CN102207512A - 风向风速仪及风向风速装置 - Google Patents

风向风速仪及风向风速装置 Download PDF

Info

Publication number
CN102207512A
CN102207512A CN2011100428608A CN201110042860A CN102207512A CN 102207512 A CN102207512 A CN 102207512A CN 2011100428608 A CN2011100428608 A CN 2011100428608A CN 201110042860 A CN201110042860 A CN 201110042860A CN 102207512 A CN102207512 A CN 102207512A
Authority
CN
China
Prior art keywords
wind
thermal sensing
sensing element
anerovane
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100428608A
Other languages
English (en)
Other versions
CN102207512B (zh
Inventor
久慈直树
石川元贵
中村贤蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN102207512A publication Critical patent/CN102207512A/zh
Application granted granted Critical
Publication of CN102207512B publication Critical patent/CN102207512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

本发明提供一种风向风速仪及风向风速装置,其不存在因结冰而无法测定的状态,且不会紊乱空气流动并能够准确地测定风向和风速。该风向风速仪具备:风道管(2),气体在内部流通;热源部(3),被设置为与风道管(2)的内周面无阶梯差地配置放射红外线的放射面,并能够根据输入电压通过电阻加热来控制红外线的放射量;及非接触温度传感器部(4),被设置为将检测来自放射面(3a)的红外线的检测面(4a)以与放射面(3a)对置的状态且与风道管(2)的内周面无阶梯差地配置,其中,非接触温度传感器部(4)具备有多个热敏元件,所述多个热敏元件中的至少2个在检测面(4a)的正下方沿风道管(2)的延伸方向排列。

