以相应信息调制来调制的无线电信道频率信号。在一些实施例中,在相应的无线电信道频率处提供至少两个恒定幅度且相位调制的驱动信号,使得所述至少两个恒定幅度且相位调制的驱动信号与相应的无线电频率的信息调制相对应。
通过图1所示的简化的异相功率放大器(PA)100来说明LINC构思,LINC还称为异相(out-phasing)。由等式(1)表示的幅度(A(t))和相位(φ(t))调制的RF信号Sin(t)被信号分量分离单元102分成两个RF信号,即由等式(2)表示的S1(t)以及由等式(3)表示的S2(t),其中,根据等式(4),利用基带相位信息φ(t)和基于基带幅度信息A(t)的异相角θ(t),来对这两个RF信号S1(t)和S2(t)中的每一个进行相位调制。
Sin(t)=A(t)sin(ωt+φ(t))                         (1)
S 1 ( t ) = 1 2 sin ( ωt + φ ( t ) + θ ( t ) ) - - - ( 2 )
S 2 ( t ) = 1 2 sin ( ωt + φ ( t ) - θ ( t ) ) - - - ( 3 )
θ(t)=arcos(A(t))                                 (4)
可以利用放大支路110、120中的高效非线性饱和功率放大器RF PA1和RF PA2分别对具有恒定幅度的信号S1(t)和S2(t)进行放大。在放大之后,可以利用信号组件组合器单元104对输出RF信号进行重构。如等式(5)所示,组合器单元的输出信号等于两个输入信号S1(t)和S2(t)之和(或差)。
Sout=S′1(t)+S′2(t)=G cos(θ(t))sin(ωt+φ(t))=G A(t)sin(ωt+φ(t))  (5)
其中,G表示放大级(即,功率放大器RF PA1和RF PA2)的增益。
理想地,要对电压源进行组合,使得放大器件中的平均电流可以根据异相角θ(t)而改变。然而,如果应用理想的A类、B类或C类操作,则放大器件起到电流源的作用,并且DC电流不会随异相角而变化,这意味着效率随输出功率而线性地下降,即,如同A类一样。然而,在过激励或饱和的A类、B类或C类操作模式下,放大器件更多地作为电压源来操作。即,大致独立于输入驱动和输出电流,并且DC电流能够随异相角改变。理想地,效率根据输出功率的平方根而降低,即,如同B类一样。因此,实际上,与线性B类PA设计相比,功率效率没有任何增益。
LINC放大器的功率效率在很大程度上取决于在输出处使用的功率组合器的类型。阻抗的电抗性部分降低了组合器的效率。一种避免这种损失的组合技术是公知的Chireix组合技术,如在H.Chireix的“High power out phasing modulation”,Proceedings of the Institute of Radio Engineers(Proc.IRE),vol.23,no.11,pp.1370-1392,Nov.1935中描述的。相应地,可以利用补偿电抗来抵消有效负载阻抗的电抗部分。然而,实际上很难通过实现电抗抵消(例如通过使用所谓的RF微机电系统(MEMS)开关,以离散步骤根据输出功率来调谐补偿电抗)来针对大范围的输出功率电平提高效率。
另一种优化效率的方法是使用开关模式PA,例如在异相配置中在D、E、DE或F模式下工作的开关模式PA。在具有可变占空比的DE类异相功率放大器中,占空比可以用在每个异相路径上以补偿由组合网络产生的损耗,即,不是利用前述的Chireix组件。然而,这种技术依赖于精确的相位和占空比生成以及对驱动信号的控制。重要的是,这为软件定义无线电(SDR)应用提供了非常需要的能力,其中在无线电装置的启动期间,占空比可以用在数字校准和/或预失真例程中,以实现发射机的高效且线性的操作。
如上所述,降低发射机电路的功耗,具体地降低发射机电路中功率放大器电路的功耗是非常重要的。一种实现期望的降低的方法是使用具有更高效率的开关功率放大器(PA)。然而,开关PA构思仅在与合适的调制方法(如,脉宽调制(PWM)和异相构思)相结合的情况下才是可行的,这些调制方法又依赖于精确的相位控制和信号的占空比。因此,开关模式异相PA构思的问题之一是以合适的精确度产生所需的相位和占空比调制信号。
发明内容
本发明的目的是提供一种电路结构,所述电路结构用于产生针对异相功率放大器装置的具有可变占空比和相位的驱动信号,而不牺牲精确度度。
利用根据本发明的异相放大器实现了该目的,其中,具体使用开关或饱和功率放大器,并且在数字电路中/由数字电路产生用于驱动功率放大器的异相波形,所述数字电路是由经相位调制的时钟信号来时钟控制的。
相应地,利用根据所附权利要求1所述的方法实现上述目的。
相应地,提供了一种产生RF异相功率放大器电路装置的异相信号的方法,所述RF异相功率放大器电路装置用于放大具有调制幅度和调制相位的RF输入信号,其中该电路包括第一放大支路和第二放大支路,每个放大支路具有输入和输出,并用于放大第一异相信号和第二异相信号之一,所述第一异相信号和第二异相信号仅被相位调制并且具有相应的占空比,这些异相信号的组合与RF输入信号相对应;其中,在第一放大支路和第二放大支路中的每一个中,相应的第一放大器件和第二放大器件工作在开关工作模式下;其中,所述方法包括:基于RF输入信号的幅度信息,产生数字控制信号;根据RF输入信号的相位信息,对时钟信号进行相位调制;以预定的第一二进制因子对时钟信号进行频率倍增;根据数字控制信号,创建相位调制后的时钟信号的彼此间有相移的至少两个拷贝,以用于产生第一异相信号和第二异相信号之一;在补偿频率倍增步骤的除法运算期间,利用数字控制信号来控制对时钟信号的每个拷贝中的脉冲进行选择性吞没,从而实现与RF输入信号的幅度信息相对应的时钟信号的确定的延迟;以及将时钟信号的两个拷贝相乘,以产生第一异相信号和第二异相信号之一。
在上述方法的进一步改进中,创建相位调制后的数字信号的至少两个相移拷贝以用于产生第一异相信号和第二异相信号之一的步骤包括:创建相位调制后的时钟信号的四个相移拷贝;控制对时钟信号的每个拷贝中的脉冲进行选择性吞没的步骤是对相位调制后的数字信号的至少两个相移拷贝中相应的两个相移拷贝来执行的;所述方法还包括:在相位调制后的时钟信号的至少四个相移拷贝中相应的两个相移拷贝之间进行插值,以得到相位调制后的数字信号的至少两个相移拷贝的相应的一个插值相移拷贝,以用于产生第一异相信号和第二异相信号之一;以及将相位调制后的数字信号的至少两个插值相移拷贝相乘,以产生第一异相信号和第二异相信号之一。
还利用根据所附权利要求3的RF功率放大器电路装置来实现上述目的,所述RF功率放大器电路装置用于放大具有调制幅度和调制相位的RF输入信号。
相应地,所述RF功率放大器电路装置包括第一放大支路和第二放大支路,每个放大支路具有输入和输出,并用于放大第一异相信号和第二异相信号之一,所述第一异相信号和第二异相信号仅被相位调制并且具有相应的占空比,异相信号的组合与RF输入信号相对应;其中,在第一放大支路和第二放大支路中的每一个中,相应的第一放大器件和第二放大器件工作在开关工作模式下;其中,组合电路被配置为将第一放大支路和第二放大支路的输出相组合,使得所述电路装置作为异相放大器装置来操作。所述电路还包括:相位调制单元,被配置为提供数字时钟信号,并以预定的二进制因子对所述时钟信号的基频进行上变频,其中所述数字时钟信号是根据RF输入信号的相位信息来相位调制的。异相信号产生单元接收上变频后的时钟信号以及数字控制信号,并且被配置为,根据数字控制信号来创建相位调制后的时钟信号的具有选定相移的至少两个拷贝,作为第一异相信号和第二异相信号中相应的一个异相信号的基本信号;在用于以预定的二进制因子进行频率下变频的除法运算期间,根据数字控制信号来选择性地吞没时钟信号的每个拷贝中的脉冲,以实现时钟信号的每个拷贝中的确定的延迟;以及将时钟信号的两个拷贝相乘,以产生第一异相信号和第二异相信号之一。
RF功率放大器电路装置的特定实施例还包括:信号分量分离单元,被布置为基于RF输入信号的幅度信息来产生数字控制信号,并将RF输入信号的相位信息提供至相位调制单元。
在电路装置的进一步改进中,异相信号产生单元还被配置为:创建相位调制后的时钟信号的四个相移拷贝,以及在用于以预定的二进制因子进行频率下变频的除法运算期间,在分别包括相位调制后的数字信号的四个相移拷贝中相应的两个相移拷贝的第一组和第二组中同步地,根据数字控制信号来选择性地吞没时钟信号的每个拷贝中的脉冲。异相信号产生单元还包括第一插值单元和第二插值单元,所述第一插值单元和第二插值单元分别接收下变频后的第一组相位调制时钟信号和第二组相位调制时钟信号,其中每个插值单元被配置为输出用于产生第一异相信号和第二异相信号之一的一个相应的插值时钟信号。最后,异相信号产生单元被配置为将相应的两个插值时钟信号相组合,以产生第一异相信号和第二异相信号之一。
在电路装置的特定实施例中,异相信号产生单元还包括:逻辑运算单元,用于通过二进制乘法,实现相应的两个插值时钟信号的组合,以产生第一异相信号和第二异相信号之一。
在具体实施例中,异相信号产生单元包括:第一二进制电路元件,具体地是触发器元件,所述第一二进制电路元件被配置为从相位调制单元接收数字控制信号和数字时钟信号,所述数字时钟信号来自相位调整单元,并且是根据RF输入信号的相位信息来相位调制的,所述第一二进制电路元件还被配置为根据数字控制信号来提供数字时钟信号的具有可选相移的拷贝。
更详细地,异相信号产生单元可以包括数字电路形式的用于对时钟信号的每个拷贝进行处理的信号路径,所述数字电路可以有利地由级联的二进制电路元件构成或组成,所述二进制电路元件具体为触发器元件,所述二进制电路元件被配置和连接为实现脉冲的吞没以及以预定的二进制因子进行频率下变频的除法运算。
第一放大器件和第二放大器件可以包括作为开关模式功率放大器操作的电路结构,所述开关模式功率放大器处于以下模式之一:D类模式、DE类模式、E类模式、F类模式或E/F类模式。
根据本发明的电路装置尤其适合于其中处理宽带复包络信号的系统。具体地,在针对连接性和蜂窝应用的发射机中,具有高PAR的调制标准需要功率放大器在大的动态范围上高效,以节约电池使用寿命。这样的系统的示例可以GSM(全球移动通信系统)增强数据速率演进EDGE、使用宽带码分多址(WCDMA)调制的通用移动电信系统(UMTS)、上行链路或下行链路中的高速分组接入(HSxPA)、使用正交频分多址(OFDM)调制的微波接入全球互通(WiMAX)、以及使用OFDM调制的第三代长期演进(3G-LTE)等。显然,上述标准仅仅是说明性示例,因此本发明不限于此。
不言而喻,本领域技术人员可以意识到可以适当地组合本发明的上述方面。
在独立权利要求的从属权利要求中限定了本发明的优选实施例和其他改进。应理解,本发明的电路装置和方法具有与本发明的从属权利要求中限定的优选实施例相似和/或相同的优选实施例。
附图说明
参考下述实施例,本发明的这些和其他方面将变得显而易见并得以阐明。在附图中,图是示意性地绘制的,而不是按比例绘制的,在不同的图中相同的参考数字(如果有的话)可以表示相应的元素。本领域技术人员应清楚,在不脱离真实发明构思的前提下,可以实现本发明的备选但等同的方案,本发明的范围仅由权利要求来限制。
图1是示出了传统异相构思的简化框图;
图2示出了发射机架构的简化框图,所述发射机架构具有异相角和占空比产生单元;
图3示出了用于产生具有可变占空比的异相信号S1(t)和S2(t)的异相角和占空比产生单元的框图;
图4a、4b分别示出了在路径A和路径B上在图3的第一、第二和第三D-FF的输出处的瞬变响应;
图5a、5b在左侧示出了具有占空比d1的异相信号S1(t),在右侧示出了具有占空比d2的异相信号S2(t);
图6示出了在异相角为θ(t)=π/8的情况下具有占空比d1的异相信号S1(t)以及具有占空比d2的异相信号S2(t);
图7示出了本文提出的架构的框图,该架构用于产生具有可变占空比的异相信号S1(t)和S2(t),其中使用数字相位插值来进一步提高分辨率;
图8以流程图的形式示出了根据本发明的基本构思的异相信号产生方法;以及
图9以流程图的形式示出了根据本发明另一改进方案的异相信号产生方法。
具体实施方式
根据本发明的基本构思,如图2所示,在异相功率放大器装置200中,信号分量分离单元210接收要放大的输入信号Sin(t)(=A(t)sin(ωt+φ(t)))。基于输入信号Sin(t),信号分量分离单元210被布置和配置为:产生基本相位调制信号,作为产生两个异相信号的基础,其中,所述基本相位调制信号承载输入信号的相位信息,所述两个异相信号用于在异相配置下驱动功率放大器装置。
此外,信号分量分离单元210被布置和配置为:通过基于输入信号的基带幅度信息A(t)提供数字控制信号,来控制两个异相信号S1(t)和S2(t)的异相角θ(t)以及占空比d1和d2的产生,其中,在一些实施例中,数字控制包括至异相信号产生单元220的一组n比特数字控制字D1、D2、D3和D4,其中设置了异相信号的相位和占空比。
此外,信号分量分离单元210被配置和布置为向相位调制(PM)单元215提供输入信号的基带相位信息φ(t),相位调制(PM)单元215向异相信号产生单元220提供相应的相位调制时钟信号,作为基本相位调制信号。
在异相信号产生单元220中产生或由异相信号产生单元220产生的异相信号S1(t)和S2(t)用于驱动相应的开关功率放大器件231、232。最后,利用合适的组合单元240对两个功率放大器件231、232的相应的放大输出信号S’1(t)和S’2(t)进行组合,所述组合单元240在其输出处提供期望的放大输入信号Sout(=GA(t)sin(ωt+φ(t)))。
根据本发明的一方面,PM单元215将要放大的输入(基带)信号Sin(t)=A(t)sin(ωt+φ(t))的相位信息φ(t)相位调制回到射频(RF)时钟信号中。向异相信号产生(OSG)单元220提供相位调制RF信号cos(ωt+φ(t)),作为时钟信号,其中所述相位调制RF信号cos(ωt+φ(t))承载了输入信号的相位信息。例如,通过以二进制因子2n-1进行频率倍增,来以预定的因子对相位调制后的时钟信号进行上变频。
根据本发明的第二方面,使产生的异相信号S1(t)和S2(t)的异相角与输入(基带)信号Sin(t)的幅度信息结合。结合图3和7的描述可以理解,与幅度分辨率结合的异相角θ(t)的分辨率等同地是2π/2n,占空比的分辨率等同地是2π/2n-1。值得注意的是,相位信息φ(t)的分辨率也取决于在PM单元215中执行的相位调制(PM)的实现方式。因此,比特个数n越大,分辨率越好。例如,为了达到占空比中6.25%的分辨率,比特个数5(即,n=5)是合适的(参见,1/2n-1=1/25-1=0,0625=6.25%)。
在下文中,详细描述了第一实施例,以说明构造和应用本发明的全数字异相信号产生(OSG)单元的原理。
仅出于简要的目的,作为示例而使用数字控制信号的4乘4比特实施方式,而本发明不限于此。基本上,利用四个数字控制字来实现数字控制信号,每个数字控制字D1、D2、D3、D4是由4个比特组成的字,即,4比特字。
D1=b0 b1 b4 b5;
D2=b2 b3 b6 b7;
D3=b0’b1’b4’b5’;
D4=b2’b3’b6’b7’
现在参考图3,图3示出了OSG单元220*的一种可能的4x4比特实现,实现了图2的OSG单元220。基本上,OSG单元220*包括分别以A、B、C和D来表示的四个内部信号路径,每个信号路径一般包括相应的两个级联的D触发器(D-FF)作为数字电路元件,D-FF在每个路径中实现了可控的具有总除法因子4的除法单元,即,除以4单元(a division-by-4-unit)。此外,第一D-FF 221是所有路径A、B、C和D的公共部分,并将输入时钟信号cos(ωt+φ(t))除以2,其中所述输入时钟信号承载了输入信号的相位信息。因此,每个路径中实现的有效除法因子是8。因此,作为产生异相信号的基础,将PM单元215提供的时钟信号以二进制因子2n-1进行频率倍增,即,以2n-1=24-1=8对时钟信号进行上变频。换言之,OSG单元220*的输出信号在被上变频2n-1之前最终再次具有了相位调制时钟信号的频率ω。
第一D-FF 221分别提供相位调制输入时钟信号的四个相移拷贝或相位,作为输出,其中相应的两个相移拷贝或相位相对于彼此等同地移位了90°或π/2,这四个相移拷贝或相位是:I(相移:0°)、Q(相移:90°)、In(相移:180°)、Qn(相移:-90°)。换言之,在路径A中,控制了路径A的高频或RF输入时钟信号的比特b0和b1(即,在B路径中:比特b2和b3;在C路径中:比特b0’和b1’;以及在D路径中:比特b2’和b3’)实际上等同地负责步长为π/8的精细相位分辨率。
从四个相移拷贝I、Q、In和Qn当中选择相应的两个相移拷贝分别作为针对路径A和B的输入信号,其中,所述选择是利用第一复用器(MUX)单元222a来实现的,第一复用器(MUX)单元222a由第一4比特字D1来控制,即,由比特b0、b1、b2、b3来控制。第一4比特字D1的两个相应的比特分别用于选择四个数字信号I、Q、In和Qn之一作为针对一个路径A或B的输入。
以同样的方式,利用第二复用器(MUX)单元222b,从四个相移拷贝I、Q、In和Qn当中选择相应的两个相移拷贝分别作为针对路径C和D的输入,其中,第二复用器(MUX)单元222b由第三4比特字D3来控制,即,由比特b0’、b1’、b2’、b3’来控制。
在每个路径A、B、C和D中,分别利用两个相应的级联的D-FF 225a和228a、225b和228b、225c和228c、以及225d和228d,分别将相应的MUX 222a、222b的相应输出信号进一步除以4,以在每个路径A、B、C和D中产生具有期望的频率ω和相位φ(t)的相应输出信号。
例如,现在更详细地描述在路径A中的信号处理,具体地,正确的异相和占空比的产生。应理解,该描述可以相应地分别应用到其他路径B、C和D。
此外,对于正确的异相角θ(t),在路径A中,两个D-FF 225a、228a中的第一个由比特b4来控制(在路径B中由b6来控制,在路径C中由b4’来控制,在路径D中由b6’来控制)。因此,如果第二4比特字D1的比特b4是逻辑零(即,低),则在一个输入信号周期期间D-FF 225a的输入数据(如前述由比特b0、b1来选择的)被吞没(swallow)。利用AND门224a来实现这种吞没操作。相应地,如果第二4比特字D1的比特b4是逻辑1(即,高),则不执行吞没操作,即,D-FF 223a的操作从最一开始就跟随输入数据,即,输入时钟信号。因此,比特b4(在其他路径B、C和D中分别是b6、b4’或b6’)等同地控制路径A中信号相位的90°或π/2移位或延迟。
以类似的方式,路径A中的最后一个D-FF 228a(在路径B中:228b;在路径c中:228d;在路径D中:228d)由第二4比特字D2的比特b5来控制(即,在其他路径B、C和D中分别是字D2的比特7、字D3的比特b5’、字D4的比特b7’)。因此,比特b5等同地控制路径A中信号的180°或π相移或延迟。
因此,第一4比特字D1的4比特b0、b1、b4和b5允许在路径A中产生与原始相位相比以分辨率2π/2n被异相的信号,在该示例中,对于n=4的情况,该分辨率为π/8(或等同地为22.5°)。
假定通过分别在两个路径A与B或者C与D上,分别在相应的4比特字D1、D2和D3、D4当中选择合适的数位,路径A、B、C和D中的所有信号都具有占空比50%,则例如通过图3中分别由AND门230a或230b来实现的乘法操作,可以组合相应两个路径的输出信号,以产生具有任何期望占空比d和异相角θ(t)的期望异相信号S1(t)和S2(t)之一,同时保持正确的相位信息φ(t)。
为了更好地理解基于数字电路的相位和占空比产生(OSG)单元120如何工作,在下文中,假定控制信号(即,数字控制字D1、D2、D3和D4)的以下条件,提供了示例。
D1=b0 b1 b4 b5     =1 0 1 1
D2=b2 b3 b6 b7     =1 0 0 0
D3=b0’b1’b4’b5’=0 0 1 1
D4=b2’b3’b6’b7’=0 0 0 0
现在参考图4a和4b,示出了分别在路径A和B上产生的异相角为θ1(t)和θ2(t)的异相信号。当分别在最后的D-FF 228a和228b的输出处时钟信号的占空比为50%时,通过利用图3中的AND门230a将路径A和B上的两个时钟信号相乘,来产生+θ(t)并且占空比为d的信号。
图5a示出了占空比为d1的异相信号以及路径A和B中相应的两个时钟信号。以类似的方式,在路径C和D的输出处提供两个异相信号,通过AND门229b对这两个异相信号相乘,产生了占空比为d2的异相信号
Figure BPA00001368813200122
如图5b所示。
总之,可利用图8的流程图所示的方法来示出精确异相信号的产生,该方法包括以下步骤:在步骤S100,基于RF输入信号的幅度信息(A(t)),产生至少一个数字控制信号,所述数字控制信号可以由数字控制字D1、D2、D3和D4组成。然后在步骤S200,根据RF输入信号的相位信息φ(t)对时钟信号进行相位调制,所述时钟信号用作用于产生两个期望的异相信号的基础信号。接下来在步骤S300,根据数字控制信号来产生相位调制后的时钟信号的相对于彼此具有选定的相移的至少两个拷贝,以用于产生第一和第二异相信号之一。然后在步骤S400,利用数字控制信号(D1,D2,D3,D4),在对时钟信号的每个拷贝的二进制除法中,来控制对时钟信号中的脉冲进行选择性吞没,以实现与RF输入信号的幅度信息(A(t))相对应的确定的延迟。最后,在步骤S500,例如通过数字乘法(如,数字AND运算)来组合时钟信号的两个拷贝,以产生第一和第二异相信号之一。步骤S300到S500还被执行来产生第二异相信号。当然,该方法是一个进行中的过程,随着要放大的输入信号中包含的相位和幅度信息的改变,异相信号中的相位和异相角必须跟随改变。
关于用于产生控制字或码(D1、D2、D3和D4)的幅度信息A(t),可以使用A(t)的数字表示,在一些情况下,即,在幅度信息A(t)不是模拟信号的情况下,A(t)的数字表示在基带中已经可用。在其他实施例中,可以使用数字分量分离单元210(图2)中的算法,该算法从幅度信息的N比特基带表示中提取所需的控制字D1、D2、D3和D4。换言之,这是关于定义特定关系的问题。
以下提供了表格,该表格示出了数位与异相角θ(t)占空比d之间的所有关系,以用于说明本发明的基本思想。该表格可以用作查找表(LUT)。
  D1   D2  θ(t)   d
  0110   1111   0   1/16
  1010   1111   0   2/16
  0010   1111   0   3/16
  1100   1111   0   4/16
  0100   1111   0   5/16
  1000   1111   0   6/16
  D1   D2   θ(t)   d
  0000   1111   0   7/16
  1111   1111   0   8/16
  1010   0111   π/8   1/16
  0010   0111   π/8   2/16
  1100   0111   π/8   3/16
  0100   0111   π/8   4/16
  1000   0111   π/8   5/16
  0000   0111   π/8   6/16
  1111   0111   π/8   7/16
  0111   0111   π/8   8/16
  0010   1011   2π/8   1/16
  1100   1011   2π/8   2/16
  0100   1011   2π/8   3/16
  1000   1011   2π/8   4/16
  0000   1011   2π/8   5/16
  1111   1011   2π/8   6/16
  0111   1011   2π/8   7/16
  1011   1011   2π/8   8/16
  1100   0011   3π/8   1/16
  0100   0011   3π/8   2/16
  1000   0011   3π/8   3/16
  0000   0011   3π/8   4/16
  1111   0011   3π/8   5/16
  0111   0011   3π/8   6/16
  1011   0011   3π/8   7/16
  0011   0011   3π/8   8/16
  0100   1101   4π/8   1/16
  1000   1101   4π/8   2/16
  D1   D2   θ(t)   d
  0000   1101   4π/8   3/16
  1111   1101   4π/8   4/16
  0111   1101   4π/8   5/16
  1011   1101   4π/8   6/16
  0011   1101   4π/8   7/16
  1101   1101   4π/8   8/16
  1000   0101   5π/8   1/16
  0000   0101   5π/8   2/16
  1111   0101   5π/8   3/16
  0111   0101   5π/8   4/16
  1011   0101   5π/8   5/16
  0011   0101   5π/8   6/16
  1101   0101   5π/8   7/16
  0101   0101   5π/8   8/16
  0000   1001   6π/8   1/16
  1111   1001   6π/8   2/16
  0111   1001   6π/8   3/16
  1011   1001   6π/8   4/16
  0011   1001   6π/8   5/16
  1101   1001   6π/8   6/16
  0101   1001   6π/8   7/16
  1001   1001   6π/8   8/16
  1111   0001   7π/8   1/16
  0111   0001   7π/8   2/16
  1011   0001   7π/8   3/16
  0011   0001   7π/8   4/16
  1101   0001   7π/8   5/16
  0101   0001   7π/8   6/16
  1001   0001   7π/8   7/16
  D1   D2   θ(t)   d
  0001   0001   7π/8   8/16
  0111   1110   -π   1/16
  1011   1110   -π   2/16
  0011   1110   -π   3/16
  1101   1110   -π   4/16
  0101   1110   -π   5/16
  1001   1110   -π   6/16
  0001   1110   -π   7/16
  1110   1110   -π   8/16
  1011   0110   -π/8   1/16
  0011   0110   -π/8   2/16
  1101   0110   -π/8   3/16
  0101   0110   -π/8   4/16
  1001   0110   -π/8   5/16
  0001   0110   -π/8   6/16
  1110   0110   -π/8   7/16
  0110   0110   -π/8   8/16
  0011   1010   -2π/8   1/16
  1101   1010   -2π/8   2/16
  0101   1010   -2π/8   3/16
  1001   1010   -2π/8   4/16
  0001   1010   -2π/8   5/16
  1110   1010   -2π/8   6/16
  0110   1010   -2π/8   7/16
  1010   1010   -2π/8   8/16
  1101   0010   -3π/8   1/16
  0101   0010   -3π/8   2/16
  1001   0010   -3π/8   3/16
  D1   D2   θ(t)   d
  0001   0010   -3π/8   4/16
  1110   0010   -3π/8   5/16
  0110   0010   -3π/8   6/16
  1010   0010   -3π/8   7/16
  0010   0010   -3π/8   8/16
  0101   1100   -4π/8   1/16
  1001   1100   -4π/8   2/16
  0001   1100   -4π/8   3/16
  1110   1100   -4π/8   4/16
  0110   1100   -4π/8   5/16
  1010   1100   -4π/8   6/16
  0010   1100   -4π/8   7/16
  1100   1100   -4π/8   8/16
  1001   0100   -5π/8   1/16
  0001   0100   -5π/8   2/16
  1110   0100   -5π/8   3/16
  0110   0100   -5π/8   4/16
  1010   0100   -5π/8   5/16
  0010   0100   -5π/8   6/16
  1100   0100   -5π/8   7/16
  0100   0100   -5π/8   8/16
  0001   1000   -6π/8   1/16
  1110   1000   -6π/8   2/16
  0110   1000   -6π/8   3/16
  1010   1000   -6π/8   4/16
  0010   1000   -6π/8   5/16
  1100   1000   -6π/8   6/16
  0100   1000   -6π/8   7/16
  1000   1000   -6π/8   8/16
  D1   D2   θ(t)   d
  1110   0000   -7π/8   1/16
  0110   0000   -7π/8   2/16
  1010   0000   -7π/8   3/16
  0010   0000   -7π/8   4/16
  1100   0000   -7π/8   5/16
  0100   0000   -7π/8   6/16
  1000   0000   -7π/8   7/16
  0000   0000   -7π/8   8/16
为了在数量上说明本文提出的架构的性能,以示例的方式假定输入(基带)信号的载频是f0=2.4GHz。相应地,对于4x4比特实现,驱动图3的第一D-FF 221的输入时钟应当被上变频或频率倍增为f=24-1·f0=19.2GHz;工作在40GHz以上频率处的CMOS分频器已经存在,例如如在R.Mohanavelu、P.Heydari的“A novel 40-GHz flip-flop-based frequency divider in 0.18μm CMOS”,Proceedings of ESSCIRC,Grenoble,France 2005中描述的。
例如,可以通过将输入信号的时钟频率提高到38.4GHz,例如通过引入额外的D-FF以及额外的控制比特,来将上述实现方式的分辨率提高到π/16。在时间步长方面,异相角的分辨率达到值13ps精度,占空比的分辨率达到值26ps。
根据本发明的另一扩展方案,例如如果异相角θ(t)的分辨率不足,例如不足以满足具有高动态范围(DR)要求的通信标准,则并不仅仅提高比特个数n,还附加地或备选地可以使用插值技术来实质上提高异相角的分辨率,同时可以保持相同的占空比。
根据另一扩展方案,还可以附加地应用插值技术。也就是说,利用一些额外的比特和一些额外的D-FF,可以根据需要来提高异相角的分辨率。
在下文中,结合图7,描述了另一扩展方案,在该扩展方案中应用插值。应注意,仅详细示出了信号路径A和B,并且仅更详细讨论了路径A,这是因为路径B、C和D中的信号处理是以对应的方式来进行的,这对于本领域技术人员来说是显而易见的。
每个复用器(MUX)单元222a、222b输出四个信号a、b、c和d,其中信号a比信号b提前π/2,信号c比信号d提前π/2。例如,如果字D1的比特b0、b1都是逻辑零,即“b0b1”=“00”,则信号a是Qn,信号b是I。然后分别利用级联的D-FF 225a、128a以及225a*、228a*将信号a和b进一步除以4,其中,如图7所示,利用字D1的同一组比特b4、b5来选择信号a和b的相位。
因此,第一插值器单元229a的两个输入信号是π/8异相的。。第一数字插值器单元229a被布置和配置为在其两个输入信号之间进行插值,从而将插值器单元的输出处的分辨率实质上提高1/2m倍,其中m是分别在相应插值器单元229a或229b中分别使用的比特个数。
将理解,本发明的一个主要优点是,可以以全数字硬件的形式,例如利用由数字电路元件构成的模块,来实现OSG单元220、220*、220**。因此,在本文讨论的一些实施例中,将具有可变占空比的异相信号的产生实现为数字电路模块,该数字电路模块基于将D触发器(D-FF)用作数字电路元件。关于这一点,值的注意的是,以这种方式,可以将发射机(Tx)一直到功率放大器(PA)完全数字化,并且这是有利的,因为这种方式提供了高精度以及架构的高度灵活性。
总之,通过修改图8,图9以流程图的形式示出了根据本发明另一扩展方案的精确异相信号的产生。相应地,图8的步骤S300被修改为步骤S300*,在步骤S300*中,产生相位调制时钟信号的四个相移拷贝。然后,在步骤S400*,利用数字控制信号(D1,D2,D3,D4),在时钟信号的每个拷贝的二进制除法中,来控制对时钟信号中的脉冲进行选择性吞没,以实现与RF输入信号的幅度信息(A(t))相对应的确定的延迟,其中,步骤S400*与图8的步骤S400的不同之处在于,该步骤是在相位调制数字信号的至少两个相移拷贝中相应的两个相移拷贝上执行的。接下来,根据另一扩展方案,该方法还包括步骤S410,在步骤S410,在相位调制时钟信号的至少四个相移拷贝中相应的两个相移拷贝之间,执行数字插值操作,以在步骤S420中得到相位调制数字信号的至少两个相移拷贝的相应的一个插值的相移拷贝,以用于产生第一和第二异相信号之一。最后,在步骤S500*,例如通过数字乘法运算来组合相位调制数字信号的至少两个插值的相移拷贝,以产生第一和第二异相信号之一。同样,步骤S300*到S500*还被执行来产生第二异相信号。此外,该方法仍然是进行中的过程,随着要放大的输入信号中包含的相位和幅度信息的改变,异相信号中的相位和异相角必须跟随改变。
本文介绍的用于异相功率放大器的架构特别适用于在诸如GSM、EDGE和UMTS等蜂窝系统和/或诸如WiMAX等无线连接性系统中使用的移动和/或无线通信终端以及基站的功率放大器。
尽管在附图和以上描述中详细说明和描述了本发明,然而这样的说明和描述应当被看作是说明性的或示例性的,而非限制性的;本发明不限于所公开的实施例。通过于都附图、说明书和所附的权利要求,本领域技术人员在实现要求保护的发明时,可以理解和实现所公开的实施例的其他变体。在权利要求中,词语“包括”不排除其他元件或步骤,不定冠词“一种”不排除多个。单个装置或其他单元可以实现权利要求中所列的若干项的功能。在互不相同的从属权利要求中产生特定的措施并不表示不能有利地使用这些措施的组合。权利要求中的任何参考标记不应构成对范围的限制。

Claims (10)

1.一种驱动RF异相功率放大器电路装置的方法,所述RF异相功率放大器电路装置用于放大具有调制幅度(A(t))和调制相位(φ(t))的RF输入信号(Sin(t)),其中,该电路包括第一放大支路和第二放大支路,每个放大支路具有输入和输出,并用于放大第一异相信号和第二异相信号(S1(t),S2(t))之一,所述第一异相信号和第二异相信号(S1(t),S2(t))仅被相位调制并且具有相应的占空比(d1,d2),这些异相信号(S1(t),S2(t))的组合对应于RF输入信号;其中,在第一放大支路和第二放大支路中的每一个中,相应的第一放大器件和第二放大器件工作在开关工作模式下;其中,所述方法包括:
基于RF输入信号的幅度信息(A(t)),产生数字控制信号;
根据RF输入信号的相位信息(φ(t)),对时钟信号进行相位调制;
以预定的二进制因子对时钟信号进行频率倍增;
根据数字控制信号,创建相位调制后的时钟信号的、彼此间有相移的至少两个拷贝,以用于产生第一异相信号和第二异相信号之一;
在补偿频率倍增步骤的除法运算期间,利用数字控制信号来控制对时钟信号的每个拷贝中的脉冲进行选择性吞没,从而实现时钟信号的与RF输入信号的幅度信息(A(t))相对应的确定的延迟;以及
将时钟信号的两个拷贝相乘,以产生第一异相信号和第二异相信号之一。
2.根据权利要求1所述的方法,其中,
创建相位调制后的数字信号的至少两个相移拷贝以用于产生第一异相信号和第二异相信号之一的步骤包括:创建相位调制后的时钟信号的四个相移拷贝;以及
控制对时钟信号的每个拷贝中的脉冲进行选择性吞没的步骤是对相位调制后的数字信号的至少两个相移拷贝中相应的两个相移拷贝来执行的;
所述方法还包括:
在相位调制后的时钟信号的至少四个相移拷贝中相应的两个相移拷贝之间进行插值,来得到相位调制后的数字信号的所述至少两个相移拷贝中相应的一个插值相移拷贝,以用于产生第一异相信号和第二异相信号之一;以及
将相位调制后的数字信号的至少两个插值相移拷贝相乘,以产生第一异相信号和第二异相信号之一,所述第一异相信号和第二异相信号之一具有预定占空比的异相脉冲并且承载RF输入信号的幅度信息(A(t))。
3.一种RF功率放大器电路装置,用于放大具有调制幅度(A(t))和调制相位(φ(t))的RF输入信号(Sin(t)),其中,所述电路包括第一放大支路和第二放大支路,每个放大支路具有输入和输出,用于放大第一异相信号和第二异相信号(S1(t),S2(t))之一,所述第一异相信号和第二异相信号(S1(t),S2(t))仅被相位调制并且具有相应的占空比(d1,d2),这些异相信号(S1(t),S2(t))的组合与RF输入信号相对应;其中,在第一放大支路和第二放大支路中的每一个中,相应的第一放大器件和第二放大器件工作在开关工作模式下;其中,组合电路被配置为将第一放大支路和第二放大支路的输出相组合,使得所述电路装置作为异相放大器装置来操作;其中,该电路还包括:
相位调制单元,被配置为提供数字时钟信号,并以预定的二进制因子对所述时钟信号的基频进行上变频,其中时钟信号是根据RF输入信号的相位信息(φ(t))来相位调制的;
异相信号产生单元,接收上变频后的时钟信号以及数字控制信号,并且被配置为:
根据数字控制信号来创建相位调制后的时钟信号的具有选定相移的至少两个拷贝,作为针对第一异相信号和第二异相信号中相应的一个异相信号的基本信号;
在用于以所述预定的二进制因子进行频率下变频的除法运算期间,根据数字控制信号来选择性地吞没时钟信号的每个拷贝中的脉冲,使得实现时钟信号的每个拷贝中的确定的延迟;以及
将时钟信号的两个拷贝相乘,以产生第一异相信号和第二异相信号之一。
4.根据权利要求4所述的RF功率放大器电路装置,其中,该电路还包括:信号分量分离单元,被布置为基于RF输入信号的幅度信息(A(t))来产生所述数字控制信号,并将RF输入信号的相位信息提供至相位调制单元。
5.根据权利要求3或4所述的电路装置,其中,
异相信号产生单元还被配置为:
创建相位调制后的时钟信号的四个相移拷贝,以及
在用于以所述预定的二进制因子进行频率下变频的除法运算期间,在分别包括相位调制后的数字信号的四个相移拷贝中相应的两个相移拷贝的第一组和第二组中同步地,根据数字控制信号来选择性地吞没时钟信号的每个拷贝中的脉冲,
异相信号产生单元还包括第一插值单元和第二插值单元,所述第一插值单元和第二插值单元分别接收下变频后的第一组相位调制时钟信号和第二组相位调制时钟信号,其中每个插值单元被配置为输出用于产生第一异相信号和第二异相信号之一的一个相应的插值时钟信号,以及
异相信号产生单元还被配置为将相应的两个插值时钟信号相组合,以产生第一异相信号和第二异相信号之一。
6.根据权利要求3或5所述的电路装置,其中,异相信号产生单元还包括:逻辑运算单元,用于通过二进制乘法来实现相应的两个插值时钟信号的组合,以产生第一异相信号和第二异相信号之一。
7.根据权利要求3或5所述的电路装置,其中,异相信号产生单元包括:第一二进制电路元件,具体的是触发器元件,所述第一二进制电路元件被配置为接收数字控制信号和数字时钟信号,所述数字时钟信号来自相位调制单元并且是根据RF输入信号的相位信息(φ(t))来相位调制的,所述第一二进制电路元件还被配置为根据数字控制信号来提供数字时钟信号的具有可选相移的拷贝。
8.根据权利要求3或5所述的电路装置,其中,异相信号产生单元还包括数字电路形式的针对时钟信号的每个拷贝的信号路径,所述数字电路由级联的二进制电路元件组成,所述二进制电路元件具体为触发器元件,所述二进制电路元件被配置和连接为实现对脉冲的吞没以及以预定的二进制因子进行频率下变频的除法运算。
9.根据权利要求3至6中任一项权利要求所述的电路装置,其中,第一放大器件和第二放大器件包括作为开关模式功率放大器来操作的电路结构,所述开关模式功率放大器处于以下模式之一:D类模式、DE类模式、E类模式、F类模式或E/F类模式。
10.一种无线电发射机设备,包括用于系统的根据权利要求4至6中任一项所述的电路装置,在所述系统中处理宽带复包络信号,所述系统例如是EDGE、使用WCDMA调制的UMTS、HSxPA、使用OFDM调制的WiMAX、以及使用OFDM调制的3G-LTE等。
CN200980144745.2A 2008-11-10 2009-11-06 异相和pwm功率放大器的可变占空比产生 Expired - Fee Related CN102210096B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08168729.5 2008-11-10
EP08168729 2008-11-10
PCT/IB2009/054935 WO2010052668A1 (en) 2008-11-10 2009-11-06 Variable duty cycle generation for out-phasing and pwm power amplifiers

Publications (2)

Publication Number Publication Date
CN102210096A true CN102210096A (zh) 2011-10-05
CN102210096B CN102210096B (zh) 2014-09-10

Family

ID=41719030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980144745.2A Expired - Fee Related CN102210096B (zh) 2008-11-10 2009-11-06 异相和pwm功率放大器的可变占空比产生

Country Status (4)

Country Link
US (1) US8570101B2 (zh)
EP (1) EP2345155B1 (zh)
CN (1) CN102210096B (zh)
WO (1) WO2010052668A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151995A (zh) * 2013-03-27 2013-06-12 青岛鼎信通讯股份有限公司 数字三态d类放大器
CN104980386A (zh) * 2013-11-14 2015-10-14 英飞凌科技股份有限公司 用于提供交叉点信息的方法和设备
CN105940604A (zh) * 2014-01-29 2016-09-14 高通股份有限公司 通过经差分延迟时钟进行的调制
CN107431481A (zh) * 2015-03-12 2017-12-01 密克罗奇普技术公司 组合/序列脉宽调制
CN108233875A (zh) * 2016-12-13 2018-06-29 台达电子工业股份有限公司 射频放大器及提高其效率的方法、以及射频电源供应器
CN111095791A (zh) * 2017-09-07 2020-05-01 诺基亚通信公司 用于高效和宽带无线电传输器的三相调制

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699619B2 (en) 2010-09-30 2014-04-15 Ericsson Modems Sa Dutycycle adjustment to improve efficiency of a digital RF-PA
US9014300B2 (en) * 2013-09-12 2015-04-21 Qualcomm Incorporated Switched-mode high-linearity transmitter using pulse width modulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158543A (ja) * 2000-11-17 2002-05-31 Sony Corp デジタルパワーアンプ
JP2003018026A (ja) * 2001-06-29 2003-01-17 Taiyo Yuden Co Ltd 無線通信方法および装置
US20050271161A1 (en) * 2004-06-04 2005-12-08 Texas Instruments Incorporated Digital amplitude modulation
JP2007005956A (ja) * 2005-06-22 2007-01-11 Alpine Electronics Inc 電源装置及びスイッチングコンバータの制御方法
CN1930784A (zh) * 2004-03-10 2007-03-14 松下电器产业株式会社 发送装置及无线通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925611A (en) * 1995-01-20 1999-07-20 Minnesota Mining And Manufacturing Company Cleaning process and composition
US6889034B1 (en) 1998-04-02 2005-05-03 Ericsson Inc. Antenna coupling systems and methods for transmitters
US7460612B2 (en) 2004-08-12 2008-12-02 Texas Instruments Incorporated Method and apparatus for a fully digital quadrature modulator
US7826554B2 (en) 2006-03-13 2010-11-02 Interdigital Technology Corporation Digital transmitter
EP2263355B1 (en) 2008-03-31 2012-09-12 Nxp B.V. High resolution digital modulator by switching between discrete PWM or PPM values
EP2274829B1 (en) 2008-05-05 2012-09-05 Nxp B.V. Efficient linear linc power amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158543A (ja) * 2000-11-17 2002-05-31 Sony Corp デジタルパワーアンプ
JP2003018026A (ja) * 2001-06-29 2003-01-17 Taiyo Yuden Co Ltd 無線通信方法および装置
CN1930784A (zh) * 2004-03-10 2007-03-14 松下电器产业株式会社 发送装置及无线通信装置
US20050271161A1 (en) * 2004-06-04 2005-12-08 Texas Instruments Incorporated Digital amplitude modulation
JP2007005956A (ja) * 2005-06-22 2007-01-11 Alpine Electronics Inc 電源装置及びスイッチングコンバータの制御方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151995A (zh) * 2013-03-27 2013-06-12 青岛鼎信通讯股份有限公司 数字三态d类放大器
CN103151995B (zh) * 2013-03-27 2016-04-20 青岛鼎信通讯股份有限公司 数字三态d类放大器
CN104980386A (zh) * 2013-11-14 2015-10-14 英飞凌科技股份有限公司 用于提供交叉点信息的方法和设备
CN104980386B (zh) * 2013-11-14 2018-10-02 英飞凌科技股份有限公司 用于提供交叉点信息的方法和设备
CN105940604A (zh) * 2014-01-29 2016-09-14 高通股份有限公司 通过经差分延迟时钟进行的调制
CN105940604B (zh) * 2014-01-29 2019-01-15 高通股份有限公司 通过经差分延迟时钟进行的调制
CN107431481A (zh) * 2015-03-12 2017-12-01 密克罗奇普技术公司 组合/序列脉宽调制
CN108233875A (zh) * 2016-12-13 2018-06-29 台达电子工业股份有限公司 射频放大器及提高其效率的方法、以及射频电源供应器
CN111095791A (zh) * 2017-09-07 2020-05-01 诺基亚通信公司 用于高效和宽带无线电传输器的三相调制

Also Published As

Publication number Publication date
CN102210096B (zh) 2014-09-10
WO2010052668A1 (en) 2010-05-14
US20110216818A1 (en) 2011-09-08
EP2345155A1 (en) 2011-07-20
EP2345155B1 (en) 2013-01-09
US8570101B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
CN102210096B (zh) 异相和pwm功率放大器的可变占空比产生
Wang et al. A super-resolution mixed-signal Doherty power amplifier for simultaneous linearity and efficiency enhancement
TWI559689B (zh) 發信器
Yuan et al. A multiphase switched capacitor power amplifier
EP2541781B1 (en) Rf transmitter architecture and method therefor
EP3807997B1 (en) Radio frequency (rf) transmitter and method of rf transmission
CN101411055B (zh) 射频pwm&ppm调制器
US8155237B2 (en) Multi-carrier transmitter
EP3808000B1 (en) High speed digital bit generator
EP3807998B1 (en) High speed digital signal synthesizer
TW200822535A (en) Switched mode power amplification
CN101375575A (zh) 多模式调制设备
EP3807999B1 (en) Mixed-mode millimeter-wave transmitter
EP3028387B1 (en) Level de-multiplexed delta sigma modulator based transmitter
Chen et al. A pulse-modulated polar transmitter using direct digital synthesis for 5G NR mobile applications
JP5347892B2 (ja) 送信器
GB2456889A (en) A PWM modulator for a Cartesian transmitter
US7212585B2 (en) Quadrature modulation transmitter
Haque et al. Aliasing-compensated polar PWM transmitter
CN101277282A (zh) 用于数字调制的系统和方法
Alavi All-Digital I/Q RF-DAC
CN101375574A (zh) 极性调制系统
Hühn et al. A Reconfigurable Modulator for Digital Outphasing Transmitters
Xu et al. A Digital Combining Applied to the Multilevel Pulse Modulated Polar Transmitter
Zhang et al. A Time-Mode-Modulation Digital Quadrature Power Amplifier Based on 1-bit Delta–Sigma Modulator and Hybrid FIR Filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151117

Address after: Holland Ian Deho Finn

Patentee after: NXP BV

Address before: Holland Ian Deho Finn

Patentee before: Koninkl Philips Electronics NV

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140910

Termination date: 20161106