TWI559689B - 發信器 - Google Patents

發信器 Download PDF

Info

Publication number
TWI559689B
TWI559689B TW103136760A TW103136760A TWI559689B TW I559689 B TWI559689 B TW I559689B TW 103136760 A TW103136760 A TW 103136760A TW 103136760 A TW103136760 A TW 103136760A TW I559689 B TWI559689 B TW I559689B
Authority
TW
Taiwan
Prior art keywords
signal
pwm
pulse train
transmitter
power
Prior art date
Application number
TW103136760A
Other languages
English (en)
Other versions
TW201521363A (zh
Inventor
馬瑞
朱秋耀
坤好 張
春杰 段
Original Assignee
三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機股份有限公司 filed Critical 三菱電機股份有限公司
Publication of TW201521363A publication Critical patent/TW201521363A/zh
Application granted granted Critical
Publication of TWI559689B publication Critical patent/TWI559689B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

發信器
本發明一般係關於用於功率放大器之功率編碼方案,並且更確切地,係關於直接數位射頻發信器中用於射頻(RF)切換模式功率放大器之數位脈寬調變編碼器。
直接數位射頻發信器(TX)相較於數位類比射頻發信器,具有諸多優點。直接數位射頻發信器將數位類比介面列置到靠近天線處,以致所需要的類比組件較少。典型類比像是同相位及正交相位(IQ)不匹配、局部振盪器(LO)洩漏、影像失真等問題能大幅減輕,甚至是避免。直接數位射頻發信器亦透過藉由靈活的數位信號處理啟用的多模式及多頻帶運作,增強系統彈性。此外,直接數位射頻發信器可具有提升數位處理速度及密度、以及高度整合的優點。因此,直接數位射頻發信器有利於基地台及行動應用。
直接數位射頻發信器包括諸如D類或S類 功率放大器等切換模式功率放大器(SMPA),利用諸如DSM(三角積分調變)、PWM(脈寬調變)及PPM(脈位調變)之類的特定功率編碼方案,另外還有重建帶通濾波器(BPF)。
就功率而言,射頻功率放大器(PA)在發信器 中消耗掉的能量最多。這種發信器的主要優點在於,SMPA總是處於ON(飽和)與OFF(截止)操作區之間,使效率達到高峰。然而,若將常用於第三代(3G)及第四代(4G)蜂巢式行動通訊系統的非恆定包絡信號編碼成單一位元數位化信號,則整個數位化信號功率的帶內功率(定義為功率編碼效率)將會為低,這是因為量化雜訊的產生係不可避免的,且因系統線性度規格要求的雜訊整形函數而廣泛散布於整個頻域。由於SMPA也將雜訊信號放大,所不欲的雜訊功率將白費掉,不僅造成功率過度耗損,也使總TX效率降低。
此問題出現在帶通三角積分調變(BPDSM) 式S類功率放大器中。請參閱(例如)美國2003/0210746、美國2006/0188027、EP 2063536、以及美國7,825,724。
總TX功率效率係關於編碼器的功率編碼效 率以及PA的功率效率。於飽和功率位準之SMPA其PA效率η PA (取決於PA電路設計)通常較高(>80%)。相比之下,功率編碼效率η CODE 係編碼器脈衝列p(t)其功率頻譜密度(PSD)之直接測量,並且係基於編碼器的效能。附有非恆定包絡調變信號之習知之功率編碼方案其編碼器之效能較低(<20%)。因此,功率編碼效率η CODE 是直接數位射頻發信 器的主要考量,其設定發信器整體效率的上限。為了要在調變非週期性切換條件下提升直接數位射頻發信器的效率,必須改善功率編碼效率。
低功率編碼效率來自於三角積分功率編碼 方案中的雜訊整形。因此,某些習用編碼方案將各種PWM技術用於改善功率編碼效率。
例如,Blocher et al.,“Coding efficiency for different switched-mode RF transmitter architectures,”Circuits and Systems,2009.MWSCAS '09.52nd IEEE International Midwest Symposium on,vol.,no.,pp.276,279,2-5 Aug.2009敍述了一極性PWM架構。基頻信號之包絡在PWM編碼器中作調變,其中PWM編碼係藉由將包絡大小與參考波形(三角形或鋸齒)作比較來進行的。PWM參考波形的頻率典型為輸入信號基頻頻寬的10至100倍。此架構能達到高功率編碼效率及所需線性度,但難以用數位方式實施。此外,由於傳輸的信號是在射頻載波頻率直接結合,難以對齊振幅與相位之間的時間,對於寬頻信號尤其如此。
另一種功率編碼效率增強法為RFPWM,其 敍述請參閱Raab,F.H.,“Class-D power amplifier with RF pulse-width modulation,“Microwave Symposium Digest(MTT),2010 IEEE MTT-S International,vol.,no.,pp.924,927,23-28 May 2010。RFPWM的輸出信號每個射頻載波週期包括2-位準(單極或雙極-NRZ)或3-位準波形(雙極-RZ)。首先,將基頻同相位(I)及正交相位(Q)兩者都升頻成射頻頻 域。藉由改變脈寬,將射頻直角坐標(RF Cartesian)信號的大小編碼以產生脈寬調變射頻信號。可藉由這種方法,將任何複數輸入信號映射至適用於切換模式放大的時間連續及振幅離散輸出信號。然而,這種編碼也是藉由通常耗成本且耗能量的類比/射頻高速比較器來處理。因此,RFPWM編碼器適用於低載波頻率(如:用於音訊應用的D類功率放大器),但不適用於GHz級的射頻發信器應用。
其它以數位實施的PWM功率編碼方案包括 脈位調變(PPM)(例如美國6,993,087中敍述的PWM/PPM方案)、以及脈寬位置調變(PWPM),其敍述請參閱:Thiel,B.T.;Dietrich,S.;Zimmermann,N.;Negra,R.,“System architecture of an all-digital GHz transmitter using pulse-width/position-modulation for switching-mode PAs,”Microwave Conference,2009.APMC 2009.Asia Pacific,vol.,no.,pp.2340,2343,7-10 Dec.2009。類似於極性PWM,在PWM/PPM中,包絡大小係以脈寬編碼,並且相位資訊係映射至脈衝的位置,其係藉由PPM編碼。差異在於,為了要適合數位系統的有限取樣速率(例如:射頻載波頻率的數倍),並且為了要符合線性度的要求,包絡大小及相位信號兩者都應該先藉由帶通三角積分函數進行雜訊整形,接著藉由PWM/PPM進行處理。但雜訊整形使功率編碼效率急劇降低。
因此,對於高效率新功率編碼方案有所需求,特別是以數位實施直接數位射頻發信器架構的功能。
本發明某些具體實施例之一個目標是要改善直接數位射頻(RF)發信器之功率編碼效率與所需線性度,特別是針對寬頻寬高峰均功率比(PAPR)行動通訊信號。某些具體實施例的進一步目標是以全數位方式實施可包括S類功率放大器的直接數位射頻發信器。
某些具體實施例係基於辨識射頻脈寬調變(RFPWM)具有高功率編碼效率。但對於數位實施,RFPWM要進行射頻直角坐標IQ信號取樣,便需要極高取樣時脈速率(50×f RF )才能保存信號線性度,對於抑制帶內雜訊水平(in-band noise floor)及帶外複影像(image replica)尤其如此。這由於FPGA或其它數位處理器的取樣速率有限制且射頻SMPA切換速度極大,是不可行的。
本發明的諸多具體實施例係基於下列實現:藉由將PWM輸入載波降至中頻(IF),並接著藉由脈寬調變器進行中頻信號編碼,使時域量化擴展且量化大小增加。因此,目前數位處理器的可達時脈速率可實施這種功率編碼演算法,並且對切換模式功率放大器(SMPA)的直接數位輸出變為可實現。
一項具體實施例使用基於具有多個固定臨限值之非均勻多級量化器的多級編碼器。可藉由輸入信號(例如)訊框的一部分的機率密度函數(PDF),來測定臨限值。在一項具體實施例中,在編碼器之前,新增基於查詢表(LUT)之預失真區塊以進一步補償PWM編碼器的非線性 度。並且在編碼器之後,將4-相位局部振盪器(LO)用於將中頻IQ信號升頻成射頻頻帶。因此,這項具體實施例屬於取樣速率已降低的兩段式數位升頻。由於這屬於管線架構,並聯實施可提升較高時域量化的取樣速率以達到所欲線性度。
此外,這種架構可擴展至多模式及多頻帶 運作。多個基頻輸入可各別處理,並接著藉由並行轉串行結合器(parallel-to-serial combiner)予以結合。
於是,一項具體實施例揭示發信器,其包 括用於將資料轉換到中頻(IF)信號的第一數位升頻轉換器、用於將中頻信號編碼成中頻脈衝列之脈寬調變器(PWM)、用於將中頻脈衝列轉換成射頻(RF)脈衝列之第二數位升頻轉換器、用於將射頻脈衝列放大之功率放大器;以及用於自已放大射頻脈衝列重建射頻類比信號之濾波器。
另一具體實施例揭示用於數位射頻發信器 之功率編碼器。功率編碼器包括用於將資料轉換成中頻(IF)信號之第一數位升頻轉換器;用於將中頻信號編碼成中頻脈衝列之脈寬調變器(PWM);以及用於將中頻脈衝列轉換成射頻(RF)脈衝列之第二數位升頻轉換器。
再另一具體實施例揭示用於傳輸資料的方 法。本方法包括將資料轉換成中頻(IF)信號;使用脈寬調變將中頻信號編碼成中頻脈衝列;以及將中頻脈衝列轉換成射頻(RF)脈衝列。
10、13‧‧‧信號
11、12、14、15‧‧‧作圖
21‧‧‧功率編碼器
22‧‧‧放大器
23‧‧‧重建濾波器
24‧‧‧天線
25、27‧‧‧數位頻率升頻轉換器
26‧‧‧中頻脈寬調變器
28‧‧‧電光轉換器
29‧‧‧光電轉換器
31‧‧‧分流器
32‧‧‧第一量化器
32`‧‧‧第二量化器
33‧‧‧結合器
34‧‧‧輸入
35、36、48‧‧‧臨限值
37、38‧‧‧階躍波形
39‧‧‧多位準數位脈寬調變波形
40‧‧‧處理器
41‧‧‧基頻輸入資料
42‧‧‧記憶體
43‧‧‧測定
44‧‧‧機率密度函數
45‧‧‧積分
46‧‧‧曲線
49‧‧‧反復進行
50、60‧‧‧直接數位射頻發信器
51‧‧‧座標旋轉數位電腦(CORDIC)區塊
52‧‧‧LUT預失真單元
53‧‧‧中頻數位升頻轉換器
54‧‧‧非線性ML-IFPWM
55‧‧‧結合器
56‧‧‧相位調變器
57‧‧‧映射器
58‧‧‧緩衝驅動器
59‧‧‧功率放大器
61‧‧‧基頻信號產生器
62‧‧‧功率編碼編碼器
63‧‧‧單元
64、74‧‧‧數位部分
65、75‧‧‧射頻部分
70‧‧‧多模式多頻帶直接數位射頻發信器
71、72‧‧‧基頻信號源
76‧‧‧速率配接器
110、112‧‧‧取樣點
200‧‧‧發信器
210‧‧‧輸入資料
220‧‧‧轉換
230‧‧‧編碼
240‧‧‧升頻
250‧‧‧中頻信號
260‧‧‧中頻脈衝列
270‧‧‧射頻脈衝列
第1圖係射頻與中頻功率寬度調變之間作比較的曲線圖。
第2A圖係根據本發明之某些具體實施例之直接數位射頻發信器的方塊圖。
第2B圖係根據本發明之某些具體實施例之利用第2A圖所示發信器之功率編碼器的方法之方塊圖。
第2C圖係根據本發明之某些具體實施例之附有電光及光電轉換器之直接數位射頻發信器的方塊圖。
第3圖係基於一組固定臨限值之多級脈寬調變器的方塊圖。
第4圖係根據本發明之某些具體實施例之測定該組固定臨限值的示意圖。
第5圖係根據本發明之某些具體實施例之直接數位射頻發信器的方塊圖。
第6圖係根據本發明之一具體實施例之直接數位射頻發信器之FPGA/數位處理器實施的方塊圖。
第7圖係根據本發明之一具體實施例之多模式多頻帶直接數位射頻發信器之實施的方塊圖。
先進切換模式功率放大器(SMPA)(例如:S 類)目前已常被使用。高理論功率效率及運作彈性的效益使其在軟體定義無線電(SDR)中,成為下一代直接數位射頻 發信器(TX)很有前景的促成工具。
直接數位射頻發信器將S類放大器當作用 以將像是三角積分調變器(DSM)、脈寬調變器(PWM)、或脈位調變器(PPM)等功率編碼器所產生高頻脈衝列放大的最後放大級。一般需將高品質(Q)(>500)帶通濾波器(BPF)用於將信號重建回類比射頻。應注意的是,由於近來在氮化鎵(GaN)射頻電晶體技術方面的進步,這種架構正更加獲得青睞,在皮可/巨級基地台(pico-/macro-base station)應用上尤其如此。
然而,隨著SMPA將大部分無用的帶外雜訊 放大,處理附有高峰均比(PAR>8 dB)之通訊信號的習知的功率編碼器其非常低的「功率編碼效率」(這裡明確定義為所欲帶內功率對數位化信號全頻帶功率的比率,用以與資訊理論常講的功率編碼效率作清楚區別)是影響TX功率效率最重要因素的其中一項。到目前為止,廣受使用的功率編碼器(例如:DSM)實際上達到的功率編碼效率仍屬有限(<30%)。這是歸因於量化雜訊的產生及用於增強帶內SNR的雜訊整形函數。本發明之實施例為直接數位射頻發信器提供高功率編碼效率數位功率編碼器。
為了要符合頻譜線性度的要求,尤其是針 對帶內雜訊水平及帶外複影像,在難以用習知數位處理器實施的蜂巢式應用方面,功率編碼器需要超快取樣時脈(50×fRF)才能獲得足夠的GHz頻率級射頻超頻取樣率(over-sampling ratio)。
本發明之某些具體實施例以大幅降低的取 樣速率而經由兩段式數位升頻使用中頻PWM(IFPWM),同時也達到高功率編碼效率。為了要利用RFPWM的優點並克服上述硬體在實行上的挑戰,因而係藉由將PWM輸入頻率降至中頻(IF)(例如:100MHz),然後再以直角坐標中頻IQ信號進行編碼來實現IFPWM。
第1圖包括在Vth1=0.8Vth2=1.6下,3/5位準 RFPWM及3/5位準IFPWM作比較的曲線圖。曲線圖展現在固定取樣時脈速率1/Ts下,不同載波頻率及振幅位準的量化效應。各取樣點在波形曲線中都標示成小圓圈(例如:110及112)。比較兩個輸入信號,亦即射頻信號10及中頻信號13。射頻信號10的載波頻率fc為中頻信號13的兩倍。 假設第一臨限值參考位準Vth1為0.8且第二Vth2為1.6,處理信號10之輸出具有3位準11及5位準12振幅量化。處理信號13之輸出具有3位準14及5位準15振幅量化。作圖14就取樣點來看,係具有兩倍於作圖11之資訊量,作圖15與作圖12比較之下也一樣。相較於作圖11,作圖14有三個連續取樣週期之脈寬變動,用以在作圖10及作圖13中反應輸入信號之第二大振幅週期。再者,比較作圖12與作圖11、對照於作圖14之作圖15,5位準具有比3位準更詳細的資訊,並且在取樣前,作圖12及作圖15係更接近原來的類比信號。因此,藉由本發明之一項具體實施例,作圖15為較佳取樣及量化方案。第1圖描述在習知之數位處理器其取樣時脈速率有限的前提下,多位準 ML-IFPWM比ML-RFPWM更有優勢。
第2A圖係根據本發明之某些具體實施例之 直接數位射頻發信器200的方塊圖。第2B圖係根據本發明之某些具體實施例之利用發信器200之功率編碼器21的方法之方塊圖。可使用處理器實施功率編碼器21其方法之步驟。例如,可將功率編碼器實現為數位邏輯積體電路,例如特定應用積體電路(ASIC)。
可藉由基頻將輸入資料210提供予功率編 碼器以供傳輸。功率編碼器之輸出係包括用以驅動放大器22所需類比資訊的多位準脈衝列。功率編碼器21包括兩個數位頻率升頻轉換器25及27、以及中頻(IF)脈寬調變器26。第一數位升頻轉換器25將輸入資料210轉換220成中頻信號250。中頻脈寬調變器26將中頻信號編碼230成中頻脈衝列260。藉由第二數位升頻轉換器27將已編碼結果進一步升頻240成射頻脈衝列270。
本發明的某些具體實施例係基於實現將 PWM輸入載波從射頻降至中頻頻率,用以更加匹配習知的數位處理器之時脈速率,從而有助於以有效率的方式實施功率編碼。在各項具體實施例中,中頻係低於射頻,並且可取決於功率編碼器及/或放大器的時脈速率。
例如,射頻(RF)係範圍約3kHz至300GHz 的振盪速率,其對應於無線電波的頻率。相比之下,中頻(IF)係MHz範圍(例如:100MHz)之振盪速率,其對應於各種數位處理器中時脈的運作頻率。具體實施例讓對SMPA 的直接數位輸出變為可實現。例如,在第四代長期演進技術(4G LTE)中,典型的射頻載波頻率係處於頻帶1(2100-MHz)及頻帶2(1900-MHz)。在數位邏輯積體電路21中,高速率時脈(例如:載波頻率fc的倍數)係用於輸入資料之數位信號處理期間以供傳輸(較佳為同相位(I)及正交相位(Q)信號)。這些只是例示性的射頻頻率的數字。取決於國家及業者,也可以指定不同頻帶,其一般的範圍是600Mhz至2.7GHz(例如:LORFI及LORFQ的頻率)。
一項具體實施例亦將功率放大器22用於將 射頻脈衝列放大。功率放大器可為切換功率放大器(如:S類PA模組),其接收多位準脈衝列作為輸入,並且將高速脈衝信號放大。此外,某些具體實施例使用重建濾波器23及天線24。重建濾波器23可為S類PA之高品質因子(Q)帶通濾波器。重建濾波器23濾除帶外雜訊,並且從高速脈衝列回復類比射頻信號。其次,透過天線24在空中放射類比射頻信號。
第2C圖係附有電光及光電轉換器之直接數 位射頻發信器的方塊圖,係用於將脈寬調變信號光傳輸至切換模式功率放大器。在這項具體實施例中,電路21的輸出係藉由電光轉換器28從電信號轉換成光信號,並且經由對光電轉換器29輸入的光連接予以傳輸。脈寬調變信號係供選擇性地傳輸至切換模式功率放大器22。
第3圖示出根據一項具體實施例的中頻脈寬調變器(IFPWM)26之方塊圖。在這項具體實施例中, IFPWM為多位準PWM(例如:5位準PWM)。這5位準PWM波形係使用多級量化器32而例示地產生。在某些實施中,IFPWM包括分流器31、兩個多級量化器,為第一量化器32及第二量化器32`、以及結合器33。分流器31的輸入34係為具有中頻載波頻率之傳輸資訊。分流器31將信號複製,並且信號係遞交至多級量化器。各多級量化器進行與一組臨限值(例如第一組35及第二組36)的比較。下量化器32`的臨限值36相反,亦即,相較於上量化器32之臨限值35,具有相同的絕對值,但符號不同。比較結果係顯示為對稱但延遲的階躍波形37及38。藉由結合器33將這兩個量化器的輸出階躍波形37及38加在一起以產生完整的多位準數位脈寬調變波形39(即:脈衝列)。
相較於將另外的時脈用於產生三角形或鋸 齒參考波形、接著使用類比比較器輸出PWM,在某些具體實施例中,PWM為具有附帶多個固定臨限值之非均勻多級量化器的多位準PWM。例如,各固定臨限值皆可基於輸入信號之一部分之機率密度函數(PDF)而予以判測。在一項具體實施例中,這固定臨限值之組係基於傳輸之訊框或子訊框而可調適地來進行測定。
第4圖示出用於測定固定臨限值之組之方 法的示意圖,其可適於根據本發明某些具體實施例各傳輸之訊框或子訊框。本方法可藉由連接至記憶體42之處理器40實施。訊框之基頻輸入資料41係在記憶體42中儲存成向量或陣列。接著,處理器40測定43來自訊框中之資料 的機率密度函數(PDF)44。PDF進行積分45以產生累積分布函數(CDF)之曲線46。一組臨限值48係選自CDF曲線46,例如,CDF曲線等間隔。該流程係調適性地對訊框逐一反複進行49,以確保該組臨限值48保持最佳化。
第5圖示出根據某些具體實施例之直接數 位射頻發信器50的方塊圖。在這些具體實施例中,於編碼器前先列置基於查詢表(LUT)之預失真區塊以進一步補償線性度。於編碼器後,4相位LO係用於將中頻IQ信號升頻到射頻頻帶。因此,這項具體實施例係為降低取樣速率之兩段式數位升頻。由於這是種管線架構,該具體實施例可使用並聯實施以提升較高時域量化之取樣速率,以達到所欲之線性度。
輸入資料為複數,並且兼含同相位(I)及相 位正交(Q)路徑。藉由座標旋轉數位計算機(CORDIC)區塊51處理複數輸入以將直角坐標轉換成極坐標資料(即:包絡(ENV)以及相位θ)。LUT預失真單元52係可使用於非線性ML-IFPWM54功率編碼器之線性度校正之ENV預失真得以進行。輸出以PRE表示。相位調變器56於中頻載波頻率(例如:用於LTE應用的100-MHz)產生相位調變(PM)IQ信號(LOIFI及LQIFQ)。兩個中頻數位升頻轉換器(DUC)53分別將PRE與LOIFI及LOIFQ進行混波。
中頻DUC 53的輸出IFI及IFQ係藉由兩個 ML-IFPWM功率編碼器54(例如第3圖所示)進行編碼。產生的脈衝列為PWMI及PWMQ。另一組數位升頻轉換器分別 將PWMI及PWMQ與LORFI{1,0,-1,0,…}及LORFQ{0,1,0,-1,…}進行混波。藉由結合器55將乘積加至輸出RFin。(即:RFin=PWMI.LORFI+PWMQ.LORFQ)。然後,映射器57將多位準RFin轉換成控制位元信號。
(2M-1)個位準脈衝列通常需要M個控制位 元,例如,3位準用2個位元以及5位準IFPWM信號用3個位元。這M個控制位元為用以控制在59中之功率放大器(例如:S類PA)之切換器(例如:使用GaN電晶體)的二進位切換信號SW(0:M-1)。為了要適合多位元輸入,可將功率放大器組態成用於3位準信號的H橋、或用於5位準信號的並聯H橋。
也可有來自功率放大器輸出的回授。此回 授將少量功率耦接回輸入,以檢測由功率放大器帶來的非線性度。在功率放大器前,需要有緩衝驅動器58,用以同步多位元輸入,並且提供一些放大作用以達到功率放大器輸入功率要求。在59內,也可在SMPA模組中包括帶通重建濾波器(BPF),以濾除帶外量化雜訊,以便傳輸乾淨的類比RFout,並且BPF較佳是可將與那些非所欲頻譜成分相關之功率回收回到SMPA。RFout係適於藉由天線傳輸。也可將其它習知的發信器及接收器組件(例如:隔離器)用於消除功率反射效應。
第6圖所示為根據本發明之一項具體實施 例之直接數位射頻發信器60之實施。該直接數位射頻發信器60包括兩個部分,亦即數位部分64、以及射頻部分65。 數位部分係藉由FPGA或數位處理器以離散方式實施,其取樣時脈由左而右增加。基頻信號產生器61將輸入資料提供予功率編碼編碼器62。功率編碼器62為了讓直接數位射頻發信器60達到高速率時脈,而藉由各單元63以並行方式處理輸入資料。如上所述,高速率時脈較佳為大約載波頻率fc的數倍(較佳為4倍),其可在美國LTE應用所要求的頻帶1(2100-MHz)或頻帶2(1900-MHz)內。例如,假設各單元用的是屬於可達到的時脈速率並且可藉由現場可程式化邏輯閘陣列(FPGA)實現的125MHz(1/64取樣速率),以及有64個並聯的單元。在並行信號處理之後,結果係以串列方式送至切換模型功率放大器模組65。SMPA模組之輸入取樣速率為125.64=8000MHz,其為fc(2000-MHz)的4倍。
第7圖係根據本發明之另一具體實施例之 多模式多頻帶直接數位射頻發信器70的方塊圖。類似於第6圖中的單一模式實施,該具體實施例具有藉由FPGA或數位處理器實施的數位部分74、以及射頻部分75(例如:SMPA或BPF)。不同速率之兩個不同的基頻信號源71及72係各別藉由功率編碼器以並行方式進行編碼。速率配接器76結合兩個位於隔開之射頻載波頻率之已編碼之ML-IFPWM信號。這種直接數位射頻發信器架構70進行雙模式雙頻帶運作。也可使用附有超過雙模式雙頻帶之直接數位射頻發信器70。
模擬顯示使用本發明某些具體實施例之5 位準IFPWM功率編碼器,5MHz 9.95dB PAPR LTE信號可達到大約75%的功率編碼效率。
21‧‧‧功率編碼器
22‧‧‧放大器
23‧‧‧重建濾波器
24‧‧‧天線
25、27‧‧‧數位頻率升頻轉換器
26‧‧‧中頻脈寬調變器
200‧‧‧發信器
210‧‧‧輸入資料
250‧‧‧中頻信號
260‧‧‧中頻脈衝列
270‧‧‧射頻脈衝列

Claims (11)

  1. 一種發信器,其包含:第一數位升頻轉換器,其用於將資料轉換到中頻(IF)信號;脈寬調變器(PWM),其用於將該中頻信號編碼成中頻脈衝列;第二數位升頻轉換器,其用於將該中頻脈衝列轉換成射頻(RF)脈衝列;功率放大器,其用於將該射頻脈衝列放大;以及濾波器,其用於自該已放大之射頻脈衝列重建射頻類比信號;其中該第一數位升頻轉換器、該PWM、以及該第二數位升頻轉換器形成功率編碼器單元,且該發信器更包含用於處理該資料的並聯列置的複數個功率編碼器單元。
  2. 如申請專利範圍第1項所述之發信器,其更包含:電光轉換器,其用於將該射頻脈衝列轉換成光信號;以及光電轉換器,其用於將該光信號轉換成射頻信號。
  3. 如申請專利範圍第1項所述之發信器,其中該PWM為多位準PWM,其更包含:分流器,其用於複製該中頻信號;兩個多級量化器,各量化器係基於該中頻信號與一組臨限值之比較,來量化該中頻信號以產生兩個波形; 以及結合器,其用於結合該兩個波形以產生該中頻脈衝列。
  4. 如申請專利範圍第1項所述之發信器,其中該兩個多級量化器包括第一量化器及第二量化器,並且該組臨限值包括第一組臨限值及第二組臨限值,以及其中該第一組中該臨限值之值與該第二組中該臨限值之值相反。
  5. 如申請專利範圍第1項所述之發信器,其中該PWM為基於一組固定臨限值進行調變之多位準PWM。
  6. 如申請專利範圍第1項所述之發信器,其中該PWM為多位準PWM,該多位準PWM具有具備多個固定臨限值之非均勻多級量化器。
  7. 如申請專利範圍第6項所述之發信器,其中各固定臨限值係基於該輸入信號之一部分的機率密度函數(PDF)者。
  8. 如申請專利範圍第7項所述之發信器,其更包含用於儲存該資料之訊框的記憶體;處理器,該處理器係用於自該訊框之資料判定該PDF,以用於積分該PDF以產生累積分布函數(CDF)之曲線、以及用於以該曲線為基礎選擇各固定臨限值之值。
  9. 一種發信器,其包含:第一數位升頻轉換器,其用於將資料轉換到中頻(IF)信號; 脈寬調變器(PWM),其用於將該中頻信號編碼成中頻脈衝列,其中該PWM為多位準PWM,該多位準PWM具有具備多個固定臨限值之非均勻多級量化器,其中各固定臨限值係基於該輸入信號之一部分的機率密度函數(PDF)者;第二數位升頻轉換器,其用於將該中頻脈衝列轉換成射頻(RF)脈衝列;功率放大器,其用於將該射頻脈衝列放大;濾波器,其用於自該已放大之射頻脈衝列重建射頻類比信號;用於儲存該資料之訊框的記憶體;以及處理器,該處理器係用於自該訊框之資料判定該PDF,以用於積分該PDF以產生累積分布函數(CDF)之曲線、以及用於以該曲線為基礎選擇各固定臨限值之值,其中該處理器判定用於該資料之各訊框之該組固定臨限值。
  10. 一種發信器,其包含:第一數位升頻轉換器,其用於將資料轉換到中頻(IF)信號;脈寬調變器(PWM),其用於將該中頻信號編碼成中頻脈衝列,其中該PWM為非線性多位準PWM(ML-IFPWM);第二數位升頻轉換器,其用於將該中頻脈衝列轉換成射頻(RF)脈衝列; 功率放大器,其用於將該射頻脈衝列放大;以及濾波器,其用於自該已放大之射頻脈衝列重建射頻類比信號;該發信器更包含:預失真單元,其用於對該資料之至少部分進行預失真以供對該非線性ML-IFPWM進行線性度校正。
  11. 如申請專利範圍第1項所述之發信器,其中該複數個功率編碼器單元形成功率編碼器,其更包含:並聯列置的複數個功率編碼器,各功率編碼器以不同取樣速率運作;複數個基頻信號源,其連接至對應之功率編碼器;以及速率配接器,其用於結合該複數個功率編碼器之輸出。
TW103136760A 2013-10-25 2014-10-24 發信器 TWI559689B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/063,518 US8953670B1 (en) 2013-10-25 2013-10-25 Digital power encoder for direct digital-RF transmitter
PCT/JP2014/078281 WO2015060413A1 (en) 2013-10-25 2014-10-17 Transmitter, power encoder for digital-rf transmitter and method for transmitting data

Publications (2)

Publication Number Publication Date
TW201521363A TW201521363A (zh) 2015-06-01
TWI559689B true TWI559689B (zh) 2016-11-21

Family

ID=51868276

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103136760A TWI559689B (zh) 2013-10-25 2014-10-24 發信器

Country Status (7)

Country Link
US (2) US8953670B1 (zh)
EP (1) EP3061190B1 (zh)
JP (1) JP6104452B2 (zh)
KR (1) KR101739713B1 (zh)
CN (1) CN105814801B (zh)
TW (1) TWI559689B (zh)
WO (1) WO2015060413A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10530372B1 (en) 2016-03-25 2020-01-07 MY Tech, LLC Systems and methods for digital synthesis of output signals using resonators
US10020818B1 (en) 2016-03-25 2018-07-10 MY Tech, LLC Systems and methods for fast delta sigma modulation using parallel path feedback loops
EP3255852B1 (en) 2016-06-09 2018-11-28 Alcatel Lucent Method and apparatus for generating at least one rf signal
US10367522B2 (en) 2016-11-21 2019-07-30 MY Tech, LLC High efficiency power amplifier architectures for RF applications
US10069467B1 (en) * 2017-03-01 2018-09-04 Paulo Carvalho Apparatus for quantized linear amplification with nonlinear amplifiers
US9985667B1 (en) * 2017-04-24 2018-05-29 Mitsubishi Electric Research Laboratories, Inc. Inter-band CA digital transmitter with multi-stage out-of-band noise canceller
EP3422570B1 (en) * 2017-06-30 2020-11-25 Nxp B.V. An amplifier circuit
US10177776B1 (en) * 2017-08-04 2019-01-08 Mitsubishi Electric Research Laboratories, Inc. Noise mitigating quantizer for reducing nonlinear distortion in digital signal transmission
US10523478B1 (en) * 2018-06-12 2019-12-31 Mitsubishi Electric Research Laboratories, Inc. System and method for generating high speed digitized-RF signals
US10516420B1 (en) * 2018-06-12 2019-12-24 Mitsubishi Electric Research Laboratories, Inc. High speed digital bit generator for optical frontal interface
US10187232B1 (en) * 2018-06-12 2019-01-22 Mitsubishi Electric Research Laboratories, Inc. Multi-band radio frequency transmitter
US11115121B2 (en) 2019-05-14 2021-09-07 Empower RF Systems, Inc. Power amplifier system with an internal optical communication link
WO2022170351A1 (en) 2021-02-05 2022-08-11 Mixed-Signal Devices Inc. Systems and methods for digital signal chirp generation using frequency multipliers
KR102263406B1 (ko) * 2021-03-04 2021-06-11 주식회사 한진전자산업 이로란 시스템의 이로란 신호 송신 장치
US11689226B2 (en) * 2021-03-19 2023-06-27 U-Blox Ag Methods and apparatus for transmitting signals
US11933919B2 (en) 2022-02-24 2024-03-19 Mixed-Signal Devices Inc. Systems and methods for synthesis of modulated RF signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156640A1 (en) * 2002-11-05 2004-08-12 Dress William B. Optical fan-out and broadcast interconnect
US20060067423A1 (en) * 2002-01-07 2006-03-30 Michael May Low power radio transmitter using pulse transmissions
CN101715595A (zh) * 2007-03-12 2010-05-26 爱诺彼得技术有限责任公司 存储器单元读取阈的自适应估计
CN103312304A (zh) * 2012-03-09 2013-09-18 英飞凌科技股份有限公司 脉宽调制器及其实施和使用方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297696B1 (en) * 2000-06-15 2001-10-02 International Business Machines Corporation Optimized power amplifier
JP2002002505A (ja) 2000-06-21 2002-01-09 Yukio Arata 無線操縦車両のハンドル装置
US6993087B2 (en) 2001-06-29 2006-01-31 Nokia Mobile Phones Ltd. Switching mode power amplifier using PWM and PPM for bandpass signals
US7953174B2 (en) 2002-03-20 2011-05-31 The Regents Of The University Of California Radio transmission frequency digital signal generation
US7551908B2 (en) * 2003-04-21 2009-06-23 Panasonic Corporation High-frequency signal level detection apparatus and high-frequency signal receiver apparatus using the same
US7394311B2 (en) 2005-02-18 2008-07-01 Samsung Electronics Co., Ltd. Apparatus and method for reduced sample rate class S RF power amplifier
JP4817890B2 (ja) * 2005-03-17 2011-11-16 パナソニック株式会社 増幅装置、ポーラ変調送信装置及び無線通信装置
CN101371540A (zh) * 2006-01-23 2009-02-18 Nxp股份有限公司 通过多级脉宽调制的笛卡尔调制系统
KR100750897B1 (ko) 2006-09-26 2007-08-22 삼성중공업 주식회사 실내 위치측정시스템을 이용한 3차원 측정 시스템 및리스케일 방법
EP2063536A1 (en) 2007-11-26 2009-05-27 Alcatel-Lucent Deutschland AG A switching signal generator
US7825724B2 (en) 2007-12-18 2010-11-02 Motorola Mobility, Inc. Method and apparatus for direct digital to radio frequency conversion
GB2459304B (en) * 2008-04-18 2013-02-20 Nujira Ltd Improved pulse width modulation
US8958868B2 (en) * 2008-10-28 2015-02-17 Georgia Tech Research Corporation Systems and methods for multichannel wireless implantable neural recording
US8494470B2 (en) * 2008-11-25 2013-07-23 Silicon Laboratories Inc. Integrated receivers and integrated circuit having integrated inductors
US8693578B2 (en) * 2009-12-08 2014-04-08 Nec Corporation Transmission device
WO2012099098A1 (ja) * 2011-01-17 2012-07-26 日本電気株式会社 温度補償機能を有する自動利得制御回路を用いたディジタル復調回路
JP5681531B2 (ja) * 2011-03-04 2015-03-11 株式会社日立国際電気 自動利得制御装置および自動利得制御方法
US8878622B2 (en) * 2011-04-07 2014-11-04 Infineon Technologies Ag System and method for generating a pulse-width modulated signal
EP2575309B1 (en) * 2011-09-22 2014-11-05 Alcatel Lucent A method for pulse width modulation, and a transmitter therefor
JP5919712B2 (ja) * 2011-10-04 2016-05-18 住友電気工業株式会社 送信機、通信システム、及び無線基地局装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060067423A1 (en) * 2002-01-07 2006-03-30 Michael May Low power radio transmitter using pulse transmissions
US20040156640A1 (en) * 2002-11-05 2004-08-12 Dress William B. Optical fan-out and broadcast interconnect
CN101715595A (zh) * 2007-03-12 2010-05-26 爱诺彼得技术有限责任公司 存储器单元读取阈的自适应估计
CN103312304A (zh) * 2012-03-09 2013-09-18 英飞凌科技股份有限公司 脉宽调制器及其实施和使用方法

Also Published As

Publication number Publication date
KR20160075684A (ko) 2016-06-29
KR101739713B1 (ko) 2017-05-24
US8953670B1 (en) 2015-02-10
EP3061190B1 (en) 2019-04-17
WO2015060413A1 (en) 2015-04-30
CN105814801A (zh) 2016-07-27
EP3061190A1 (en) 2016-08-31
US20150146773A1 (en) 2015-05-28
JP6104452B2 (ja) 2017-03-29
JP2016530739A (ja) 2016-09-29
CN105814801B (zh) 2018-03-20
US9100265B2 (en) 2015-08-04
TW201521363A (zh) 2015-06-01

Similar Documents

Publication Publication Date Title
TWI559689B (zh) 發信器
EP3061192B1 (en) Power encoder and method for modulating data
CN106575951B (zh) 功率编码器和用于功率编码的方法
CN107113260B (zh) 用于生成多频带信号的系统和方法
Zhu et al. A 5-level efficient IFPWM power coding approach encoding LTE for class-S digital-RF transmitter with distortion correction
Zhu et al. FPGA implemented multi-level IFPWM power coding for class-S PA in an all-digital GHz LTE transmitter