Description

风向风速仪及风向风速装置
技术领域
本发明涉及一种不会紊乱空气流动而能够测定风向和风速的风向风速仪及风向风速装置。
背景技术
在大气污染测定等中,以测定局部的大气流动为目的使用测定空气的风向和风速的风向风速仪。例如,公知有称为风杯的可旋转地具有半球壳或圆锥壳叶片的风杯式或可旋转地具有螺旋桨式叶片的螺旋桨式风向风速仪。
并且,除了利用如上述的叶片旋转的风向风速仪以外,例如专利文献1中提出有由如下部分所构成的风向风速仪:风道管,在内部具有通过两开口端与外界气体连通的测定风道;风速传感器,由配置于测定风道的温度依赖式电阻元件构成;2个温度传感器,以其中1个位于通过风速传感器的风的尾流内的形态,夹着风速传感器而配置于测定风道内。
专利文献1:日本专利公开2003-75461号公报
上述以往的技术中留有以下课题。
即,在利用上述以往的可旋转的叶片的风向风速仪中,有在寒冷地区等中叶片的旋转轴结冰的忧虑,并存在需要进行除雪或冰的检查工作,维修上费工夫之类问题点。
并且,上述专利文献1中记载的技术中,由于将传感器设置于风道内,因此存在传感器本身成为障碍物而紊乱空气流动且很难测定准确的风向及风速的问题。
发明内容
本发明是鉴于上述课题而完成的,其目的在于,提供一种不存在因结冰而无法测定的状态,且不会紊乱空气流动并能够准确地测定风向和风速的风向风速仪及风向风速装置。
本发明为解决上述课题而采用了以下结构。即,本发明的风向风速仪,其特征在于,具备:风道管,气体在内部流通;热源部,被设置为与所述风道管的内周面无阶梯差地配置放射红外线的放射面,并能够根据输入电压通过电阻加热来控制红外线的放射量;及非接触温度传感器部,被设置为将检测来自所述放射面的红外线的检测面以与所述放射面对置的状态且与所述风道管的内周面无阶梯差地配置,其中,所述非接触温度传感器部具备有多个热敏元件,所述多个热敏元件中的至少2个在所述检测面的正下方沿所述风道管的延伸方向排列。
在该风向风速仪中,由于非接触温度传感器部具备有多个热敏元件,所述热敏元件中的至少2个在检测面的正下方沿风道管的延伸方向排列,所以由向热源部的输入电压值和用多个热敏元件得到的放射面的温度分布能够测定风向及风速。
另外,预先求出向热源部的输入电压与加热温度的关系,由该关系计算热源温度及温度分布。尤其至少2个热敏元件沿风道管的延伸方向排列,所以通过检测面能够得到风道管的延伸方向上的放射面的温度分布。另外,也预先求出与风速对应的热源温度变化的关系。
这样,热源部因风道管内流过的气体而被冷却,放射面的温度分布发生变化,但通过非接触温度传感器部始终读取热源部的放射面的温度分布,由向热源部的输入电压值和放射面的温度分布的读取结果能够测定风向及风速。
并且,在该风向风速仪中,热源部及非接触温度传感器部被设置为分别使放射面和检测面与风道管的内周面无阶梯差,而并非设置于风道上,所以不会紊乱风道管内的空气流动而能够准确地测定风向及风速,并且不会变成因结冰而无法测定的状态。
并且,本发明的风向风速仪,其特征在于,所述非接触温度传感器部具备有:红外线反射膜,设置于所述检测面上;基准热敏元件,设置于该红外线反射膜的正下方;多个红外线吸收膜,设置于所述红外线反射膜的周围并设置于所述检测面上;及多个温度分布用热敏元件,设置于这些红外线吸收膜的正下方。
在该风向风速仪中,由于非接触温度传感器部具备有:基准热敏元件,设置于检测面的红外线反射膜的正下方;及多个温度分布用热敏元件,设置于红外线反射膜的周围并设置于检测面的红外线吸收膜的正下方,所以由向热源部的输入电压值和用基准热敏元件及温度分布用热敏元件得到的放射面的温度分布能够测定风向及风速。
即,在基准热敏元件中,由于红外线反射膜设置于检测面上,所以以反射来自热源部的放射面的红外线的状态测定基准温度,而在多个温度分布用热敏元件中,由于红外线吸收膜设置于检测面上,所以吸收从对置的放射面的各部分放射的红外线来测定对置的各部分的温度。而且,以这些各部分的温度与基准温度各自的差量为基础,能够准确地计算放射面的温度分布。
并且,本发明的风向风速仪,其特征在于,所述温度分布用热敏元件及所述红外线吸收膜分别设置于沿以所述基准热敏元件为中心的周向均等分割的区域。
即,在该风向风速仪中,温度分布用热敏元件及红外线吸收膜分别设置于沿以基准热敏元件为中心的周向均等分割的区域,所以能够测定所分割的多个区域中的放射面的详细的温度分布,并能够更准确地测定风向及风速。
本发明的风向风速装置,其特征在于,具备2个上述本发明的风向风速仪,2个所述风道管使其延伸方向相互正交而设置。
即,在该风向风速装置中,由于2个风道管使其延伸方向相互正交而设置,所以通过组合正交的2个方向的各测定结果,能够测定二维中的风向及风速。
