CN102187473B - 光伏电池、光伏电池形成方法、存储光能的方法和光伏存储结构 - Google Patents

光伏电池、光伏电池形成方法、存储光能的方法和光伏存储结构 Download PDF

Info

Publication number
CN102187473B
CN102187473B CN2009801414302A CN200980141430A CN102187473B CN 102187473 B CN102187473 B CN 102187473B CN 2009801414302 A CN2009801414302 A CN 2009801414302A CN 200980141430 A CN200980141430 A CN 200980141430A CN 102187473 B CN102187473 B CN 102187473B
Authority
CN
China
Prior art keywords
battery
sub
spectrum
photovoltaic cell
lens structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801414302A
Other languages
English (en)
Other versions
CN102187473A (zh
Inventor
拉杰什·梅农
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of CN102187473A publication Critical patent/CN102187473A/zh
Application granted granted Critical
Publication of CN102187473B publication Critical patent/CN102187473B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明提供了光伏电池、光伏电池形成方法、存储光能的方法和光伏存储结构。所述光伏电池包括将太阳光光谱分成多个谱带的聚光器镜片结构。所述聚光器镜片结构将上述这些谱带聚焦为多个同心深聚焦环状斑点和一个中央圆形斑点。多个环形子电池分别大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述环状斑点处。各个所述子电池把在对应谱带处产生的能量存储起来。本发明简化了多结电池,并且能够使用平面制造工艺从而降低了制造成本。

Description

光伏电池、光伏电池形成方法、存储光能的方法和光伏存储结构
优先权信息 
本申请要求2008年10月17日提交的美国专利申请第12/253,626号的优先权,并且将该美国专利申请的全部内容以引用的方式并入本文中。 
背景技术
本发明涉及光伏电池、光伏电池形成方法、在光伏电池中存储光能的方法和光伏存储结构领域,具体地,涉及具有多色衍射透镜的光伏电池,上述多色衍射透镜分离太阳光光谱然后进行会聚或聚焦,由此将不同的谱带引导至适当的电池。 
在传统的单结(single-junction)太阳能电池中,当吸收了能量高于半导体带隙的光子时,就会产生电荷载流子。这些电荷载流子被吸引至不同的电极,从而产生开路电压。当电池上连接有负载时,就会有电流流过,因此产生了电能。当光子的能量大于上述带隙时,超额能量主要是被传递给了所生成的自由载流子本身。这些所谓的“热载流子”通过与半导体的晶体结构发生碰撞,以热量的形式损失掉了上述超额能量的大部分。因此,太阳光光谱的相当大一部分的能量被浪费了。 
为了克服上述局限性,使用了多结(或级联式)太阳能电池。在这样的级联式电池中,在单个基板上形成有多层的半导体太阳能电池。调整这些多层的太阳能电池的带隙,使得从顶层至底层带隙能量是降低的。因此,较高能量的光子被最顶层吸收,但光谱的其余部分从最顶层穿过而未被吸收。具有较低带隙的后续层(或电池)吸收较低能量的光子。这些多层的电池是串联连接的,并且在串联得到的整个结构的两端产生了累积的开路电压。 
然而,这些级联式多结电池存在一些缺点。随着光从多结电池中的每一者透射过去,就有一些光会被吸收,这就降低了总的转换效率。在上述级联式电池中,子电池是串联连接的。电流会受到该串联连接中的 最低电流的限制。由于各个电池所产生的电流不同,这极大地降低了可达到的效率。级联式多结电池中需要特别注意的是:用于将这些电池串联连接起来的隧道结的设计。透光性(宽的带隙)与低电阻是不可兼得的。另外,对于半导体级联式电池来说,晶格失配也是一个问题。 
在级联式电池中,很难使用3个以上的子电池。由于使用了深聚焦(tightly focusing)聚光器,因此显著地减少了太阳能子电池的有效面积。这将会增大材料成本,尤其是子电池结材料的成本。 
发明内容
本发明的一个方面提供了一种光伏电池。所述光伏电池包括聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带。所述聚光器镜片结构将上述这些谱带聚焦为多个同心区域。所述光伏电池还包括多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述同心区域处。各个所述子电池从对应谱带存储或产生能量。 
本发明的另一方面提供了一种光伏电池形成方法。所述形成方法包括如下步骤:形成聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带,且所述聚光器镜片结构将上述这些谱带聚焦为多个同心区域。此外,所述形成方法还包括如下步骤:形成多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述同心区域处。各个所述子电池从对应谱带存储或产生能量。 
本发明的又一方面提供了一种在光伏电池中的光能存储方法。所述光能存储方法包括如下步骤:设置聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带。所述聚光器镜片结构将上述这些谱带聚焦为多个同心区域。此外,所述光能存储方法还包括如下步骤:将多个环形子电池中的每一者大致定位在与由所述聚光器镜片结构产生的对应谱带相关联的环状斑点处。各个所述子电池从对应谱带存储或产生能量。 
本发明的再一方面提供了一种光伏存储结构。所述光伏存储结构包括多个光伏电池,各个所述光伏电池包括:聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带,并将这些谱带聚焦为多个同心区域;以及多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述同心区域处,各个所述子电池从对应谱带存储或产生能量。此外,所述光伏存储结构还包括多个电极,各个所述电极与所述环形子电池相连接,由此获取存储于所述环形子电池中的能量。 
本发明的另外一个方面提供了一种光伏电池。所述光伏电池包括聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带。所述聚光器镜片结构将上述这些谱带聚焦为多个一维区域。所述光伏电池还包括多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述一维区域处。各个所述子电池从对应谱带存储或产生能量。 
附图说明
图1是图示了本发明的太阳能电池的总体概况的示意图; 
图2A和图2B是图示了本发明新型光伏电池结构的示意图; 
图3A和图3B是图示了本发明新型光伏电池结构中所使用的电极的示意图; 
图4是图示了本发明所使用的多色透镜(polychromat lens)的示意图; 
图5是图示了本发明所使用的多色透镜结构的焦平面的示意图; 
图6是图示了本发明所形成的太阳能电池阵列的示意图;以及 
图7是图示了本发明一种太阳能电池结构的示意图,该太阳能电池结构中具有一维多色结构和一维太阳能电池阵列100。 
具体实施方式
本发明是一种新型的包含有多色衍射透镜的太阳能电池或光伏电池,上述多色衍射透镜分离太阳光光谱然后进行会聚(或聚焦),由此将不同的谱带引导至适当的电池。该项新的设计方案能够将太阳光光谱中明显较高的部分转换为有用的电能。另外,该设计方案简化了多结电池,并且能够使用平面制造工艺从而降低了制造成本。 
图1是图示了本发明的太阳能电池70的总体概况的示意图。该电池 70包括光谱分离元件72、聚光元件74和子电池阵列76。光谱分离元件72将射进来的日光78分为两个单独的光谱90和光谱92,每个光谱均与具有下列中心波长λ1、λ2、...、λN之一的各个谱带相关联。值得注意的是,在本发明的其他实施例中,光谱分离元件72不是必需的。光谱分离元件72可以是正弦光栅、二元光栅、闪耀光栅或全息元件。 
聚光元件74将这些谱带聚焦为多个同心区域88。聚光元件74可以是多色透镜或平凸透镜,或者可以是任何的正透镜或波带片或闪耀波带片或光子筛。该聚光元件74也可以是由较小元件组成的阵列,各个较小元件将光谱的不同部分会聚到下面的对应电池上。由子电池84组成的阵列76沿横向设置在基板82上,使得各个子电池84受到如下的会聚过来的光的照射:该会聚过来的光与跟该子电池84的带隙相对应的谱带的同心区域88相关联。各个子电池84从各自对应的谱带产生能量。根据各个子电池84的最高能量转换效率来选择谱带的合适部分。 
图2A示出了本发明另一实施例的太阳能电池2。该电池2包括聚光器镜片或多色透镜4,还包括由沿横向布置的单结环形太阳能子电池组成的阵列6,这些太阳能子电池不一定必需是串联连接的。多色透镜是特别设计的衍射透镜,它将太阳光光谱3分成先前规定的谱带。具有焦距的多色透镜4还将这些谱带聚焦为阵列6上的多个同心深聚焦环状斑点和一个中央圆形斑点。多色透镜4也可以被设计成能够有效地对离轴照射进行聚焦。这将会消除对昂贵的太阳追踪机构的需求。各个子电池6大致位于与由多色透镜4产生的对应谱带相关联的环状斑点处。各个子电池6从它们各自对应的谱带产生能量。阵列6包括带隙可被控制的普通电池,其可以是半导体光伏电池、有机光伏电池或任何其它形式的光伏电池。 
图2B示出了子电池6的截面图,该图中,视需要,各个环形子电池6可以具有它自身的一对接触部,即:顶部电极8和底部电极10。支撑着各个环形子电池6的基板可以作为各个子电池6的共用底部电极10。每个子电池6通过绝缘体7与另一个子电池6相连接。 
如图3A所示底部电极12对于各个子电池18而言可以是分开的,或者如图3B所示可以使用共用的底部电极16。顶部电极始终是分开的 顶部电极14,并且使用绝缘体15将各个子电池18连接起来。可以使用各个子电池18的基板作为底部电极,或者也可以另外形成底部电极12或底部电极16。如果各个子电池18是通过底部电极12和埋入式导线而被单独连接起来的,则分开的电极是有益的。埋入式导线因为不会受到光的影响所以是优选的。 
多色透镜是基于在先公开的美国专利申请第MIT 13051号(其全部内容被引用而并入本文中)而设计的。多色透镜是由同心圆环组成的相位元件,该相位元件中,交替的圆环相对于彼此是移相的。图4示出了这种透镜的示意图。 
多色透镜结构20包括半径分别为r1、r2、......、rM的多个环区22,并且这些环区的高度为h。焦平面中的特定格式化的强度分布表明了多色透镜20的设计要求,即:多色透镜20在λ1处聚焦亮斑,并且在λ2处以及其他波长λ3~λ5处聚集环状斑点。多色透镜20的外侧是不透明的。如图2A所示,通过改变交替环区之间的高度差来实现相移。该镜片可以用圆形对称的传输函数来表述如下。 
Figure BPA00001348880000051
等式1 
其中,ρ是径向坐标,rm是第m个环区的半径,M是环区的总数。通过下面的等式2可以得到相邻环区之间的相对相移ψ与环区高度h之间的关系: 
ψ = 2 π h λ [ Re ( n ( λ ) ) - 1 ] 等式2 
其中,Re(n(λ))是透镜材料的折射率的实部。 
我们可以得到的设计变量是圆环的半径以及圆环的二元相移。由于这种透镜是基于衍射进行工作的,因此不同波长的光将会从透镜以不同的角度进行衍射。通过适当地选择圆环的半径以及相移,如图5所示,能够设计出这样一种透镜(多色透镜):其将不同的波长聚焦为空间上分离的同心圆环。 
图5图示了多色透镜32的焦平面30的俯视图。不同的波长(λ1、λ2、λ3...)在同一焦平面30上被聚焦为不同的同心圆环34。各圆环34照射着被最优化成能够有效吸收该谱带的光伏子电池。 
另外,利用本技术,能够提供较宽的入射圆锥角并且还能形成深聚焦圆环。这是通过结合更宽的入射角来简单地改变最优化条件而实现的。这对于避免使用昂贵的太阳追踪机构而言是非常重要的。 
在图6所示的结构中,使用多个输出电极48、50将多个光伏电池40、42并联连接起来,这些光伏电池的子电池44、46具有相同带隙,并且每个输出电极连接至一个具有给定带隙的子电池44、46。输出电极48和输出电极50均连接至导体52。可以按照能够使输出功率最大化的任意结构来连接该阵列中的子电池44、46进而连接该阵列中的电池40、42。在各个子电池44之间以及各个子电池46之间均设置有绝缘体54。可以通过底部电极和埋入式导体来实现上述连接从而避免对入射光的任何遮光或者其它不良效果。在另一实施方案中,上述导体可以包括透明导体。 
图7是图示了具有一维多色结构98和一维太阳能电池阵列100的太阳能电池结构96的示意图。该一维多色结构98接收日光或太阳辐射并将太阳光谱分成多个谱带(λ1、λ2、...、λn)。一维多色结构98将这些谱带聚焦为多个同心区域。一维太阳能电池阵列100包括多个一维子电池102,各个一维子电池102大致位于与由一维多色结构98产生的对应谱带(λ1、λ2、...、λn)相关联的同心区域处。各个子电池102从各自对应的谱带(λ1、λ2、...、λn)产生能量(Eg1~Egn)。 
虽然已经图示并说明了本发明的一些优选实施例,但在不背离本发明的精神和范围的前提下,可对本发明的形式和细节进行各种改变、省略和添加。 

Claims (26)

1.一种光伏电池,其包括: 
聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带,并将所述多个谱带聚焦为多个同心区域;以及 
多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述同心区域处,各个所述子电池从对应谱带存储或产生能量, 
其中,所述聚光器镜片结构是具有交替环区的相位元件,所述交替环区相对于彼此是移相的,且通过改变所述交替环区之间的高度差来实现相移。 
2.根据权利要求1所述的光伏电池,其中,所述聚光器镜片结构包括多色透镜。 
3.根据权利要求1所述的光伏电池,其中,各个所述子电池包括顶部电极和底部电极。 
4.根据权利要求3所述的光伏电池,其中,各个所述子电池使用共用的底部电极。 
5.根据权利要求3所述的光伏电池,其中,各个所述子电池具有分开的底部电极。 
6.根据权利要求2所述的光伏电池,其中,所述多色透镜对离轴照射进行聚焦。 
7.根据权利要求1所述的光伏电池,其中,所述子电池含有以半导体为基体的材料。 
8.根据权利要求1所述的光伏电池,其中,所述子电池含有以有机 物为基体的材料。 
9.一种光伏电池形成方法,其包括如下步骤: 
形成聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带,并将所述多个谱带聚焦为多个同心区域;以及 
形成多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述同心区域处,各个所述子电池从对应谱带存储或产生能量, 
其中,所述聚光器镜片结构是具有交替环区的相位元件,所述交替环区相对于彼此是移相的,且通过改变所述交替环区之间的高度差来实现相移。 
10.根据权利要求9所述的光伏电池形成方法,其中,所述聚光器镜片结构包括多色透镜。 
11.根据权利要求9所述的光伏电池形成方法,其中,各个所述子电池包括顶部电极和底部电极。 
12.根据权利要求11所述的光伏电池形成方法,其中,各个所述子电池使用共用的底部电极。 
13.根据权利要求11所述的光伏电池形成方法,其中,各个所述子电池具有分开的底部电极。 
14.根据权利要求10所述的光伏电池形成方法,其中,所述多色透镜对离轴照射进行聚焦。 
15.根据权利要求9所述的光伏电池形成方法,其中,所述子电池含有以半导体为基体的材料。 
16.根据权利要求9所述的光伏电池形成方法,其中,所述子电池 含有以有机物为基体的材料。 
17.一种在光伏电池中存储光能的方法,其包括如下步骤: 
设置聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带,并将所述多个谱带聚焦为多个同心区域;以及 
将多个环形子电池中的每一者大致定位在与由所述聚光器镜片结构产生的对应谱带相关联的环状斑点处,各个所述子电池从对应谱带存储或产生能量, 
其中,所述聚光器镜片结构是具有交替环区的相位元件,所述交替环区相对于彼此是移相的,且通过改变所述交替环区之间的高度差来实现相移。 
18.根据权利要求17所述的方法,其中,所述聚光器镜片结构包括多色透镜。 
19.根据权利要求17所述的方法,其中,各个所述环形子电池包括顶部电极和底部电极。 
20.根据权利要求19所述的方法,其中,各个所述环形子电池使用共用的底部电极。 
21.根据权利要求19所述的方法,其中,各个所述环形子电池具有分开的底部电极。 
22.根据权利要求18所述的方法,其中,所述多色透镜能够对离轴照射进行聚焦。 
23.根据权利要求17所述的方法,其中,所述环形子电池含有以半导体为基体的材料。 
24.根据权利要求17所述的方法,其中,所述环形子电池含有以有 机物为基体的材料。 
25.一种光伏存储结构,其包括多个光伏电池和多个电极, 
各个所述光伏电池包括: 
聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带,并将所述多个谱带聚焦为多个同心区域;以及 
多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述同心区域处,各个所述子电池存储或产生在对应谱带处生成的能量, 
各个所述电极与所述子电池相连接,由此获取存储于所述子电池中的能量, 
其中,所述聚光器镜片结构是具有交替环区的相位元件,所述交替环区相对于彼此是移相的,且通过改变所述交替环区之间的高度差来实现相移。 
26.一种光伏电池,其包括: 
聚光器镜片结构,所述聚光器镜片结构将太阳光光谱分成多个谱带,并将所述多个谱带聚焦为多个一维区域;以及 
多个子电池,各个所述子电池大致位于与由所述聚光器镜片结构产生的对应谱带相关联的所述一维区域处,各个所述子电池从对应谱带存储或产生能量, 
其中,所述聚光器镜片结构是具有交替环区的相位元件,所述交替环区相对于彼此是移相的,且通过改变所述交替环区之间的高度差来实现相移。 
CN2009801414302A 2008-10-17 2009-10-19 光伏电池、光伏电池形成方法、存储光能的方法和光伏存储结构 Expired - Fee Related CN102187473B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/253,626 US8669461B2 (en) 2008-10-17 2008-10-17 Ultra-high efficiency multi-junction solar cells using polychromatic diffractive concentrators
US12/253,626 2008-10-17
PCT/US2009/061146 WO2010045634A2 (en) 2008-10-17 2009-10-19 Ultra-high efficiency multi-junction solar cells using polychromatic diffractive concentrators

Publications (2)

Publication Number Publication Date
CN102187473A CN102187473A (zh) 2011-09-14
CN102187473B true CN102187473B (zh) 2013-08-21

Family

ID=42107311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801414302A Expired - Fee Related CN102187473B (zh) 2008-10-17 2009-10-19 光伏电池、光伏电池形成方法、存储光能的方法和光伏存储结构

Country Status (7)

Country Link
US (1) US8669461B2 (zh)
EP (1) EP2351096A4 (zh)
JP (1) JP5297532B2 (zh)
KR (1) KR101212926B1 (zh)
CN (1) CN102187473B (zh)
AU (1) AU2009305521B2 (zh)
WO (1) WO2010045634A2 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105783B2 (en) * 2009-01-26 2015-08-11 The Aerospace Corporation Holographic solar concentrator
CA2658193A1 (en) 2009-03-12 2010-09-12 Morgan Solar Inc. Stimulated emission luminescent light-guide solar concentrators
JP2013546117A (ja) 2010-09-27 2013-12-26 マサチューセッツ インスティテュート オブ テクノロジー 超高効率色混合および色分離
CN102544171A (zh) * 2010-12-21 2012-07-04 财团法人工业技术研究院 多波段集光及能量转换模块
CN102158131B (zh) * 2011-03-22 2013-06-19 苏州震旦光伏科技有限公司 一种太阳能光伏系统
JP5626796B2 (ja) * 2011-03-25 2014-11-19 国立大学法人東京農工大学 直列接続型ソーラーセル及びソーラーセルシステム
US9263605B1 (en) 2011-04-20 2016-02-16 Morgan Solar Inc. Pulsed stimulated emission luminescent photovoltaic solar concentrator
US20140144483A1 (en) * 2011-06-25 2014-05-29 Alfred Jost Solar Module
US9163858B2 (en) 2011-07-11 2015-10-20 Jerker Taudien Concentrating and spectrum splitting optical device for solar energy applications
WO2013056139A2 (en) * 2011-10-14 2013-04-18 The Massachusetts Institute Of Technology Methods and apparatus for concentraing photovoltaics
CN102375171B (zh) * 2011-11-09 2013-10-02 中国科学院物理研究所 一种衍射光学元件及其设计方法和在太阳能电池中的应用
US8953239B2 (en) 2012-09-05 2015-02-10 University Of Utah Research Foundation Nanophotonic scattering structure
US9723230B2 (en) 2012-11-30 2017-08-01 University Of Utah Research Foundation Multi-spectral imaging with diffractive optics
US10395134B2 (en) 2013-07-26 2019-08-27 University Of Utah Research Foundation Extraction of spectral information
JP6042362B2 (ja) * 2014-02-21 2016-12-14 信越化学工業株式会社 集光型光電変換装置及びその製造方法
US10505059B2 (en) 2015-01-16 2019-12-10 The Arizona Board Of Regents On Behalf Of The University Of Arizona Micro-scale concentrated photovoltaic module
WO2016141041A1 (en) 2015-03-02 2016-09-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Glass forming mold of adjustable shape
WO2016200988A1 (en) * 2015-06-12 2016-12-15 The Arizona Board Of Regents On Behalf Of The University Of Arizona Tandem photovoltaic module with diffractive spectral separation
US10551089B2 (en) 2015-08-03 2020-02-04 The Arizona Board Of Regents On Behalf Of The University Of Arizona Solar concentrator for a tower-mounted central receiver
EP3528294A4 (en) * 2016-10-14 2019-10-23 Kaneka Corporation PHOTOVOLTAIC DEVICE
US11822110B2 (en) 2018-02-21 2023-11-21 University Of Utah Research Foundation Diffractive optic for holographic projection
WO2022208130A1 (en) 2021-03-30 2022-10-06 Freshape Sa Dispersive optical device, dispersive optical system comprising the same and use thereof especially for solar energy harvesting
CN113345619B (zh) * 2021-06-16 2022-07-12 中国工程物理研究院激光聚变研究中心 一维x射线折射闪耀波带片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268037A (en) * 1992-05-21 1993-12-07 United Solar Systems Corporation Monolithic, parallel connected photovoltaic array and method for its manufacture
US6015950A (en) * 1997-05-13 2000-01-18 Converse; Alexander K. Refractive spectrum splitting photovoltaic concentrator system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148985A (zh) * 1974-10-24 1976-04-27 Sharp Kk
US4204881A (en) * 1978-10-02 1980-05-27 Mcgrew Stephen P Solar power system
US4418238A (en) * 1981-10-20 1983-11-29 Lidorenko Nikolai S Photoelectric solar cell array
US5161059A (en) * 1987-09-21 1992-11-03 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
JPH02125358U (zh) * 1989-03-27 1990-10-16
WO1991004580A1 (en) * 1989-09-21 1991-04-04 Holobeam, Inc. Photovoltaic solar systems with dispersive concentrators
IL111207A0 (en) 1994-10-09 1994-12-29 Yeda Res & Dev Photovoltaic cell system and an optical structure therefor
JP2002289900A (ja) * 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
US6469241B1 (en) * 2001-06-21 2002-10-22 The Aerospace Corporation High concentration spectrum splitting solar collector
US6689949B2 (en) * 2002-05-17 2004-02-10 United Innovations, Inc. Concentrating photovoltaic cavity converters for extreme solar-to-electric conversion efficiencies
SG137674A1 (en) * 2003-04-24 2007-12-28 Semiconductor Energy Lab Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
JP2004343022A (ja) * 2003-05-15 2004-12-02 Toshiaki Mihara 太陽光発電方法及び装置
US7081584B2 (en) * 2003-09-05 2006-07-25 Mook William J Solar based electrical energy generation with spectral cooling
ITTO20030734A1 (it) * 2003-09-24 2005-03-25 Fiat Ricerche Concentratore di luce multifocale per un dispositivo per la conversione di radiazione, ed in particolare per la conversione della radiazione solare in energia elettrica, termica o chimica.
WO2005081326A1 (en) * 2004-02-19 2005-09-01 The University Of Toledo Interconnected photoelectrochemical cell
US6958868B1 (en) * 2004-03-29 2005-10-25 John George Pender Motion-free tracking solar concentrator
US7196262B2 (en) * 2005-06-20 2007-03-27 Solyndra, Inc. Bifacial elongated solar cell devices
US20070107770A1 (en) * 2005-10-13 2007-05-17 Tom Rust Systems and methods for manufacturing photovoltaic devices
WO2007127103A2 (en) * 2006-04-27 2007-11-08 Intematix Corporation Systems and methods for enhanced solar module conversion efficiency
US20080048102A1 (en) * 2006-08-22 2008-02-28 Eastman Kodak Company Optically enhanced multi-spectral detector structure
JPWO2008090718A1 (ja) * 2007-01-25 2010-05-13 シャープ株式会社 太陽電池セル、太陽電池アレイおよび太陽電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268037A (en) * 1992-05-21 1993-12-07 United Solar Systems Corporation Monolithic, parallel connected photovoltaic array and method for its manufacture
US6015950A (en) * 1997-05-13 2000-01-18 Converse; Alexander K. Refractive spectrum splitting photovoltaic concentrator system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《HOLOGRAPHIC SOLAR CONCENTRATOR FOR TERRESTRIAL PHOTOVOLTAICS》;Lundman et al.;《IEEE West Coast Photovoltaic Energy Conference》;19941209;1208-1211 *
Lundman et al..《HOLOGRAPHIC SOLAR CONCENTRATOR FOR TERRESTRIAL PHOTOVOLTAICS》.《IEEE West Coast Photovoltaic Energy Conference》.1994,1208-1211.

Also Published As

Publication number Publication date
AU2009305521B2 (en) 2012-12-20
EP2351096A2 (en) 2011-08-03
EP2351096A4 (en) 2017-02-15
US8669461B2 (en) 2014-03-11
WO2010045634A3 (en) 2010-07-22
JP5297532B2 (ja) 2013-09-25
CN102187473A (zh) 2011-09-14
KR101212926B1 (ko) 2012-12-14
WO2010045634A2 (en) 2010-04-22
JP2012506157A (ja) 2012-03-08
AU2009305521A1 (en) 2010-04-22
KR20110071126A (ko) 2011-06-28
US20100095999A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
CN102187473B (zh) 光伏电池、光伏电池形成方法、存储光能的方法和光伏存储结构
Chong et al. Design and development in optics of concentrator photovoltaic system
US6031179A (en) Color-mixing lens for solar concentrator system and methods of manufacture and operation thereof
US20060185713A1 (en) Solar panels with liquid superconcentrators exhibiting wide fields of view
US20080264486A1 (en) Guided-wave photovoltaic devices
US9905718B2 (en) Low-cost thin-film concentrator solar cells
WO2014142650A1 (en) Concentrating solar panel with diffuse light conversion
JP2014520406A (ja) ソーラーモジュール
CN107078688A (zh) 使用光伏二阶聚光的混合槽太阳能发电系统
AU2021205103A1 (en) Full spectrum electro-magnetic energy system
Sato et al. Design and testing of highly transparent concentrator photovoltaic modules for efficient dual‐land‐use applications
US20110186108A1 (en) Ring architecture for high efficiency solar cells
CA2729611A1 (en) Solar energy production system
US9136416B2 (en) Solar light concentration photovoltaic conversion system using a wavelength splitter and lambda-specific photovoltaic cells optically coupled to lambda-dedicated fibers illuminated by respective split beams
US20120132255A1 (en) Solar Energy Harvesting Device Using Stimuli-Responsive Material
JP2004343022A (ja) 太陽光発電方法及び装置
US20140261627A1 (en) Power augmentation in concentrator photovoltaic modules by collection of diffuse light
CN101894875B (zh) 一种高效聚光式太阳能光电转换器
US20120247535A1 (en) System and method for the generation of electrical power from sunlight
US20100170559A1 (en) System and Method for the Generation of Electrical Power from Sunlight
KR101760801B1 (ko) 집광 태양광발전 시스템 제조방법
US11302839B2 (en) Integrated micro-lens for photovoltaic cell and thermal applications
US11509264B2 (en) Full spectrum electro-magnetic energy system
KR101469583B1 (ko) 태양광 집광 장치
TW201230369A (en) Multi-band concentrator and energy conversion module

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821

Termination date: 20181019

CF01 Termination of patent right due to non-payment of annual fee