CN102205876A - Comprehensive control method for keeping fixed-point height of airship in stratosphere - Google Patents

Comprehensive control method for keeping fixed-point height of airship in stratosphere Download PDF

Info

Publication number
CN102205876A
CN102205876A CN2010105989252A CN201010598925A CN102205876A CN 102205876 A CN102205876 A CN 102205876A CN 2010105989252 A CN2010105989252 A CN 2010105989252A CN 201010598925 A CN201010598925 A CN 201010598925A CN 102205876 A CN102205876 A CN 102205876A
Authority
CN
China
Prior art keywords
airship
stratosphere
fixed
pressure
stratospheric airship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105989252A
Other languages
Chinese (zh)
Other versions
CN102205876B (en
Inventor
杜伟
孙娜
龙飞
刘兴兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Special Vehicle Research Institute
Original Assignee
China Special Vehicle Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Special Vehicle Research Institute filed Critical China Special Vehicle Research Institute
Priority to CN 201010598925 priority Critical patent/CN102205876B/en
Publication of CN102205876A publication Critical patent/CN102205876A/en
Application granted granted Critical
Publication of CN102205876B publication Critical patent/CN102205876B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a comprehensive control method for keeping a fixed-point height of an airship in the stratosphere, which is used for keeping the fixed-point height of the airship in the stratosphere by adopting a combined mode of pressure adjustment and thrust vector. The method has the advantages of small fluctuation range of the fixed-point height and great corresponding reduction of the reserve volume of an auxiliary ballonet. To be explained, the application of the thrust vector does not increase extra energy consumption because the airship in the stratosphere always keeps a certain thrust in a fixed-point flight in order to overcome the wind resistance; According to the method, only the direction of the thrust is changed and an increased net buoyancy is balanced by utilizing the component in the vertical direction, which can result in that the component in the horizontal direction cannot overcome the wind resistance so that the position precision of the airship in the stratosphere in the horizontal direction cannot be kept; however, in terms of engineering application, the expense of a little horizontal positioning precision is worthy because the fixed-point height position of the airship in the stratosphere is far more important than the horizontal position precision thereof; and the airship in the stratosphere can flexibly fly to a fixed-point position once the temperature returns to normal.

Description

The stratospheric airship fixed point highly keeps integrated control method
Technical field
This invention relates to the stratospheric airship field.
Technical background
Stratospheric airship is a kind of lighter-than-air flight device; it is empty to rely on quiet buoyancy to stay, and provides the energy by solar power and fuel cell for it, and has propulsion system; the capacity weight of hundreds of kilograms even several tons of weights can be carried, 12~50 kilometers highly long-time spot hovers or low-speed maneuver flight can be implemented in.Dirigible all has main gasbag that is full of buoyance lift gas (being generally helium) and the balloonet that is full of air, and the aerodynamic configuration of dirigible keeps by air bag in-to-in superpressure, as shown in Figure 1.Between the rising stage, bar pressure constantly reduces at stratospheric airship, and air bag will expand, and need open choker relief valve and emit air in the balloonet to reduce gaseous tension in the air bag; And between the stratospheric airship decrement phase, bar pressure constantly increases, and it is flat that air bag will become, and need open blower fan and charge into air with gaseous tension in the augmented airbag in balloonet.The height that is reached when the balloonet air was emptied completely when dirigible rose is called pressure altitude, also is the maximum height that dirigible allows operation.
Stratospheric airship is at the fixed point run duration, because the variation of external heat radiation condition, make the air bag diurnal temperature significantly change (maximum temperature difference can reach more than 60 ℃), can directly have influence on the gaseous tension in the air bag, dirigible buoyancy is changed, cause dirigible can't keep fixed point height, will not cause that dirigible air bag superpressure is excessive even break that (it generally is 25mmH that the utricule aerodynamic configuration keeps required pressure differential range if gasbag pressure is not imposed control 2O~55mmH 2O).Therefore, when bigger variation takes place the air bag temperature, must adopt certain policy control gasbag pressure, and keep the predetermined altitude of dirigible at zone of reasonableness.
Gravity when stratospheric airship is fixed a point in the high-altitude (not containing helium and air in the air bag) and net buoyancy balance, its net buoyancy is:
L N=V HAH)g=(V Hρ A-m H)g
V in the formula HBe the volume of main gasbag, ρ ABe atmospheric density, ρ HBe helium density, g is an acceleration due to gravity, m HBe the helium quality.When outer atmospheric temperature raise, helium temperature also must increase, and calculated formula by gaseous tension:
P H=ρ HR HT H
P in the formula HBe main gasbag helium pressure, R HBe helium atmosphere constant, T HBe the helium atmosphere temperature.Hence one can see that, and after helium temperature raise, helium pressure must increase, thereby main gasbag can expand, and causes net buoyancy to strengthen, and dirigible can be toward rising, and along with the reduction of atmospheric density, net buoyancy reduces gradually, and dirigible can reach new balance height.In this process, as long as airship flight does not highly arrive pressure altitude, then the continuous exhaust of balloonet meeting is kept gasbag pressure at zone of reasonableness; If the overpressure height, balloonet air all emptyings this moment, if gasbag pressure is also in increase, just can only be by putting helium or reduce pressure, but these operations are all lost more than gain.Therefore, stratospheric airship design-calculated fixed point highly normally is lower than pressure altitude.At present, convective zone dirigible (flying height is below 8000 meters) adopts pressure control to keep the dirigible profile, and the thrust vectoring that produces with shrouded propeller is controlled the landing of dirigible, and it highly keeps is to realize by the control rudder face.And for stratospheric airship, because upper atmosphere is thin, and dirigible speed is slow, thereby rudder face is regulated inefficacy.Present stage all just is in the exploration demonstration stage to the research of stratospheric airship both at home and abroad, how to allow stratospheric airship stay in long-time fixed point and keeps predetermined altitude not have ripe method in the null process.
Summary of the invention
Purpose of the present invention is exactly at also not having the ripe stratospheric airship that makes to fix a point to keep the present situation of method highly for a long time at present both at home and abroad, providing a kind of stratospheric airship fixed point highly to keep integrated control method.
The stratospheric airship fixed point highly keeps integrated control method, and the mode that adopts pressure control and thrust vectoring to combine realizes that the stratospheric airship fixed point highly keeps.
The mode that pressure control and thrust vectoring combine is pressure sensor, on off controller, blower fan, valve, height sensor, PD controller, a thrust vectoring device on dirigible, pressure sensor is transferred on off controller with the gasbag pressure of stratospheric airship, and on off controller is by valve and Fan Regulation stratospheric airship pressure; Height sensor is transferred to the PD controller with the height of stratospheric airship, and PD controller control thrust vectoring device produces thrust vectoring and acts on stratospheric airship.