本发明的风向风速装置,其特征在于,具备3个上述本发明的风向风速仪,3个所述风道管使其延伸方向相互正交而设置。
即,在该风向风速装置中,由于3个风道管使其延伸方向相互正交而设置,所以通过组合正交的3个方向的各测定结果,能够测定三维中的风向及风速。
根据本发明,得到以下效果。
即,根据本发明所涉及的风向风速仪及风向风速装置,由于非接触温度传感器部具备有多个热敏元件,所述多个热敏元件中的至少2个在检测面的正下方沿风道管的延伸方向排列,所以不会紊乱风道管内的空气流动而能够准确地测定风向及风速,并且不会成为因结冰而无法测定的状态。
从而能够进行高精度的风向及风速的测定,即使在寒冷地区等也可以节省除雪或冰的维修工夫。
附图说明
图1是表示本发明所涉及的风向风速仪的一实施方式的简要剖视图。
图2是在本实施方式中表示非接触温度传感器部的俯视图。
图3是在本实施方式中仅表示基准热敏元件和与此邻接的温度分布用热敏元件的主要部分的立体图。
图4是在本实施方式中仅表示基准热敏元件和与此邻接的温度分布用热敏元件的主要部分的剖视图。
图5是在本说明所涉及的风向风速装置的一实施方式中表示进行二维中的测定的情况(a)及进行三维中的测定的情况(b)的风向风速装置的立体图。
符号说明
1-风向风速仪,2-风道管,3-热源部,3a-热源部的放射面,4-非接触温度传感器部,4a-非接触温度传感器部的检测面,5-红外线反射膜,6A-基准热敏元件,6B-温度分布用热敏元件,7-红外线吸收膜,10、20-风向风速装置,C-控制部。
具体实施方式
以下,参照图1至图5对本发明所涉及的风向风速仪及风向风速装置的一实施方式进行说明。另外,在以下说明中使用的各附图中为了使各部件的大小可识别或易识别而适当地变更比例尺。
如图1至图4所示,本实施方式的风向风速仪1具备有:筒状风道管2,大气(气体)在内部流通;热源部3,被设置为与风道管2的内周面无阶梯差地配置放射红外线的放射面3a,并能够根据输入电压通过电阻加热来控制红外线的放射量;非接触温度传感器部4,被设置为将检测来自放射面3a的红外线的检测面4a以与放射面3a对置的状态且与风道管2的内周面无阶梯差地配置;及控制部C,向热源部3外加电压而控制红外线的放射量,并且连接于非接触温度传感器部4,根据检测出的红外线量计算风向及风速。
另外,上述热源部3及非接触温度传感器部4分别无间隙地固定于形成在风道管2的安装孔上。并且,和风道管2相离开的控制盘等设有控制部C。
上述热源部3例如采用通过由根据输入电压而流过的电流产生的焦耳热放射红外线的陶瓷加热器等。
上述非接触温度传感器部4具备有多个热敏元件,所述多个热敏元件中的至少2个在与放射面3a对置的上述检测面4a的正下方沿风道管2的延伸方向排列。即,如图2至图4所示,非接触温度传感器部4具备有:红外线反射膜5,设置于上述检测面4a;基准热敏元件6A,设置于该红外线反射膜5的正下方;多个红外线吸收膜7,设置于红外线反射膜5的周围并设置于上述检测面4a;多个温度分布用热敏元件6B,设置于这些红外线吸收膜7的正下方。
在本实施方式中,温度分布用热敏元件6B分别设置于沿以基准热敏元件6A为中心的周向八等分的区域,总共配置有8个。
该非接触温度传感器部4具备有绝缘性薄膜9、相互离开而设置于该绝缘性薄膜9的一个面(下表面)的上述基准热敏元件6A及8个温度分布用热敏元件6B、用铜箔等在绝缘性薄膜9的一个面形成图案并连接于基准热敏元件6A的导电性第1配线膜10A及连接于温度分布用热敏元件6B的导电性第2配线膜10B、与基准热敏元件6A对置而设置于绝缘性薄膜9的另一面(上表面)的上述红外线反射膜5、及与各温度分布用热敏元件6B对置而设置于绝缘性薄膜9的另一面(上表面)的8个上述红外线吸收膜7。
另外,也可以设置固定于绝缘性薄膜9的一个面而支承该绝缘性薄膜9并容纳基准热敏元件6A和各温度分布用热敏元件6B的筐体。
上述红外线吸收膜7通过绝缘性薄膜9配置于各温度分布用热敏元件6B的正上方,并且上述红外线反射膜5通过绝缘性薄膜9配置于基准热敏元件6A的正上方。上述绝缘性薄膜9由红外线透射性薄膜形成。另外,在本实施方式中,绝缘性薄膜9由聚酰亚胺树脂片形成。
上述基准热敏元件6A及温度分布用热敏元件6B为在两端部形成有端子电极6a的芯片式热敏电阻(热敏电阻元件)。作为该热敏电阻,有NTC型、PTC型、CTR型等热敏电阻,但在本实施方式中,例如采用NTC型热敏电阻作为基准热敏元件6A及温度分布用热敏元件6B。该热敏电阻由Mn-Co-Cu系材料、Mn-Co-Fe系材料等热敏元件材料形成。另外,这些基准热敏元件6A及温度分布用热敏元件6B使各端子电极6a接合于配线膜10A、10B上而安装于绝缘性薄膜9。
上述红外线吸收膜7由具有高于绝缘性薄膜9的红外线吸收率的材料形成,例如由包含炭黑等红外线吸收材料的薄膜或红外线吸收性玻璃膜(含有71%的二氧化硅的硼硅酸玻璃膜等)形成。即,通过该红外线吸收膜7吸收来自测定对象物的由辐射引起的红外线。而且,由从吸收红外线而发热的红外线吸收膜7通过绝缘性薄膜9的热传导,正下方的温度分布用热敏元件6B的温度发生变化。该红外线吸收膜7形成为以大于温度分布用热敏元件6B的尺寸覆盖热敏元件。
上述红外线反射膜5由具有高于绝缘性薄膜9的红外线放射率的材料形成,例如由镜面的铝蒸镀膜或铝箔等形成。该红外线反射膜5形成为以大于基准热敏元件6A的尺寸覆盖热敏元件。
上述控制部C中存储有预先求出的向热源部3的输入电压与加热温度的关系、和与风速对应的热源温度变化的关系,并且具有由这些关系和用基准热敏元件6A检测出的基准温度和用各温度分布用热敏元件6B检测出的放射面3a的各部分温度计算热源温度(加热温度)及温度分布的功能。即,具有如下功能:对用基准热敏元件6A和各温度分布用热敏元件6B检测出的红外线的差量(输出的差量)进行运算处理,并将基准热敏元件6A作为参考,计算用各温度分布用热敏元件6B检测出的温度,而测定热源温度及放射面3a的温度分布。另外,控制部C设定成根据测定出的热源温度及放射面3a的温度分布,由存储的上述各关系求出风向及风速。
这样,本实施方式的风向风速仪1由于非接触温度传感器部4具备有多个热敏元件,所述多个热敏元件中的至少2个在检测面4a的正下方沿风道管2的延伸方向排列,所以由向热源部3的输入电压值和用多个热敏元件得到的放射面3a的温度分布能够测定风向及风速。即,热源部3因风道管2内流过的空气而被冷却,放射面3a的温度分布发生变化,但通过非接触温度传感器4始终读取热源部3的放射面3a的温度分布,从而由向热源部3的输入电压值和放射面3a的温度分布的读取结果能够测定风向及风速。
尤其是非接触温度传感器部4具备有设置于检测面4a的红外线反射膜5的正下方的基准热敏元件6A、和多个设置于该基准热敏元件6A的周围并设置于检测面4a的红外线吸收膜7的正下方的温度分布用热敏元件6B,所以由向热源部3的输入电压值和用基准热敏元件6A及温度分布用热敏元件6B得到的放射面的温度分布能够测定风向及风速。
即,在基准热敏元件6A中,由于红外线反射膜5设置于检测面4a上,所以以反射来自热源部3的放射面3a的红外线的状态测定基准温度,而在多个温度分布用热敏元件6B中,由于红外线吸收膜7设置于检测面4a上,所以吸收从对置的放射面3a的各部分放射的红外线来测定对置的各部分的温度。而且,以这些各部分的温度与基准温度各自的差量为基础,能够准确地计算放射面3a的温度分布。
并且,由于温度分布用热敏元件6B及红外线吸收膜7分别设置于将以基准热敏元件6A为中心的周向八等分的区域,因此能够测定所分割的8个区域中的放射面3a的详细的温度分布,并能够测定更准确的风向及风速。
另外,在该风向风速仪1中,由于在风道管2的内周面分别与放射面3a及检测面4a无阶梯差地设置热源部3及非接触温度传感器部4,而并非设置于风道上,所以不会紊乱风道管2内的空气流动而能够准确地测定风向及风速,并且不会成为因结冰而无法测定的状态。
接着,参照图5对使用本实施方式的风向风速仪1的风向风速装置10、20在以下进行说明。
如图5的(a)所示,该风向风速装置10具备2个上述风向风速仪1,2个风道管2使其延伸方向相互正交而设置。即,2个风道管2朝向轴向相互正交的方向(图中的x方向和y方向)而固定。
这样在本实施方式的风向风速装置10中,由于2个风道管2使其延伸方向相互正交而设置,所以通过组合正交的2个方向的各测定结果,能够测定二维中的风向及风速。
并且,如图5的(b)所示,本实施方式的其他例子的风向风速装置20具备3个上述风向风速仪1,3个风道管2使其延伸方向相互正交而设置。即,3个风道管2朝向轴向相互正交的方向(图中的x方向和y方向和z方向)而固定。
这样在本实施方式的风向风速装置20中,由于3个风道管2使其延伸方向相互正交而设置,所以通过组合正交的2个方向的各测定结果,能够测定三维中的风向及风速。
另外,本发明的技术范围并不限于上述各实施方式,在不脱离本发明的宗旨的范围内可以加以各种变更。
例如,在上述实施方式中,采用了芯片式热敏电阻的热敏元件,但也可以采用由薄膜热敏电阻形成的热敏元件。
另外,作为热敏元件,如上所述使用薄膜热敏电阻或芯片式热敏电阻,但除热敏电阻以外也可以采用热电元件等。
并且,也可以利用短尺寸的风道管制作本发明的风向风速仪,在该风道管的两端分别连接气体流通的管道而形成风道。另外,此时管的连接部分需要平滑地连接以免妨碍气体流动。

Claims (5)

1.一种风向风速仪,其特征在于,具备:
风道管,气体在内部流通;
热源部,被设置为与所述风道管的内周面无阶梯差地配置放射红外线的放射面,并能够根据输入电压通过电阻加热来控制红外线的放射量;及
非接触温度传感器部,被设置为将检测来自所述放射面的红外线的检测面以与所述放射面对置的状态且与所述风道管的内周面无阶梯差地配置,
所述非接触温度传感器部具备有多个热敏元件,所述多个热敏元件中的至少2个在所述检测面的正下方沿所述风道管的延伸方向排列。
2.如权利要求1所述的风向风速仪,其特征在于,
所述非接触温度传感器部具备有:红外线反射膜,设置于所述检测面上;基准热敏元件,设置于该红外线反射膜的正下方;
多个红外线吸收膜,设置于所述红外线反射膜的周围并设置于所述检测面上;及多个温度分布用热敏元件,设置于这些红外线吸收膜的正下方。
3.如权利要求2所述的风向风速仪,其特征在于,
所述温度分布用热敏元件及所述红外线吸收膜分别设置于沿以所述基准热敏元件为中心的周向均等分割的区域。
4.一种风向风速装置,其特征在于,
具备2个权利要求1至3中的任一项所述的风向风速仪,
2个所述风道管使其延伸方向相互正交而设置。
5.一种风向风速装置,其特征在于,
具备3个权利要求1至3中的任一项所述的风向风速仪,
3个所述风道管使其延伸方向相互正交而设置。
CN201110042860.8A 2010-03-31 2011-02-21 风向风速仪及风向风速装置 Active CN102207512B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-083277 2010-03-31
JP2010083277A JP5541576B2 (ja) 2010-03-31 2010-03-31 風向風速計および風向風速装置

Publications (2)

Publication Number Publication Date
CN102207512A true CN102207512A (zh) 2011-10-05
CN102207512B CN102207512B (zh) 2014-07-02

Family

ID=44696447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110042860.8A Active CN102207512B (zh) 2010-03-31 2011-02-21 风向风速仪及风向风速装置

Country Status (2)

Country Link
JP (1) JP5541576B2 (zh)
CN (1) CN102207512B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247363A (zh) * 2013-02-28 2016-01-13 创控生技股份有限公司 用于周围环境空气监测和主动控制与响应的实时现场气体分析网络
CN107608004A (zh) * 2016-07-12 2018-01-19 联想(新加坡)私人有限公司 人感系统、电子设备、人感传感器、以及对人进行检测的方法
CN110018324A (zh) * 2019-05-20 2019-07-16 田广朋 一种离子风速风向测量法及离子风速风向计
CN110031650A (zh) * 2019-05-15 2019-07-19 南京信息工程大学 一种热温差型风速风向测量装置及方法
CN114166356A (zh) * 2021-12-06 2022-03-11 普联技术有限公司 Pir阈值调整方法、pir阈值调整系统以及监测装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673667B2 (ja) * 2015-10-28 2020-03-25 オムロン株式会社 対気速度計測システム
TWI737858B (zh) * 2017-11-17 2021-09-01 鴻海精密工業股份有限公司 具有風速偵測功能的電子裝置及風速偵測方法
JP7064730B2 (ja) * 2018-04-12 2022-05-11 株式会社Mtl 管理システム
CN115508578A (zh) * 2022-10-20 2022-12-23 南方电网数字电网研究院有限公司 基于差分热敏电容的风速风向传感器及检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075461A (ja) * 2001-09-03 2003-03-12 Natl Inst For Environmental Studies 風向風速計
US20030123517A1 (en) * 2001-12-27 2003-07-03 Ishizuka Electronics Corporation Non-contact temperature sensor and detection circuit for the same
CN101408554A (zh) * 2008-09-27 2009-04-15 上海第二工业大学 具有方向选择性并通过热平衡检测流速的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293940B2 (ja) * 2003-05-27 2009-07-08 日機装株式会社 流量測定方法および装置
JP4823087B2 (ja) * 2007-01-30 2011-11-24 株式会社東芝 インリーク流量計測装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075461A (ja) * 2001-09-03 2003-03-12 Natl Inst For Environmental Studies 風向風速計
US20030123517A1 (en) * 2001-12-27 2003-07-03 Ishizuka Electronics Corporation Non-contact temperature sensor and detection circuit for the same
CN101408554A (zh) * 2008-09-27 2009-04-15 上海第二工业大学 具有方向选择性并通过热平衡检测流速的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247363A (zh) * 2013-02-28 2016-01-13 创控生技股份有限公司 用于周围环境空气监测和主动控制与响应的实时现场气体分析网络
US10823644B2 (en) 2013-02-28 2020-11-03 TricornTech Taiwan Real-time on-site gas analysis network for ambient air monitoring and active control and response
US10859474B2 (en) 2013-02-28 2020-12-08 TricornTech Taiwan Real-time on-site gas analysis network for ambient air monitoring and active control and response
CN107608004A (zh) * 2016-07-12 2018-01-19 联想(新加坡)私人有限公司 人感系统、电子设备、人感传感器、以及对人进行检测的方法
US10656691B2 (en) 2016-07-12 2020-05-19 Lenovo (Singapore) Pte Ltd User detection apparatus, systems, and methods
CN107608004B (zh) * 2016-07-12 2020-07-24 联想(新加坡)私人有限公司 人感系统、电子设备、人感传感器、以及对人进行检测的方法
CN110031650A (zh) * 2019-05-15 2019-07-19 南京信息工程大学 一种热温差型风速风向测量装置及方法
CN110018324A (zh) * 2019-05-20 2019-07-16 田广朋 一种离子风速风向测量法及离子风速风向计
CN110018324B (zh) * 2019-05-20 2024-05-14 陈红 一种离子风速风向测量法及离子风速风向计
CN114166356A (zh) * 2021-12-06 2022-03-11 普联技术有限公司 Pir阈值调整方法、pir阈值调整系统以及监测装置
CN114166356B (zh) * 2021-12-06 2024-02-13 普联技术有限公司 Pir阈值调整方法、pir阈值调整系统以及监测装置

Also Published As

Publication number Publication date
CN102207512B (zh) 2014-07-02
JP5541576B2 (ja) 2014-07-09
JP2011214994A (ja) 2011-10-27

Similar Documents

Publication Publication Date Title
CN102207512B (zh) 风向风速仪及风向风速装置
CN112197932B (zh) 一种飞机防除冰试验模型表面温度修正方法及测量方法
CN102438903A (zh) 结冰传感器系统及方法
US20160169722A1 (en) Operating a thermal anemometer flow meter
US20110098943A1 (en) Thermal, flow measuring device
US20230258506A1 (en) Thermometer having a diagnostic function
CN105890804A (zh) 一种提高温度受感器测量气流总温精度的方法
RU2548135C1 (ru) Термоанемометрический способ определения скорости и направления потока жидкости или газа и устройство для его осуществления
EP3047284B1 (en) Sensor for high temperature turbulent flow
Diller et al. Heat flux measurement
CN201220947Y (zh) 高炉炉腔温度在线检测装置
US20240053209A1 (en) Thermometer with a diagnostic function
CN202886399U (zh) 一种热球式风速计
CN206223808U (zh) 一种气体流速传感器
US20220397438A1 (en) Non-invasive thermometer
CN206292249U (zh) 一种热式风速传感单元及传感器
US20220341767A1 (en) Thermal flowmeter
Jaremkiewicz Reduction of dynamic error in measurements of transient fluid temperature
RU2442934C2 (ru) Способ оценки комфортности рабочей зоны по параметрам микроклимата
CN104330181A (zh) 一种采用多个传感器克服误差的温度测量方法
Benissan et al. Experimental measurement of Nusselt number correlations on flat plate and NACA 0010 section surfaces
Valencia-Grisales et al. Development of an Energy-Efficient and Highly Sensitive Thermal Microsensor for Measuring Flow Rates of Fluids
US20140348202A1 (en) Method for detecting presence of a droplet on a heated temperature sensor
JPH0140013Y2 (zh)
Umar New Approach for Airflow Measurement Using Thermal Resistance Simulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant