CN102184923B - 硅纳米线晶体管器件可编程阵列的制备方法 - Google Patents

硅纳米线晶体管器件可编程阵列的制备方法 Download PDF

Info

Publication number
CN102184923B
CN102184923B CN201110089699A CN201110089699A CN102184923B CN 102184923 B CN102184923 B CN 102184923B CN 201110089699 A CN201110089699 A CN 201110089699A CN 201110089699 A CN201110089699 A CN 201110089699A CN 102184923 B CN102184923 B CN 102184923B
Authority
CN
China
Prior art keywords
nano
wire devices
silicon
bonding pad
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110089699A
Other languages
English (en)
Other versions
CN102184923A (zh
Inventor
黄如
邹积彬
王润声
樊捷闻
刘长泽
王阳元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201110089699A priority Critical patent/CN102184923B/zh
Publication of CN102184923A publication Critical patent/CN102184923A/zh
Priority to US13/503,240 priority patent/US9099500B2/en
Priority to DE112011105142.5T priority patent/DE112011105142B4/de
Priority to PCT/CN2011/082465 priority patent/WO2012139382A1/zh
Application granted granted Critical
Publication of CN102184923B publication Critical patent/CN102184923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种基于硅纳米线场效应晶体管的六边形可编程阵列及其制备方法,该阵列包括纳米线器件、纳米线器件连接区和栅连接区,所述纳米线器件呈圆柱形结构,包括硅纳米线沟道、栅介质层和栅区,栅介质层包裹硅纳米线沟道,栅区包裹栅介质层,纳米线器件以六边形排列构成一单元,纳米线器件连接区为3个纳米线器件之间的连接节点,纳米线器件连接区固定在一个硅支架上。本发明可实现复杂互联控制逻辑,适合应用于高速高集成度的数字/模拟电路,和数模混合电路。

Description

硅纳米线晶体管器件可编程阵列的制备方法
技术领域
本发明属于CMOS超大规模集成电路(ULSI)制造技术领域,特别涉及一种硅纳米线场效应晶体管(Silicon Nanowire Metal-Oxide-Silicon Field Effect Transistor,SNW MOSFET)六边形可编程阵列(Hexagonal Programmable Array)及其制备方法。
背景技术
半导体器件是制造电子产品的重要元件。半导体器件的更新换代推进了半导体技术的发展和半导体工业的进步,特别是对中央处理器CPU和存储器的性能提升。从上世纪末开始,芯片制造工艺发展十分迅速,先后从微米级别,一直发展到今天小于32nm的技术。
随着器件特征尺寸进入45纳米或更小,传统平面管器件的栅控能力逐渐减小,器件特性衰退,饱受短沟道效应的影响。在传统器件设计中栅氧厚度至多为几纳米甚至小于一纳米,如此薄的栅氧厚度会带来严重的栅泄漏电流,从而恶化器件的性能,可靠性以及大幅度增加器件的功耗;同时,如果通过工艺技术减小结深,不仅会给工艺实现方面带来巨大的挑战,另一方面,由于在器件制备的整个过程中,将不可避免的经历许多热过程,为制造浅结带来很多的困难。
为了解决上述一系列问题,器件设计者提出了多栅器件结构例如双栅,三栅和围栅器件来提高器件的栅控能力。在众多器件结构中,围栅结构具有最强的栅控能力,因为整个沟道被栅包围,当沟道长度缩小到纳米尺度时,围栅结构中的纳米线结构成为最有潜力的器件结构,因为这种围栅结构有利于器件迁移率和可靠性的提高,因此纳米线器件成为在场效应晶体管特征尺寸缩小到纳米尺度条件下的最为理想的器件结构。
同时,摩尔定律指出:集成电路上可容纳的晶体管数目,每隔18个月增加一倍,集成电路的性能也将提升一倍。随着半导体器件的特征尺寸不断减小,制约摩尔定律的主要因素从器件工作区的大小进而转向诸如源漏面积、引线等其他方面。在传统纳米线制造工艺中,源区(source)漏区(drain)会占有相当大的面积,它们等效为器件栅控有效沟道工作区(channel)的两倍大小。这无疑成为制约集成电路集成度进一步提高的一个非常重要因素。因此如何节约此部分面积,优化硅纳米线器件版图设计,已经成为当前高密度集成电路设计的重要课题。
发明内容
本发明的目的是弥补现有技术的空白,针对传统工艺,提供一种基于纳米线晶体管制造的优化方案,形成六边形可编程阵列,大幅度提高纳米线器件集成度,方便编程使用,实现超大规模,超高集成度的数字/模拟和数模混合电路。
本发明的技术方案如下:
一种基于硅纳米线场效应晶体管的六边形可编程阵列(如图1所示),包括纳米线器件、纳米线器件连接区和栅连接区,纳米线器件以六边形排列构成一编程单元,相邻编程单元之间共用一个公共的纳米线器件,每个编程单元的中间部分为镂空区,所述纳米线器件(见图2)为硅纳米线场效应晶体管六边形可编程阵列的核心部分,呈圆柱形结构。纳米线器件包括硅纳米线沟道、栅介质层、栅区。栅介质层包裹硅纳米线沟道,栅区包裹栅介质层。硅纳米线沟道、栅介质层、栅区的长度取值一致,范围是5纳米~1微米。
所述硅纳米线沟道半径取值范围是3纳米~100纳米。硅纳米线沟道的掺杂浓度小于1015cm-3,不掺杂或等效为不掺杂。
所述栅介质层厚度取值范围是0.5纳米~10纳米。
所述栅区厚度取值范围是10纳米~500纳米。
纳米线器件与纳米线器件连接区相连接,每个硅纳米线连接区连接3个纳米线器件,为高密度、多纳米线器件互联提供了基础。由于纳米线器件连接区位于纳米线器件两侧。纳米线器件连接区可同时作为此纳米线器件的源或漏,具体源漏的定义使用者自己定义。同时纳米线器件连接区下面存在一个硅支架,支撑整个纳米线器件网络。纳米线器件连接区尺寸依纳米线沟道尺寸/工艺条件取值,其尺寸比例如图1,2所示。对于CMOS工艺,同时具有N型和P型纳米线器件的电路结构来讲,纳米线器件连接区掺杂浓度小于1015cm-3,不掺杂或等效为不掺杂。对于单独的NMOS工艺或PMOS工艺,全部器件为同种类型,可对纳米线器件连接区进行高浓度掺杂,掺杂浓度为1018~1020cm-3
栅连接区为纳米线器件的栅区提供连接,使多根纳米线器件可以形成共栅结构。
本发明硅纳米线场效应晶体管六边形可编程阵列是基于原有纳米线制作技术。在CMOS工艺下,具体包括以下步骤:
(1)选取初始浓度很低的硅片(掺杂浓度小于1015cm-3),利用硬掩模定义硅片镂空区;
(2)去掉(1)中硬掩模,进行氧化减薄纳米线硅条,形成悬浮的硅纳米线网络;交错的掩模版形成的纳米线器件连接区较纳米线沟道粗,在氧化减薄这个工艺步骤中,纳米线可以实现悬空,而纳米线器件连接区并没有悬空,它下面存在硅支架同支撑整个网络。
(3)湿法腐蚀掉形成的二氧化硅,进行热氧化形成一层致密二氧化硅栅介质;
(4)利用另两片硬掩模分别对N型栅和P型栅连接进行定义;这里用户自定义,可编程控制;
(5)淀积材料,制作栅连接区;
(6)利用另一块掩模版定义一些隔断图形,用作隔断一些不需要连接的部分;利用刻蚀技术使这些连接部分断开;可编程控制;(此步骤可选,如无需隔断则略去此步骤)
(7)最后进入常规CMOS后道工序。
在NMOS或PMOS工艺下,需作出以下修改:
步骤(4)中用一块栅掩模版即可。
步骤(5)中制作栅连接区后,要额外增加一块掩模版,对六边形可编程阵列区域进行高浓度掺杂,掺杂浓度为1018~1020cm-3。之后快速热退火(RTA),将杂志驱入纳米线器件连接区和其他作为互联线用的纳米线沟道。
这里需注意,对于CMOS工艺和N/PMOS工艺来讲,前者中作为互联的纳米线沟道需要制作栅控制,达到等效于“传输门”的目的,而后者中的互联作用沟道不需要栅控制,仅注入高浓度杂志即可。因此CMOS工艺和N/PMOS工艺的(4)步骤可能有不同。
与现有技术相比,本发明的作用是:
硅纳米线场效应晶体管六边形可编程阵列适合应用于高速高集成度的数字/模拟电路,和数模混合电路。由于其略去了传统纳米线器件的大块源漏接触,十分节省面积。与传统平面管可编程门阵列FPGA比较,在达到抑制短沟效应的同时,也节省了相当大的面积,可以达到超高集成度。同时,六边形纳米线互联网络结构每个互联节点(纳米线器件连接区)连接三个器件沟道,每个单元最远的两个节点间存在3个器件,因此可实现复杂控制互联控制逻辑,这是传统形式的阵列所不能提供的。
附图说明
图1是本发明中介绍的硅纳米线场效应晶体管六边形可编程阵列的俯视面示意图。图中:
1-纳米线器件的抽象棍棒式示意图,2-硅片镂空区,3-纳米线器件连接区,4-栅连接区(图中为两种栅,可为两种材料构成,实现NMOS和PMOS),5-硅片,6-隔断。
图2是左侧为单个纳米线器件示意图,图中:因为较多,以下我的改动不加修订标记了。
7-纳米线器件连接区,8-硅片镂空区,9-纳米线器件的栅区。
图2是右侧为单个纳米线器件剖面示意图,图中:
10-硅纳米线沟道,11-栅介质层,12-栅区。
图3为第一次硬掩模,掩模版为圆形或方形。(图中以圆形为例,如为方形,利用曝光的临界效应,也可以将图形曝圆)。图3中:
13-圆形掩模版,14-硅片。
图4为曝光后刻蚀出圆形图形,并且氧化减薄纳米线硅条,使之悬空,同时使之剖面形成如图2右侧图中的圆形。图4中:
15-硅片镂空区,16-纳米线沟道,17-硅片。
图5为在高温热氧化形成栅介质层后,淀积形成栅连接区。覆盖在纳米线沟道上的部分为栅区。在这之后可以定义隔断,隔断某些不想要的连接。
18-栅连接区,19-隔断。以下改动用修订。图6为利用两个基本六边形单元制作4管CMOS与非门的示意图:
20-N型纳米线器件,21-P型纳米线器件,22-常开管用做互联,23-被隔断的纳米线,24-N型纳米线器件的栅,25-P型纳米线器件的栅,26-常开管的栅(等效为传输们),27-输入信号A,28-输入信号B,29-常开管输入(VDD或GND,视常开管类型而定)。
图7为CMOS与非门电路图,对应图6中各种器件和信号:
30-N型纳米线器件,31-P型纳米线器件,32-输入信号A,33-输入信号B,34-节点0GND,35-节点1,36-节点2输出,37-节点3VDD。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细描述:
图1为本发明中介绍的硅纳米线场效应晶体管六边形可编程阵列的俯视面示意图。其结构与一般的常规纳米线场效应晶体管区别在于:
首先纳米线器件结构有所变化,传统的纳米线器件大体包括:纳米线沟道,栅区,源区和漏区。为了打通孔制作互联引线,传统纳米线器件的源区和漏区占用非常大的面积,本专利所介绍的六边形阵列中的纳米线器件,完全抛弃传统源漏,用面积很小且可作为互联节点的纳米线器件连接区替代,这样极大地减小了纳米线器件沟道与沟道之间冗余面积。对于相同功能的电路结构,其核心面积节省至少8/9。另外,交错的圆形掩模版也为形成这种纳米线网络提供了可能:交错的掩模版形成的纳米线器件连接区较纳米线沟道粗,在氧化减薄这个工艺步骤中,纳米线沟道可以实现悬空,而可控制工艺条件:适当氧化温度,如950度、时间,如10秒等,使纳米线器件连接区并没有悬空,它下面存在硅支架支撑整个网络。
其次,硅纳米线场效应晶体管六边形可编程阵列的工艺简单,只需定义一次硅片镂空区,就可以实现众多纳米线。等效为一个光刻图形实现三根纳米线器件,高效地利用光刻技术。这在使用电子束光刻(E-Beam Lithography)时尤为明显。
同时,六边形纳米线互联网络结构每个互联节点(纳米线器件连接区)连接三个器件沟道,每个单元最远的两个节点间存在3个器件,因此可实现复杂控制互联控制逻辑,这是传统形式的阵列所不能提供的。上述各种区别有利于提高纳米线场效应晶体管的性能和工作效率。所以,硅纳米线场效应晶体管六边形可编程阵列适合应用于高速高集成度的数字/模拟电路,和数模混合电路。
下面以CMOS工艺下的硅纳米线场效应晶体管六边形可编程阵列制作与非门为例说明主要制作流程:
(1)选取掺杂浓度小于1015cm-3的硅片,利用交错式硬掩模定义硅片镂空区。如图3所示。此步骤中,交错式图形面积要小于预计的硅片镂空区面积,可以为圆形或方形或六边形,利用曝光时的临近效应达到曝光出稍大圆形的目的。典型的交错式图形基本单元面积范围是:10纳米×10纳米~2.5微米×2.5微米。
(2)去掉(1)中硬掩模,进行氧化减薄纳米线硅条,形成悬浮的硅纳米线网络;交错的掩模版形成的纳米线器件连接区较纳米线沟道粗,在氧化减薄这个工艺步骤中,纳米线可以实现悬空,而纳米线器件连接区并没有悬空,它下面存在硅支架同支撑整个网。
(3)湿法腐蚀掉形成的二氧化硅,进行热氧化形成一层致密二氧化硅栅介质。如图7所示。(此时硅上都有一层二氧化硅,未在图中标出)。
(4)利用另两片硬掩模分别对N型栅和P型栅连接进行定义,定义栅的同时,也定义了栅所覆盖器件的类型。然后淀积生成纳米线器件栅连接区。此步骤中N型栅和P型栅需采用不同材料,如想要形成NMOS,则N型栅采用磷P/砷As注入,如想要形成PMOS,P型栅采用硼B注入。
(5)利用另一块掩模版定义一些隔断图形,隔断一些不需要连接的部分;利用刻蚀技术使这些连接部分断开。
后面的工艺流程和常规硅纳米线MOS晶体管完全一样。先后进行:平坦化,淀积隔离层,光刻外围输入输出引线孔,淀积金属,光刻引线,钝化等等。
图6所示包括两个六边形编程单元的实施例,该编程阵列实际用到9根纳米线器件,其中2根N型纳米线器件,两根P型纳米线器件,其余5根纳米线器件用作互连。参考图7,29-N型纳米线器件和30-P型纳米线器件分别由33-N型纳米线器件的栅和34-P型纳米线器件的栅所控制,利用不同材料栅与硅的功函数差控制阈值电压,达到形成不同类型纳米线器件的目的。
以上通过详细实例描述了本发明所提供的硅纳米线场效应晶体管六边形可编程阵列,上面描述的应用场景和实施例,并非用于限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,可以做各种的更动和润饰,因此本发明的保护范围视权利要求范围界定。

Claims (3)

1.一种硅纳米线晶体管器件可编程阵列的制备方法,该硅纳米线晶体管器件可编程阵列包括纳米线器件、纳米线器件连接区和栅连接区,所述纳米线器件呈圆柱形结构,包括硅纳米线沟道、栅介质层和栅区,栅介质层包裹硅纳米线沟道,栅区包裹栅介质层,其中,硅纳米线沟道、栅介质层和栅区的长度取值一致,范围是5纳米~1微米,纳米线器件以六边形排列构成一编程单元,相邻编程单元之间共用一个公共的纳米线器件,每个编程单元的中间部分为镂空区,纳米线器件连接区为3个纳米线器件之间的连接节点,该纳米线器件连接区与纳米线器件的沟道连接,同时作为纳米线器件的源或漏,纳米线器件连接区固定在一个硅支架上,栅连接区为纳米线器件的栅区提供连接,使多根纳米线器件形成共栅结构,制备工艺具体包括以下步骤:
1)选取掺杂浓度小于1015cm-3的硅片,利用交错式硬掩模定义硅片镂空区;
2)去掉1)中硬掩模,进行氧化减薄纳米线硅条,形成悬浮的硅纳米线网络;交错式硬掩模形成的纳米线器件连接区较纳米线器件沟道区粗,在氧化减薄这个工艺步骤中,纳米线实现悬空,而纳米线器件连接区并没有悬空,它下面存在硅支架支撑整个网络;
3)湿法腐蚀掉形成的二氧化硅,进行热氧化形成一层致密二氧化硅栅介质;
4)利用另两片硬掩模分别对N型栅和P型栅连接进行定义;
5)淀积材料,制作栅连接区;
6)最后进入常规CM0S后道工序。
2.如权利要求1所述的方法,其特征在于,利用另一块掩模版定义隔断图形,利用刻蚀技术断开不需要连接的纳米线器件。
3.如权利要求1所述的方法,其特征在于,步骤5)中制作栅连接区后,额外增加一块掩模版,对六边形可编程阵列区域进行高浓度掺杂,掺杂浓度为1018~1020cm-3,之后快速热退火,将杂质驱入纳米线器件连接区和其他作为互联线用的区域。
CN201110089699A 2011-04-11 2011-04-11 硅纳米线晶体管器件可编程阵列的制备方法 Active CN102184923B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201110089699A CN102184923B (zh) 2011-04-11 2011-04-11 硅纳米线晶体管器件可编程阵列的制备方法
US13/503,240 US9099500B2 (en) 2011-04-11 2011-11-18 Programmable array of silicon nanowire field effect transistor and method for fabricating the same
DE112011105142.5T DE112011105142B4 (de) 2011-04-11 2011-11-18 Programmierbares Array eines Feldeffekttransistors aus Silizium-Nanodraht und Verfahren zur Herstellung desselbigen
PCT/CN2011/082465 WO2012139382A1 (zh) 2011-04-11 2011-11-18 硅纳米线晶体管器件可编程阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110089699A CN102184923B (zh) 2011-04-11 2011-04-11 硅纳米线晶体管器件可编程阵列的制备方法

Publications (2)

Publication Number Publication Date
CN102184923A CN102184923A (zh) 2011-09-14
CN102184923B true CN102184923B (zh) 2012-10-10

Family

ID=44571071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110089699A Active CN102184923B (zh) 2011-04-11 2011-04-11 硅纳米线晶体管器件可编程阵列的制备方法

Country Status (4)

Country Link
US (1) US9099500B2 (zh)
CN (1) CN102184923B (zh)
DE (1) DE112011105142B4 (zh)
WO (1) WO2012139382A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184923B (zh) * 2011-04-11 2012-10-10 北京大学 硅纳米线晶体管器件可编程阵列的制备方法
US9343529B2 (en) * 2014-09-05 2016-05-17 International Business Machines Corporation Method of formation of germanium nanowires on bulk substrates
CN106847696B (zh) * 2015-12-07 2020-05-08 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管的形成方法
CN107154428B (zh) * 2016-03-03 2019-12-24 上海新昇半导体科技有限公司 互补纳米线半导体器件及其制备方法
WO2023055769A1 (en) * 2021-09-28 2023-04-06 The Penn State Research Foundation Integrated circuit design for digital computing and information processing of mechanical signals
WO2023203469A1 (en) * 2022-04-18 2023-10-26 Gentex Corporation Hexagonal packing of multi-segment electro-optical devices

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808330A (en) * 1994-11-02 1998-09-15 Lsi Logic Corporation Polydirectional non-orthoginal three layer interconnect architecture
US6140687A (en) * 1996-11-28 2000-10-31 Matsushita Electric Industrial Co., Ltd. High frequency ring gate MOSFET
TW377493B (en) * 1996-12-27 1999-12-21 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JP3817380B2 (ja) * 1999-01-14 2006-09-06 ローム株式会社 絶縁ゲート型半導体装置
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US7005335B2 (en) 2003-07-15 2006-02-28 Hewlett-Packard Development, L.P. Array of nanoscopic mosfet transistors and fabrication methods
DE102004003374A1 (de) * 2004-01-22 2005-08-25 Infineon Technologies Ag Halbleiter-Leistungsschalter sowie dafür geeignetes Herstellungsverfahren
US20070298551A1 (en) * 2006-02-10 2007-12-27 Ecole Polytechnique Federale De Lausanne (Epfl) Fabrication of silicon nano wires and gate-all-around MOS devices
CN100536113C (zh) 2007-04-27 2009-09-02 北京大学 一种体硅纳米线晶体管器件的制备方法
CN101060135A (zh) * 2007-06-05 2007-10-24 北京大学 一种双硅纳米线围栅场效应晶体管及其制备方法
US9000353B2 (en) * 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US9082673B2 (en) * 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
WO2010099216A2 (en) * 2009-02-25 2010-09-02 California Institute Of Technology Methods for fabrication of high aspect ratio micropillars and nanopillars
US9012882B2 (en) * 2010-02-01 2015-04-21 The Regents Of The University Of California Graphene nanomesh and method of making the same
CN102184923B (zh) 2011-04-11 2012-10-10 北京大学 硅纳米线晶体管器件可编程阵列的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Takahiro Tamura et al..Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal Binary Decision Diagram Quantum Circuits.《Japanese Journal of Applied Physics》.2006,第45卷(第4B期),3614-3620. *

Also Published As

Publication number Publication date
DE112011105142T5 (de) 2014-03-13
CN102184923A (zh) 2011-09-14
WO2012139382A1 (zh) 2012-10-18
US9099500B2 (en) 2015-08-04
US20130075701A1 (en) 2013-03-28
DE112011105142B4 (de) 2016-03-24

Similar Documents

Publication Publication Date Title
CN102184923B (zh) 硅纳米线晶体管器件可编程阵列的制备方法
US7465973B2 (en) Integrated circuit having gates and active regions forming a regular grating
JP6306063B2 (ja) 半導体集積回路のモノリシック3次元集積化
JP5499034B2 (ja) ダブルチャネルトランジスタを備えたsramセルのためのボディコンタクト
CN102640269B (zh) 电子装置和系统及其制造和使用方法
US20120126197A1 (en) Structure and process of basic complementary logic gate made by junctionless transistors
TW200933824A (en) Memory cells
CN103353909A (zh) 非对称金属-氧化物-半导体晶体管
US9466703B2 (en) Method for fabricating semiconductor device
US20170358586A1 (en) Semiconductor device with stacked layout
CN101777565B (zh) 一种自供电低功耗集成电路芯片及其制备方法
JP2017510069A (ja) 高性能標準セル
CN106328188A (zh) 八晶体管静态随机存取存储器的布局图案与形成方法
EP3050091B1 (en) Ge and iii-v channel semiconductor devices having maximized compliance and free surface relaxation
US8458638B2 (en) Cell library, integrated circuit, and methods of making same
Wang et al. Efficient layout generation and evaluation of vertical channel devices
US20200119022A1 (en) Semiconductor integrated circuit device
US20090321815A1 (en) Non-volatile memory device and method of fabricating the same
CN116454088B (zh) 系统级芯片及其制备方法
US6818518B1 (en) Method for producing low/high voltage threshold transistors in semiconductor processing
US7768094B2 (en) Semiconductor integrated circuit and wafer having diffusion regions differing in thickness and method for manufacturing the same
Xu The Era of GAAFET Is About to Come
TW202324680A (zh) 半導體結構
Lagaev et al. FD-SOI Technology: Comparison with FinFET and TCAD Simulation
CN105870060B (zh) 电子装置和系统及用于制造和使用该电子装置和系统的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: BEIJING UNIV.

Effective date: 20130524

Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING

Free format text: FORMER OWNER: BEIJING UNIV.

Effective date: 20130524

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100871 HAIDIAN, BEIJING TO: 100176 DAXING, BEIJING

TR01 Transfer of patent right

Effective date of registration: 20130524

Address after: 100176 No. 18, Wenchang Avenue, Beijing economic and Technological Development Zone

Patentee after: Semiconductor Manufacturing International (Beijing) Corporation

Patentee after: Peking University

Address before: 100871 Beijing the Summer Palace Road, Haidian District, No. 5

Patentee before: Peking University