Advantage of the present invention is: the existing simple pressure control that adopts carries out the stratospheric airship high hold method of fixing a point, its fluctuation range is big, and occur the excessive possibility of air bag superpressure, simultaneously, balloonet was still reserved bigger volume when simple pressure control can require stratospheric airship to fly the fixed point height, so that carry out pressure control during height fluctuation, make the dirigible volume increase so virtually, cause cost to increase.The present invention is because in the pressure controlled control that is aided with thrust vectoring simultaneously, and its fixed point height fluctuation scope is little, balloonet reserve volume also corresponding reduce many.The application that need to prove thrust vectoring does not increase extra expenditure of energy, because stratospheric airship is being fixed a point in-flight for overcoming windage, always maintain certain thrust, the present invention has just changed the direction of thrust, the component of vertical direction is used for the net buoyancy that balance increases, may cause the component of horizontal direction can't overcome windage like this, make stratospheric airship positional precision in the horizontal direction to keep, but with regard to engineering is used, stratospheric airship to decide high precision important more than the level attitude precision, thereby sacrifice some horizontal location precision and be worth, in case temperature recover normal after, stratospheric airship can maneuvering flight to fixed position.
Description of drawings
Accompanying drawing 1 is stratospheric airship fixed point height mode block scheme of the present invention.
The specific embodiment
The present invention is that the mode that adopts pressure control and thrust vectoring to combine realizes that the stratospheric airship fixed point highly keeps.The mode that pressure control and thrust vectoring combine is a pressure sensor on dirigible, on off controller, blower fan, valve, height sensor, the PD controller, thrust vectoring device (shrouded propeller), pressure sensor is transferred on off controller with the gasbag pressure of stratospheric airship, on off controller is electrically connected with valve and blower fan, the interface of valve and blower fan communicates with the stratospheric airship balloonet respectively, height sensor is transferred to the PD controller with the height of stratospheric airship, PD controller control shrouded propeller, shrouded propeller produces thrust vectoring and acts on stratospheric airship, can realize thus keeping stratospheric airship fixed point height with the mode that pressure control and thrust vectoring combine.
Principle of work:
The switch control law is adopted in pressure control control, promptly regulates gasbag pressure by the switching of control blower fan and choker relief valve, and the air bag inside and outside differential pressure is opened choker relief valve during greater than the valve opening setting value, closes choker relief valve when being lower than the valve closing setting value; The air bag inside and outside differential pressure is lower than when blower fan is opened setting value opens blower fan, is higher than and closes blower fan when blower fan cuts out setting value.This pressure control rule was adopting on a plurality of dirigible models in the past, and pressure control is effective, and blower fan, valve break-make number of times are few, had also prolonged the life-span of blower fan, valve when saving the energy.
Pressure control control loop working process is as follows: pressure sensor is converted to voltage signal with gasbag pressure and inputs to control computer, by comparing with the bar pressure of measuring, obtains air bag pressure reduction.If air bag pressure reduction is in setting range, power element do not work (blower fan does not turn round, valve closing); When detecting air bag pressure reduction and be higher than the valve opening setting value, computing machine sends signal and connects the choker relief valve power supply, opens choker relief valve, the balloonet venting; When air bag pressure reduction was returned to the valve closing setting value, computing machine provided the signal at stop choker relief valve; When air bag pressure reduction was lower than blower fan and opens setting value, computing machine sent signal and opens blower fan and inflate to balloonet; When air bag pressure reduction was returned to blower fan and closes setting value, computing machine sent the signal at stop blower fan.
PD (ratio, differential) control law is adopted in thrust vectoring control, and controlling quantity is the thrust inclination angle, and the variation range at thrust inclination angle is-120 °~120 °.Control law is given as follows:
deltaH=H com-H meas
1 formula
ξ = K p · deltaH + K d · d dt deltaH
H in the formula ComBe predetermined altitude, H MeasBe actual measurement height, K pBe proportional gain, K dBe the differential gain, ξ is the thrust inclination angle.Thrust vectoring control is just effective after diff-H deltaH exceeds certain limit (depending on the accuracy requirement of mission payload system to the fixed point height), thrust vectoring is frequently enabled in the time of can avoiding the dirigible height tolerance like this in permissible range, reduces the life-span of equipment.
Thrust vectoring control loop working process is as follows: height sensor is that voltage signal inputs to control computer with the dirigible height conversion, by comparing with predetermined altitude, obtains height tolerance.If height tolerance is in permissible range, thrust vectoring control is invalid; When detecting height tolerance and exceed permissible range, computing machine carries out control law according to above-mentioned 1 formula and resolves (K p, K dConcrete numerical value remains flight test and determines) try to achieve the thrust inclination angle of requirement, realize the change at thrust inclination angle by the duct steering hardware.After the dirigible height was returned in the permissible range, thrust vectoring control was invalid, and the thrust inclination angle resets.
It is to be noted that pressure control and thrust vectoring are coupled, pressure control can cause net buoyancy to change, and then the influence height, otherwise thrust vectoring control can cause highly changing, and then influence pressure, how good the two the relation of balance is still waiting flight test and finishes.

Claims (2)

1. the stratospheric airship fixed point highly keeps integrated control method, it is characterized in that the mode that adopts pressure control and thrust vectoring to combine realizes that the stratospheric airship fixed point highly keeps.
2. stratospheric airship fixed point according to claim 1 highly keeps integrated control method, it is characterized in that: the mode that pressure control and thrust vectoring combine is pressure sensor, on off controller, blower fan, valve, height sensor, PD controller, a thrust vectoring device on dirigible, pressure sensor is transferred on off controller with the gasbag pressure of stratospheric airship, and on off controller is by valve and Fan Regulation stratospheric airship pressure; Height sensor is transferred to the PD controller with the height of stratospheric airship, and PD controller control thrust vectoring device produces vectored thrust and acts on stratospheric airship.
CN 201010598925 2010-12-22 2010-12-22 Comprehensive control method for keeping fixed-point height of airship in stratosphere Active CN102205876B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010598925 CN102205876B (en) 2010-12-22 2010-12-22 Comprehensive control method for keeping fixed-point height of airship in stratosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010598925 CN102205876B (en) 2010-12-22 2010-12-22 Comprehensive control method for keeping fixed-point height of airship in stratosphere

Publications (2)

Publication Number Publication Date
CN102205876A true CN102205876A (en) 2011-10-05
CN102205876B CN102205876B (en) 2013-01-23

Family

ID=44694991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010598925 Active CN102205876B (en) 2010-12-22 2010-12-22 Comprehensive control method for keeping fixed-point height of airship in stratosphere

Country Status (1)

Country Link
CN (1) CN102205876B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759928A (en) * 2012-04-28 2012-10-31 中国人民解放军国防科学技术大学 Control method for flight path of airship on stratosphere
CN103832572A (en) * 2013-07-15 2014-06-04 中国特种飞行器研究所 Novel air speed self-adaption pressure regulation and control method
CN103832573A (en) * 2013-08-28 2014-06-04 中国特种飞行器研究所 Device for automatically controlling pressure of captive balloon
CN103847948A (en) * 2013-08-28 2014-06-11 中国特种飞行器研究所 Ground measuring and controlling device for floating air craft
CN104210640A (en) * 2014-09-18 2014-12-17 北京航空航天大学 Stratosphere aerostat vector propelling device
CN104950908A (en) * 2015-07-02 2015-09-30 上海交通大学 Horizontal position control system for stratospheric airship as well as implementing method
CN105676853A (en) * 2016-01-15 2016-06-15 中国人民解放军国防科学技术大学 Flight control method automatically adjusting neutral position of unmanned aerial vehicle
CN106081047A (en) * 2016-07-28 2016-11-09 无锡信大气象传感网科技有限公司 A kind of sounding balloon of adjustable point monitoring
CN106114811A (en) * 2016-07-28 2016-11-16 无锡信大气象传感网科技有限公司 A kind of sounding balloon
CN106218852A (en) * 2016-07-28 2016-12-14 无锡信大气象传感网科技有限公司 A kind of using method of sounding balloon
CN106240786A (en) * 2016-07-28 2016-12-21 无锡信大气象传感网科技有限公司 A kind of highly controllable sounding balloon
CN106240787A (en) * 2016-07-28 2016-12-21 无锡信大气象传感网科技有限公司 A kind of using method of highly controllable sounding balloon
CN106291757A (en) * 2016-07-28 2017-01-04 无锡信大气象传感网科技有限公司 A kind of using method of the sounding balloon of adjustable point monitoring
CN106291759A (en) * 2016-07-28 2017-01-04 无锡信大气象传感网科技有限公司 A kind of using method of pinpoint sounding balloon
CN106291758A (en) * 2016-07-28 2017-01-04 无锡信大气象传感网科技有限公司 A kind of pinpoint sounding balloon
CN106681337A (en) * 2017-01-05 2017-05-17 烟台南山学院 Height keeping flight control method for stratospheric airship based on odd-order sliding mode
CN109649627A (en) * 2019-01-28 2019-04-19 上海交通大学 The super cold superthermal control method of high altitude airship
CN110466731A (en) * 2019-08-24 2019-11-19 哈尔滨工业大学 A kind of dirigible buoyant weight balance control method based on air bag and the interaction of helium capsule
CN112487559A (en) * 2020-12-03 2021-03-12 中国人民解放军63660部队 Parameter-adaptive single-capsule stratospheric airship floating weight balance assessment method
CN112572755A (en) * 2020-12-11 2021-03-30 中国特种飞行器研究所 Cooperative control method for internal and external pressure difference and speed of stratospheric airship in ascending process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1327580A2 (en) * 2002-01-15 2003-07-16 Kawasaki Jukogyo Kabushiki Kaisha Method and system for setting hull parameter of airship and method of adjusting ascension rate of the same
US20090072082A1 (en) * 2007-04-11 2009-03-19 Hamilton Sundstrand Corporation Propulsion system for an airship or hybrid aircraft
CN201350970Y (en) * 2008-12-30 2009-11-25 北京龙圣联成航空科技有限公司 Pressure control device for airship capsule
CN101723082A (en) * 2009-12-22 2010-06-09 易思海 Flying method of airship and novel airship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1327580A2 (en) * 2002-01-15 2003-07-16 Kawasaki Jukogyo Kabushiki Kaisha Method and system for setting hull parameter of airship and method of adjusting ascension rate of the same
US20090072082A1 (en) * 2007-04-11 2009-03-19 Hamilton Sundstrand Corporation Propulsion system for an airship or hybrid aircraft
CN201350970Y (en) * 2008-12-30 2009-11-25 北京龙圣联成航空科技有限公司 Pressure control device for airship capsule
CN101723082A (en) * 2009-12-22 2010-06-09 易思海 Flying method of airship and novel airship

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵景芸: "推力矢量技术的研究与发展", 《燃气涡轮试验与研究》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759928A (en) * 2012-04-28 2012-10-31 中国人民解放军国防科学技术大学 Control method for flight path of airship on stratosphere
CN102759928B (en) * 2012-04-28 2015-04-15 中国人民解放军国防科学技术大学 Control method for flight path of airship on stratosphere
CN103832572A (en) * 2013-07-15 2014-06-04 中国特种飞行器研究所 Novel air speed self-adaption pressure regulation and control method
CN103832573A (en) * 2013-08-28 2014-06-04 中国特种飞行器研究所 Device for automatically controlling pressure of captive balloon
CN103847948A (en) * 2013-08-28 2014-06-11 中国特种飞行器研究所 Ground measuring and controlling device for floating air craft
CN104210640A (en) * 2014-09-18 2014-12-17 北京航空航天大学 Stratosphere aerostat vector propelling device
CN104950908A (en) * 2015-07-02 2015-09-30 上海交通大学 Horizontal position control system for stratospheric airship as well as implementing method
CN104950908B (en) * 2015-07-02 2017-08-15 上海交通大学 Stratospheric airship horizontal level control system and implementation method
CN105676853A (en) * 2016-01-15 2016-06-15 中国人民解放军国防科学技术大学 Flight control method automatically adjusting neutral position of unmanned aerial vehicle
CN105676853B (en) * 2016-01-15 2018-11-02 中国人民解放军国防科学技术大学 A kind of flight control method of unmanned plane neutral position adjust automatically
CN106218852A (en) * 2016-07-28 2016-12-14 无锡信大气象传感网科技有限公司 A kind of using method of sounding balloon
CN106240786A (en) * 2016-07-28 2016-12-21 无锡信大气象传感网科技有限公司 A kind of highly controllable sounding balloon
CN106240787A (en) * 2016-07-28 2016-12-21 无锡信大气象传感网科技有限公司 A kind of using method of highly controllable sounding balloon
CN106291757A (en) * 2016-07-28 2017-01-04 无锡信大气象传感网科技有限公司 A kind of using method of the sounding balloon of adjustable point monitoring
CN106291759A (en) * 2016-07-28 2017-01-04 无锡信大气象传感网科技有限公司 A kind of using method of pinpoint sounding balloon
CN106291758A (en) * 2016-07-28 2017-01-04 无锡信大气象传感网科技有限公司 A kind of pinpoint sounding balloon
CN106114811A (en) * 2016-07-28 2016-11-16 无锡信大气象传感网科技有限公司 A kind of sounding balloon
CN106081047A (en) * 2016-07-28 2016-11-09 无锡信大气象传感网科技有限公司 A kind of sounding balloon of adjustable point monitoring
CN106681337A (en) * 2017-01-05 2017-05-17 烟台南山学院 Height keeping flight control method for stratospheric airship based on odd-order sliding mode
CN109649627A (en) * 2019-01-28 2019-04-19 上海交通大学 The super cold superthermal control method of high altitude airship
CN110466731A (en) * 2019-08-24 2019-11-19 哈尔滨工业大学 A kind of dirigible buoyant weight balance control method based on air bag and the interaction of helium capsule
CN112487559A (en) * 2020-12-03 2021-03-12 中国人民解放军63660部队 Parameter-adaptive single-capsule stratospheric airship floating weight balance assessment method
CN112572755A (en) * 2020-12-11 2021-03-30 中国特种飞行器研究所 Cooperative control method for internal and external pressure difference and speed of stratospheric airship in ascending process

Also Published As

Publication number Publication date
CN102205876B (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN102205876B (en) Comprehensive control method for keeping fixed-point height of airship in stratosphere
EP2537744B1 (en) Lenticular airship
CN105468009B (en) It is applied to many power fusion flight control system and the method for micro air vehicle
US20160004255A1 (en) Aircraft control method
JP2019048632A (en) Hybrid vtol vehicle
CN107544532B (en) Long-range high-altitude flight mission planning method for low-altitude airship
CN110182352B (en) Air-floating unpowered long-endurance aircraft and control method thereof
CN208264543U (en) Aerostatics suitable near space
CN106915429A (en) A kind of dirigible
Schaefer et al. Airships as unmanned platforms: challenge and chance
WO2018113264A1 (en) Centre of gravity adjustment apparatus for airship
CN107416172A (en) A kind of full visual angle monitoring and method based on intelligent aerostatics platform
US20220402605A1 (en) Flight Control Apparatus
Kuang et al. Flight controller design and demonstration of a thrust-vectored tailsitter
CN208264545U (en) floating device
CN109720563A (en) Intelligent quadrotor gliding unmanned plane and its flight control method
Pisarevskiy et al. Electric hybrid airship with unlimited flight time
Cecchi Design and control of an airship moved by electrohydrodynamic propulsion
US20240025537A1 (en) Fixed-wing aircraft with variable-volume buoyant bags
Suvarna et al. Project HERCARA: High endurance relocatable crewless aircraft on reconnaissance aerostat
Niu et al. Backstepping Height Control of Stratospheric Aerostat with External Phase Change Regulating Gasbag
CN105197242A (en) Emergency landing vehicle
CN114954894A (en) Autonomous control method and autonomous control system for height adjustment of aerostat
AU2013201041B2 (en) Lenticular Airship
CN117585138A (en) Thermal control method of stratospheric aerostat

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant