CN102184487A - Pollution source management system based on geographic information system (GIS) technology and one-dimensional water quality model and operation method thereof - Google Patents
Pollution source management system based on geographic information system (GIS) technology and one-dimensional water quality model and operation method thereof Download PDFInfo
- Publication number
- CN102184487A CN102184487A CN2011101265576A CN201110126557A CN102184487A CN 102184487 A CN102184487 A CN 102184487A CN 2011101265576 A CN2011101265576 A CN 2011101265576A CN 201110126557 A CN201110126557 A CN 201110126557A CN 102184487 A CN102184487 A CN 102184487A
- Authority
- CN
- China
- Prior art keywords
- water quality
- pollution source
- quality model
- concentration
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供一种基于GIS技术和一维水质模型的污染源管理系统,包括基础地理数据库、水质监测数据库、污染源监测数据库、水质模型预测模块、统计分析模块、地理信息系统模块。本发明还提供一种基于GIS技术和一维水质模型的污染源管理系统的运作方法,实现地理信息系统与管理信息系统的对接,完成大量环境信息的有效管理,分析环境污染物的变化情况,实现区域环境污染状况可视化,便于水环境规划和决策的执行。
The invention provides a pollution source management system based on GIS technology and a one-dimensional water quality model, including a basic geographic database, a water quality monitoring database, a pollution source monitoring database, a water quality model prediction module, a statistical analysis module, and a geographic information system module. The present invention also provides an operation method of the pollution source management system based on GIS technology and a one-dimensional water quality model, realizes the connection between the geographic information system and the management information system, completes the effective management of a large amount of environmental information, analyzes the changes of environmental pollutants, and realizes The visualization of regional environmental pollution status facilitates the implementation of water environment planning and decision-making.
Description
技术领域technical field
本发明属于环境信息系统领域,具体涉及一种基于GIS技术和一维水质模型的污染源管理系统及其运作方法。The invention belongs to the field of environmental information systems, and in particular relates to a pollution source management system based on GIS technology and a one-dimensional water quality model and an operation method thereof.
背景技术Background technique
进入21世纪,中国水环境面临三大严重问题:水资源短缺、水体污染、洪涝灾害。其中,水体污染导致水环境质量急剧下降,因此水体污染是一个亟待解决的问题。在天然河流中,当污染物采用面源排放方式进行排放或在污染带下游的均匀混合段,一维水质模型是用来进行水资源保护和水污染控制定量计算的一种常用方式。水质模型是一种对水体水质变化规律的数学描述,在数值计算、参数设定上具有优势,但是,在数据管理、模拟结果的可视化和空间分析的表达能力上有限。In the 21st century, China's water environment is facing three serious problems: water shortage, water pollution, and floods. Among them, water pollution has led to a sharp decline in the quality of the water environment, so water pollution is an urgent problem to be solved. In natural rivers, when pollutants are discharged by non-point source discharge or in the uniform mixing section downstream of the pollution zone, the one-dimensional water quality model is a common method for quantitative calculation of water resource protection and water pollution control. The water quality model is a mathematical description of the water quality change law of a water body. It has advantages in numerical calculation and parameter setting, but has limited expressive capabilities in data management, visualization of simulation results, and spatial analysis.
目前,现有的污染源管理系统存在以下缺点:很多系统实现了对污染数据进行编辑、浏览、查询、统计分析和输出等功能,但只停留在对污染源数据的管理效率上;很多系统引入地理信息系统(GIS) 技术,主要利用其空间分析和可视化效果,但其模拟功能在水质上的应用系统缺乏;很多系统集中在对环境数据多层次、多方位的直观显示, 但是未能实现对数据的动态管理以及污染源分布的动态变化;很多系统采用GIS 技术,利用其专题地图功能,迅速将环境统计报表数据显示在地图上,提高了工作效率,在可视化效果上提供给人一目了然的效果,但对河流中污染物的浓度变化情况没有深刻地体现。At present, the existing pollution source management systems have the following shortcomings: many systems realize the functions of editing, browsing, querying, statistical analysis and output of pollution data, but only stay at the management efficiency of pollution source data; many systems introduce geographic information System (GIS) technology mainly utilizes its spatial analysis and visualization effects, but its simulation function is lacking in water quality application systems; many systems focus on the multi-level and multi-directional visual display of environmental data, but fail to realize the data. Dynamic management and dynamic changes in the distribution of pollution sources; many systems use GIS technology and use its thematic map function to quickly display the environmental statistical report data on the map, which improves work efficiency and provides people with a clear effect in the visualization effect. Changes in the concentration of pollutants in rivers are not deeply reflected.
本发明旨在克服现有技术存在的以上问题,提供一种基于GIS技术和一维水质模型的污染源管理系统及其运作方法,提高对环境数据的管理效率,提高了空间分析上的能力以及模型的预测和模拟表达能力,起到辅助决策作用。The present invention aims to overcome the above problems in the prior art, provide a pollution source management system based on GIS technology and a one-dimensional water quality model and its operation method, improve the management efficiency of environmental data, and improve the ability and model of spatial analysis The predictive and simulated expression capabilities play an auxiliary role in decision-making.
发明内容Contents of the invention
本发明将监测得到的环境信息,建立数据库进行统一管理,结合水质模型计算公式,并利用GIS技术的模拟和可视化表达,自动将污染物浓度变化情况生成图示信息。The invention establishes a database for unified management of the environmental information obtained through monitoring, combines the calculation formula of the water quality model, and utilizes the simulation and visual expression of the GIS technology to automatically generate graphical information about the change of the pollutant concentration.
本发明提供一种基于GIS技术和一维水质模型的污染源管理系统,包括:The invention provides a pollution source management system based on GIS technology and a one-dimensional water quality model, including:
基础地理数据库,其储存居民点、区划图、水系图、监测点位图、道路图及其属性数据;Basic geographic database, which stores residential areas, zoning maps, water system maps, monitoring point maps, road maps and their attribute data;
水质监测数据库,其储存水质监测断面的空间数据及其属性数据;Water quality monitoring database, which stores spatial data and attribute data of water quality monitoring sections;
污染源监测数据库,其储存污染源的用水量、排污量、排污类别;Pollution source monitoring database, which stores the water consumption, sewage discharge and sewage category of pollution sources;
水质模型预测模块,根据水质监测数据库和污染源监测数据库中的数据,通过一维水质模型公式计算污染物的浓度;The water quality model prediction module calculates the concentration of pollutants through the one-dimensional water quality model formula according to the data in the water quality monitoring database and the pollution source monitoring database;
统计分析模块,对污染源检测数据库中的数据进行统计分析;The statistical analysis module performs statistical analysis on the data in the pollution source detection database;
地理信息系统模块,其储存图层文件,并在地图上显示基础地理数据库中的数据、水质模型预测模块的计算结果。The geographic information system module stores layer files and displays the data in the basic geographic database and the calculation results of the water quality model prediction module on the map.
本发明中,水质模型是指用于水体水质的预测、研究水体的污染与自净以及排污控制等的描述水体水质变化规律的数学表达式。本发明中“一维水质模型”是水质模型中易于操作,适用于一般河流水质的模拟和预测,研究只在水流方向(x方向)上存在的污染物浓度梯度。In the present invention, the water quality model refers to a mathematical expression used to predict the water quality of the water body, study the pollution and self-purification of the water body, and the control of sewage discharge to describe the change law of the water quality of the water body. The "one-dimensional water quality model" in the present invention is easy to operate in the water quality model, and is suitable for the simulation and prediction of general river water quality, and studies the concentration gradient of pollutants that only exist in the direction of water flow (x direction).
本发明提供一种基于GIS技术和一维水质模型的污染源管理系统的运作方法,包括如下步骤:The present invention provides a method for operating a pollution source management system based on GIS technology and a one-dimensional water quality model, comprising the following steps:
步骤一:根据污染源的名称,在所述地理信息系统模块中查询所述污染源的图层文件;根据查询结果,在地图上渲染显示或给出提示并退出;Step 1: according to the name of the pollution source, query the layer file of the pollution source in the geographic information system module; according to the query result, render and display on the map or give a prompt and exit;
步骤二:从污染源监测数据库中选取排污类别,读取污染源的排污量;Step 2: Select the pollutant discharge category from the pollution source monitoring database, and read the pollutant discharge amount of the pollution source;
步骤三:统计分析模块对污染源检测数据库中的数据进行统计分析,检验数据是否达标;Step 3: The statistical analysis module performs statistical analysis on the data in the pollution source detection database, and checks whether the data is up to standard;
步骤四:选取污染源排放的河流,从水质监测数据库中查询所述河流的监测数据,并通过所述水质模型预测模块计算排放点处污染物浓度,并以消息框的形式显示出来;Step 4: select the river discharged by the pollution source, query the monitoring data of the river from the water quality monitoring database, and calculate the pollutant concentration at the discharge point through the water quality model prediction module, and display it in the form of a message box;
步骤五:通过水质模型预测模块计算在河流推流与弥散共同作用一段距离后的污染物浓度,以消息框的形式显示出来;Step 5: Calculate the pollutant concentration after a certain distance of river push flow and dispersion through the water quality model prediction module, and display it in the form of a message box;
步骤六:根据步骤四、步骤五的计算结果,利用地理信息系统模块将污染物扩散过程、污染物浓度变化情况在地图上显示。Step 6: According to the calculation results of Step 4 and Step 5, use the geographic information system module to display the pollutant diffusion process and the change of pollutant concentration on the map.
其中,所述步骤四中的所述水质模型预测模块是根据以下公式计算排放点处的污染物浓度:Wherein, the water quality model prediction module in the step 4 is to calculate the pollutant concentration at the discharge point according to the following formula:
其中,C0表示排放点处的污染物浓度,Q表示河流的流量;q表示污水的流量;C1表示河流中的污染物本底浓度;C2表示污水中污染物浓度。Among them, C 0 represents the pollutant concentration at the discharge point, Q represents the flow of the river; q represents the flow of sewage; C 1 represents the background concentration of pollutants in the river; C 2 represents the concentration of pollutants in the sewage.
所述步骤五中的所述水质模型预测模块是根据以下公式计算在河流推流与弥散共同作用一段距离后的污染物浓度:The water quality model prediction module in the step 5 is to calculate the pollutant concentration after a certain distance of river push flow and dispersion combined action according to the following formula:
其中,C表示在河流推流与弥散共同作用一段距离后的污染物浓度,C0表示排放点处的污染物浓度,x表示作用距离,ux表示断面平均流速;Dx表示纵向弥散系数;k表示污染物衰减速度常数。Among them, C represents the pollutant concentration after a certain distance of river push flow and dispersion, C 0 represents the pollutant concentration at the discharge point, x represents the action distance, u x represents the average flow velocity of the section; Dx represents the longitudinal diffusion coefficient; k Indicates the pollutant decay rate constant.
本发明中的步骤五中“一段距离”以x表示,是指污染物在河流推流与弥散共同作用的距离。In step 5 of the present invention, "a certain distance" is represented by x, which refers to the distance that pollutants act together in river pushing and dispersing.
本发明的优越性在于:水质模型是一种对水体水质变化规律的数学描述,与GIS技术的结合,提高了空间分析上的能力以及模型的预测和模拟表达能力;对污染源与监测数据进行空间定位、综合分析,以及监测数据与水质模型的有机结合,为污染源管理控制提供了全方位服务;根据通过本发明的功能可以清楚地了解控制区域内水环境容量的状况,确定污染源的允许排放量,根据当地区域河流的水质目标要求,计算污染物的削减量,进而提出控制方案,实现污染负荷在污染源间的合理分配。The advantage of the present invention is that: the water quality model is a mathematical description of the water quality change law of the water body, and the combination with GIS technology improves the ability of spatial analysis and the prediction and simulation expression ability of the model; spatial analysis of pollution sources and monitoring data Positioning, comprehensive analysis, and the organic combination of monitoring data and water quality models provide a full range of services for pollution source management and control; according to the functions of the present invention, the status of water environment capacity in the control area can be clearly understood, and the allowable discharge of pollution sources can be determined According to the water quality target requirements of the rivers in the local area, the reduction amount of pollutants is calculated, and then the control plan is put forward to realize the reasonable distribution of pollution load among pollution sources.
本发明结合了GIS技术与一维水质模型的技术,将GIS数据库、空间分析、水质模型、可视化表达集成应用于水体水质变化,显得相互益彰。GIS技术主要涉及对图形和属性数据的管理和组织,且两种数据之间存在不可分割的联系,提升了对环境数据管理效率上的余地;GIS中实现统计分类分析的功能可以将复杂的各类数据分别提取和表现出来,尤其对水质数据的操作更显重要,起到辅助决策作用;水质模型是一种对水体水质变化规律的数学描述,可以将一个复杂的河流系统转化成一组适当的数学方程进行数学模拟;GIS可视化表达在对污染物浓度变化情况上能够形象的展示这一信息,提高了模拟能力。The invention combines GIS technology and one-dimensional water quality model technology, and integrates GIS database, spatial analysis, water quality model and visual expression into the water quality change of the water body, which is mutually beneficial. GIS technology mainly involves the management and organization of graphics and attribute data, and there is an inseparable connection between the two types of data, which improves the efficiency of environmental data management; the function of statistical classification and analysis in GIS can integrate complex various It is especially important for the operation of water quality data and plays an auxiliary decision-making role; the water quality model is a mathematical description of the water quality change law of the water body, which can transform a complex river system into a set of appropriate Mathematical equations are used for mathematical simulation; GIS visual expression can vividly display this information on the change of pollutant concentration, which improves the simulation ability.
附图说明Description of drawings
图1为本发明污染源管理系统的系统框图;Fig. 1 is the system block diagram of pollution source management system of the present invention;
图2为本发明污染源管理系统的运作方法的流程图。FIG. 2 is a flow chart of the operation method of the pollution source management system of the present invention.
具体实施方式Detailed ways
以下结合附图和实施例进一步详细阐述本发明。以下实施例并不是对本发明的限制。在不背离发明构思的精神和范围,本领域技术人员能够想到的变化和优点都被包括在本发明中。The present invention will be further elaborated below in conjunction with the accompanying drawings and examples. The following examples do not limit the invention. Without departing from the spirit and scope of the inventive concept, changes and advantages that can be imagined by those skilled in the art are all included in the present invention.
如图1所示,本发明基于GIS技术和一维水质模型的污染源管理系统包括:As shown in Figure 1, the pollution source management system of the present invention based on GIS technology and one-dimensional water quality model comprises:
基础地理数据库,其储存居民点、区划图、水系图、监测点位图、道路图及其属性数据;水质监测点的属性包括:经纬度,重点监测指标为总磷、总氮、氨氮、COD和挥发酚,水质类别、等级状况等。Basic geographic database, which stores residential areas, zoning maps, water system maps, monitoring point maps, road maps and their attribute data; the attributes of water quality monitoring points include: longitude and latitude, and the key monitoring indicators are total phosphorus, total nitrogen, ammonia nitrogen, COD and Volatile phenols, water quality category, grade status, etc.
水质监测数据库,其储存水质监测断面的空间数据及其属性数据;水质监测数据库中的数据需要更新。Water quality monitoring database, which stores the spatial data and attribute data of water quality monitoring sections; the data in the water quality monitoring database needs to be updated.
污染源监测数据库,其储存污染源的用水量、排污量、排污类别,用来研究污染源对河流造成的影响;Pollution source monitoring database, which stores the water consumption, sewage discharge, and sewage category of pollution sources, and is used to study the impact of pollution sources on rivers;
水质模型预测模块,其根据水质监测数据库和污染源监测数据库中的数据,通过一维水质模型公式计算污染物的浓度;A water quality model prediction module, which calculates the concentration of pollutants through a one-dimensional water quality model formula according to the data in the water quality monitoring database and the pollution source monitoring database;
统计分析模块,对污染源检测数据库中的数据进行统计分析;The statistical analysis module performs statistical analysis on the data in the pollution source detection database;
地理信息系统模块,其储存图层文件,并将基础地理数据库中的数据、水质模型预测模块的计算结果在地图上显示。将某个区域的地图概化,提取居民点、河流水系、道路、污染源、水质监测点等图层存储在地理信息系统模块中。 本发明中,与环境相关信息数据库包括:基础地理数据库,其包括地形图、水系图、污染源、水质监测点、水功能区等专题图,主要负责研究区域内的空间数据的管理,利用ARCGIS软件完成地图的数字化获得数据,将数据转为shp格式;水质监测数据库,储存水质监测断面的空间数据及其属性数据,更新水质的监测数据;污染源监测据库,储存污染源用水量,排污量,主要排污类别,用来调查污染源与河流之间的响应关系。The geographic information system module stores layer files and displays the data in the basic geographic database and the calculation results of the water quality model prediction module on the map. Generalize the map of a certain area, extract residential areas, river systems, roads, pollution sources, water quality monitoring points and other layers and store them in the geographic information system module. In the present invention, the environment-related information database includes: basic geographic database, which includes topographic maps, water system maps, pollution sources, water quality monitoring points, water function areas and other special maps, mainly responsible for the management of spatial data in the research area, using ARCGIS software Complete the digitalization of the map to obtain data, and convert the data into shp format; the water quality monitoring database stores the spatial data and attribute data of the water quality monitoring section, and updates the water quality monitoring data; the pollution source monitoring database stores the water consumption and sewage discharge of pollution sources, mainly Discharge categories to investigate the response relationship between pollution sources and rivers.
本发明基于GIS技术和一维水质模型的污染源管理系统,实现功能,例如:一是各项数据目标式查询:可以从基础地理数据库、水质监测数据库以及污染源监测数据库获取数据,进行水环境数据的查询。查询有2种方式,即从图到属性的查询和从属性到图的查询检索。用户可对自己感兴趣的某些内容进行定位查询、关键字查询,所查询的内容以图形、文字形式渲染到地图上。二是对污染源数据进行统计分析:根据对各监测点的信息进行查询、统计,将结果制作柱状图,直观地输出显示在屏幕上。The present invention is based on the GIS technology and the pollution source management system of the one-dimensional water quality model to realize functions, for example: one is the target query of various data: the data can be obtained from the basic geographic database, the water quality monitoring database and the pollution source monitoring database, and the water environment data can be searched. Inquire. There are two ways to query, that is, query from graph to attribute and query retrieval from attribute to graph. Users can conduct location queries and keyword queries on certain content they are interested in, and the queried content will be rendered on the map in the form of graphics and text. The second is to conduct statistical analysis on the pollution source data: query and count the information of each monitoring point, make a histogram of the results, and intuitively output and display it on the screen.
系统可根据用户感兴趣的某些内容从基础地理数据库、水质监测数据库以及污染源监测数据库中进行查询。查询方式包括从图到属性的查询和从属性到图的查询。所查询的内容在地图上以图形或文字形式亮度显示出来。The system can query from the basic geographic database, water quality monitoring database and pollution source monitoring database according to some content that the user is interested in. The query methods include query from graph to attribute and query from attribute to graph. The searched content is displayed on the map in the form of graphics or text.
实例中可根据了解某个化工厂一些简单情况,使用从图到属性的查询。具体实现过程例如:在地图上,将鼠标停留在该化工厂上,其一些属性从污染源监测数据库中获取,在鼠标旁边以文字形式显示出来。In the example, the query from graph to attribute can be used based on understanding some simple situations of a certain chemical plant. The specific implementation process is as follows: on the map, the mouse stays on the chemical plant, some of its attributes are obtained from the pollution source monitoring database, and displayed in text form next to the mouse.
例如,输入属性条件参数为:河流水质类别≥三类。这时在电子地图上呈现出所有符合条件的河流。For example, the input attribute condition parameter is: river water quality category≥three categories. At this time, all eligible rivers are displayed on the electronic map.
具体实现过程例如:在第一个地物下拉框中选择:河流;第二个属性下拉框中选择:等级状况;第三个符号下拉框中选择:≥;第四个符合下拉框中选择:三类;最后,点击事物闪烁按钮,那么系统就可以从基础地理数据库和水质监测数据库中获取数据,并在地图上呈现出所有符合查询条件的河流。The specific implementation process is for example: select: river in the first feature drop-down box; select: grade status in the second attribute drop-down box; select: ≥ in the third symbol drop-down box; select in the fourth match drop-down box: Three categories; finally, click the thing flashing button, then the system can obtain data from the basic geographic database and water quality monitoring database, and present all rivers that meet the query conditions on the map.
污染源排污浓度计算:根据污染源的名称,通过地理信息系统模块在地图上显示污染源的图层文件,从污染物监测数据库中选取要计算的污染物类别,读取污染源的排污量;选取污染源向周边排放的一条河流,从水质监测数据库中查询该河流的监测数据,计算排放点处的污染物浓度,并以消息框的形式显示出来。Calculation of pollution source discharge concentration: According to the name of the pollution source, display the layer file of the pollution source on the map through the geographic information system module, select the pollutant category to be calculated from the pollutant monitoring database, and read the discharge amount of the pollution source; select the pollution source to the surrounding area A river is discharged, query the monitoring data of the river from the water quality monitoring database, calculate the pollutant concentration at the discharge point, and display it in the form of a message box.
污染物扩散后浓度计算:岸边污染物经过河水混合,在河流推流与弥散共同作用下,浓度逐渐变淡,输入河流平均流速、弥散系数以及污染物衰减速度等常数后,显示出污染物变化后的浓度。Concentration calculation after pollutant diffusion: The pollutants on the bank are mixed with river water, and the concentration gradually becomes lighter under the combined action of river push flow and dispersion. After inputting constants such as river average flow velocity, diffusion coefficient and pollutant decay speed, the pollutant changed concentration.
污染物浓度变化情况输出:污染物在水流作用下,浓度发生改变,这时在地图上显示污染物浓度分布随距离的变化情况,如用颜色线路代表污染物扩散过程,用颜色深浅表示污染物浓度变化情况。Pollutant concentration change output: The concentration of pollutants changes under the action of water flow. At this time, the change of pollutant concentration distribution with distance is displayed on the map. For example, color lines represent the process of pollutant diffusion, and color shades represent pollutants. concentration changes.
如图2所示基于GIS技术和一维水质模型的本发明污染源管理系统的运行方法,具体步骤包括:As shown in Figure 2, based on the operation method of the pollution source management system of the present invention based on GIS technology and one-dimensional water quality model, the specific steps include:
步骤一:根据污染源的名称,查询所述地理信息系统模块中是否有所述污染源的图层文件;如果有,在地图上渲染出来;如果没有,给出提示并退出。Step 1: According to the name of the pollution source, query whether there is a layer file of the pollution source in the geographic information system module; if yes, render it on the map; if not, give a prompt and exit.
步骤二:读取污染源后,从污染源监测数据库中选取要计算的污染物排污类别,读取污染源的排污量。Step 2: After reading the pollution source, select the category of pollutant discharge to be calculated from the pollution source monitoring database, and read the discharge amount of the pollution source.
步骤三:统计分析模块对污染源检测数据库中的数据进行统计分析,根据对各监测点的信息进行查询、统计,将结果制作柱状图,直观地输出显示在屏幕上。统计哪些污染源排放的污染总量或污染浓度不达标。Step 3: The statistical analysis module performs statistical analysis on the data in the pollution source detection database, queries and counts the information of each monitoring point, makes a histogram of the results, and intuitively outputs and displays it on the screen. Statistics of which pollution sources discharge the total amount of pollution or the concentration of pollution are not up to standard.
步骤四:选取污染源向周边排放的一条河流,从水质监测数据库中查询河流的监测数据,并通过水质模型预测模块计算排放点处污染物浓度,并以消息框的形式显示出来。Step 4: Select a river that the pollution source discharges to the surrounding area, query the monitoring data of the river from the water quality monitoring database, and calculate the pollutant concentration at the discharge point through the water quality model prediction module, and display it in the form of a message box.
例如,输入污染源的名称:叶宝化工公司,查询地理数据库中是否有该污染源,如果有,在地图上显示出来,否则退出。读取污染源后,从污染物排放数据库中读取污染源排污量,选取要计算的污染物类别,如:酚类;选取污染源向周边排放的河流:通吕运河;从水质监测数据库中查询对其监测数据,如:河流的流量、河流中的污染物本底浓度等,开始计算排污口处污染物的浓度,并以消息框的形式显示出数据。For example, input the name of the pollution source: Yebao Chemical Company, check whether the pollution source exists in the geographic database, if so, display it on the map, otherwise exit. After reading the pollution source, read the discharge amount of the pollution source from the pollutant discharge database, select the pollutant category to be calculated, such as: phenols; select the river that the pollution source discharges to the surrounding: Tonglu Canal; query it from the water quality monitoring database Monitoring data, such as: the flow of the river, the background concentration of pollutants in the river, etc., start to calculate the concentration of pollutants at the sewage outlet, and display the data in the form of a message box.
步骤五:通过水质模型预测模块计算污染物在河流推流与弥散共同作用一段距离后的污染物浓度。Step 5: Use the water quality model prediction module to calculate the pollutant concentration of pollutants after a certain distance of the river push flow and dispersion.
污染物经过河水混合,在河流推流与弥散共同作用下,浓度逐渐变淡,输入河流平均流速、弥散系数以及污染物衰减速度等参数后,计算出污染物随着距离的变化而改变后的浓度。Pollutants are mixed with river water, and under the joint action of river push flow and dispersion, the concentration gradually becomes thinner. After inputting parameters such as river average flow velocity, dispersion coefficient, and pollutant attenuation speed, the change of pollutants with distance is calculated. concentration.
步骤六:根据步骤四、步骤五计算结果,利用地理信息系统模块将污染物扩散过程、污染物浓度变化情况在地图上显示。污染物在水流作用下,可以用颜色线路代表污染物扩散过程,用颜色深浅表示污染物浓度变化情况。Step 6: According to the calculation results of Step 4 and Step 5, use the geographic information system module to display the pollutant diffusion process and the change of pollutant concentration on the map. Under the action of water flow, the color line can be used to represent the diffusion process of pollutants, and the color depth can be used to represent the change of pollutant concentration.
其中,在步骤四中,水质模型预测模块是根据以下公式计算排放点处的污染物浓度:Among them, in step four, the water quality model prediction module calculates the pollutant concentration at the discharge point according to the following formula:
其中,C0表示排放点处的污染物浓度,Q表示河流的流量;q表示污水的流量;C1表示河流中的污染物本底浓度;C2表示污水中污染物浓度。Among them, C 0 represents the pollutant concentration at the discharge point, Q represents the flow of the river; q represents the flow of sewage; C 1 represents the background concentration of pollutants in the river; C 2 represents the concentration of pollutants in the sewage.
在步骤五中,水质模型预测模块是根据以下公式计算在河流推流与弥散共同作用一段距离后的污染物浓度:In step 5, the water quality model prediction module calculates the pollutant concentration after a certain distance of river push flow and dispersion combined action according to the following formula:
其中,C表示在河流推流与弥散共同作用一段距离后的污染物浓度,C0表示排放点处的污染物浓度,x表示作用距离,ux表示断面平均流速;Dx表示纵向弥散系数;k表示污染物衰减速度常数。Among them, C represents the pollutant concentration after a certain distance of river push flow and dispersion, C 0 represents the pollutant concentration at the discharge point, x represents the action distance, u x represents the average flow velocity of the section; Dx represents the longitudinal diffusion coefficient; k Indicates the pollutant decay rate constant.
实例中,某厂向某河流中排放污水,污水量q=0.15m3/s,污水中COD=200mg/L;河流水质监测数据库中,河流的流量Q=5.5 m3/s,河流COD的本底浓度=35mg/L,平均流速ux=0.3 m/s;已知COD的衰减速度常数k=0.18d-1,弥散系数Dx=6 m2/s;这时系统可自动计算出排放点处经过完全混合后的COD初始浓度C0=39.38 mg/ L。在迁移扩散x=1000m距离后,系统可自动计算出经过该段距离后COD浓度C= 39.1 mg/ L。In the example, a factory discharges sewage into a river, the amount of sewage q=0.15m 3 /s, the COD in the sewage=200mg/L; in the river water quality monitoring database, the flow of the river Q=5.5 m 3 /s, the COD of the river Background concentration=35mg/L, average velocity u x =0.3 m/s; known COD decay rate constant k=0.18d -1 , diffusion coefficient Dx=6 m 2 /s; then the system can automatically calculate the emission The initial COD concentration C 0 after complete mixing at the point is 39.38 mg/L. After migration and diffusion x=1000m distance, the system can automatically calculate the COD concentration C=39.1 mg/L after this distance.
如上所述对各个污染源及其所排放的污染物、污染量进行动态管理,根据排污情况,环境决策者可以结合城市的污染指标,提出对污染源进行排放的限制依据,实行科学的污染控制。As mentioned above, the dynamic management of each pollution source, the pollutants it emits, and the amount of pollution is carried out. According to the pollution discharge situation, environmental decision makers can combine the pollution indicators of the city to propose a basis for restricting the discharge of pollution sources and implement scientific pollution control.
综上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围。即凡依本发明申请专利范围的内容所作的等效变化与修饰,都应属于本发明的技术范畴。In summary, the above are only preferred embodiments of the present invention, and are not intended to limit the implementation scope of the present invention. That is, all equivalent changes and modifications made according to the content of the patent scope of the present invention shall belong to the technical category of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101265576A CN102184487A (en) | 2011-05-17 | 2011-05-17 | Pollution source management system based on geographic information system (GIS) technology and one-dimensional water quality model and operation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101265576A CN102184487A (en) | 2011-05-17 | 2011-05-17 | Pollution source management system based on geographic information system (GIS) technology and one-dimensional water quality model and operation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102184487A true CN102184487A (en) | 2011-09-14 |
Family
ID=44570659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101265576A Pending CN102184487A (en) | 2011-05-17 | 2011-05-17 | Pollution source management system based on geographic information system (GIS) technology and one-dimensional water quality model and operation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102184487A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102708520A (en) * | 2012-05-10 | 2012-10-03 | 南京国图信息产业股份有限公司 | Section gradient interpolation technology for water quality multi-index dynamic simulation |
CN103093092A (en) * | 2013-01-14 | 2013-05-08 | 西南交通大学 | Accident source positioning method of river emergent chemical oxygen demand (COD) pollution |
CN103123662A (en) * | 2011-11-21 | 2013-05-29 | 天津市环境监测中心 | Computing and analyzing system of transport of pollutants in water environment |
CN103218485A (en) * | 2013-04-03 | 2013-07-24 | 郑州大学 | Method for calculating small watershed environmental capacity under support of GIS (Geographic Information System) technology |
CN104103005A (en) * | 2014-08-05 | 2014-10-15 | 环境保护部华南环境科学研究所 | Traceability method of unexpected water environmental event pollution source under limited condition |
CN104268334A (en) * | 2014-09-22 | 2015-01-07 | 中国水利水电科学研究院 | Pollutant spatial distribution testing method |
CN104392100A (en) * | 2014-10-29 | 2015-03-04 | 南京南瑞集团公司 | Pollution source diffusion early-warning method based on water quality on-line monitoring system |
CN104615906A (en) * | 2015-03-03 | 2015-05-13 | 中科宇图天下科技有限公司 | Method for quickly tracing to source by means of back flow based on one-way river |
CN104657783A (en) * | 2014-03-21 | 2015-05-27 | 北京千安哲信息技术有限公司 | River reach discretization treatment method for river pollutant leakage and diffusion prediction |
CN105787114A (en) * | 2016-03-24 | 2016-07-20 | 四川理工学院 | Management and analytical application system for ecological environment of Fuxi River basin |
CN105911037A (en) * | 2016-04-19 | 2016-08-31 | 湖南科技大学 | Manganese and associated heavy metal distribution prediction method of soil-water interface contaminated flow in manganese mine area |
CN106096221A (en) * | 2016-03-11 | 2016-11-09 | 贵州省水利水电勘测设计研究院 | Newly-built Sewage outlet pollutant the highest permission concentration of emission computational methods |
CN106289398A (en) * | 2016-08-16 | 2017-01-04 | 车广为 | Water environment collecting method |
CN106339586A (en) * | 2016-08-23 | 2017-01-18 | 环境保护部华南环境科学研究所 | Tracing method and prediction method of mustard gas pollution |
CN106815448A (en) * | 2017-02-07 | 2017-06-09 | 长江水资源保护科学研究所 | A kind of river attenuation type pollutant analogy method |
CN106836114A (en) * | 2017-01-09 | 2017-06-13 | 中国科学院生态环境研究中心 | Administering method for eliminating rural area type black and odorous water |
CN107403034A (en) * | 2017-06-28 | 2017-11-28 | 西交利物浦大学 | Water pollution spreads early warning method for visualizing |
CN108549744A (en) * | 2018-03-14 | 2018-09-18 | 西安理工大学 | A kind of river water environmental capacity allocation method |
CN108921139A (en) * | 2018-08-04 | 2018-11-30 | 肖恒念 | Sewage water treatment method based on UAV Video |
CN109101781A (en) * | 2018-07-25 | 2018-12-28 | 水利部交通运输部国家能源局南京水利科学研究院 | The calculation method of pollution sources contribution proportion in a kind of Complex River |
CN109633111A (en) * | 2018-11-26 | 2019-04-16 | 中国环境科学研究院 | A kind of lake and reservoir ash water footprints appraisal procedure and its application |
CN110288211A (en) * | 2019-06-12 | 2019-09-27 | 江苏汇环环保科技有限公司 | A kind of water environment management method based on 3D map |
CN110597932A (en) * | 2019-07-05 | 2019-12-20 | 袁静 | Environment comprehensive evaluation prediction method based on remote sensing image |
CN110967461A (en) * | 2019-12-19 | 2020-04-07 | 浙江清华长三角研究院 | A method to realize dynamic distribution of river water quality based on GIS technology |
CN113139756A (en) * | 2020-10-20 | 2021-07-20 | 中科三清科技有限公司 | Pollution source pollution discharge sensitivity evaluation method and device |
CN113592668A (en) * | 2021-06-25 | 2021-11-02 | 杭州智果科技有限公司 | Water quality area division management system |
CN115098512A (en) * | 2022-07-18 | 2022-09-23 | 重庆长安汽车股份有限公司 | Display method, device, electronic device and storage medium for tabular data |
CN116629035A (en) * | 2023-07-25 | 2023-08-22 | 欧梯恩智能科技(苏州)有限公司 | River pollution diffusion simulation method, device and system |
CN118136146A (en) * | 2024-05-08 | 2024-06-04 | 芯视界(北京)科技有限公司 | Method, device, electronic equipment and storage medium for tracing source of flood season pollution |
-
2011
- 2011-05-17 CN CN2011101265576A patent/CN102184487A/en active Pending
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123662A (en) * | 2011-11-21 | 2013-05-29 | 天津市环境监测中心 | Computing and analyzing system of transport of pollutants in water environment |
CN102708520A (en) * | 2012-05-10 | 2012-10-03 | 南京国图信息产业股份有限公司 | Section gradient interpolation technology for water quality multi-index dynamic simulation |
CN103093092B (en) * | 2013-01-14 | 2015-11-04 | 西南交通大学 | Accident Source Location Method for Sudden COD Pollution of Rivers |
CN103093092A (en) * | 2013-01-14 | 2013-05-08 | 西南交通大学 | Accident source positioning method of river emergent chemical oxygen demand (COD) pollution |
CN103218485B (en) * | 2013-04-03 | 2015-10-07 | 郑州大学 | Small watershed environmental capacity computing method under a kind of GIS technology support |
CN103218485A (en) * | 2013-04-03 | 2013-07-24 | 郑州大学 | Method for calculating small watershed environmental capacity under support of GIS (Geographic Information System) technology |
CN104657783A (en) * | 2014-03-21 | 2015-05-27 | 北京千安哲信息技术有限公司 | River reach discretization treatment method for river pollutant leakage and diffusion prediction |
CN104657783B (en) * | 2014-03-21 | 2016-03-30 | 北京千安哲信息技术有限公司 | For the section sliding-model control method of Mixing Coefficient in Rectangular Channels Release and dispersion prediction |
CN104103005A (en) * | 2014-08-05 | 2014-10-15 | 环境保护部华南环境科学研究所 | Traceability method of unexpected water environmental event pollution source under limited condition |
CN104268334A (en) * | 2014-09-22 | 2015-01-07 | 中国水利水电科学研究院 | Pollutant spatial distribution testing method |
CN104392100A (en) * | 2014-10-29 | 2015-03-04 | 南京南瑞集团公司 | Pollution source diffusion early-warning method based on water quality on-line monitoring system |
CN104392100B (en) * | 2014-10-29 | 2017-05-17 | 南京南瑞集团公司 | Pollution source diffusion early-warning method based on water quality on-line monitoring system |
CN104615906A (en) * | 2015-03-03 | 2015-05-13 | 中科宇图天下科技有限公司 | Method for quickly tracing to source by means of back flow based on one-way river |
CN104615906B (en) * | 2015-03-03 | 2018-04-20 | 中科宇图天下科技有限公司 | A kind of method quickly countercurrently traced to the source based on single line river |
CN106096221A (en) * | 2016-03-11 | 2016-11-09 | 贵州省水利水电勘测设计研究院 | Newly-built Sewage outlet pollutant the highest permission concentration of emission computational methods |
CN105787114A (en) * | 2016-03-24 | 2016-07-20 | 四川理工学院 | Management and analytical application system for ecological environment of Fuxi River basin |
CN105911037A (en) * | 2016-04-19 | 2016-08-31 | 湖南科技大学 | Manganese and associated heavy metal distribution prediction method of soil-water interface contaminated flow in manganese mine area |
CN105911037B (en) * | 2016-04-19 | 2018-05-15 | 湖南科技大学 | Manganese and association heavy metal distribution Forecasting Methodology in the soil water termination contaminated stream of Manganese Ore District |
CN106289398A (en) * | 2016-08-16 | 2017-01-04 | 车广为 | Water environment collecting method |
CN106339586A (en) * | 2016-08-23 | 2017-01-18 | 环境保护部华南环境科学研究所 | Tracing method and prediction method of mustard gas pollution |
CN106339586B (en) * | 2016-08-23 | 2019-01-18 | 环境保护部华南环境科学研究所 | Mustard gas pollutes source tracing method and forecasting procedure |
CN106836114A (en) * | 2017-01-09 | 2017-06-13 | 中国科学院生态环境研究中心 | Administering method for eliminating rural area type black and odorous water |
CN106815448A (en) * | 2017-02-07 | 2017-06-09 | 长江水资源保护科学研究所 | A kind of river attenuation type pollutant analogy method |
CN106815448B (en) * | 2017-02-07 | 2020-03-31 | 长江水资源保护科学研究所 | River attenuation type pollutant simulation method |
CN107403034A (en) * | 2017-06-28 | 2017-11-28 | 西交利物浦大学 | Water pollution spreads early warning method for visualizing |
CN108549744A (en) * | 2018-03-14 | 2018-09-18 | 西安理工大学 | A kind of river water environmental capacity allocation method |
CN109101781B (en) * | 2018-07-25 | 2019-10-22 | 水利部交通运输部国家能源局南京水利科学研究院 | The calculation method of pollution sources contribution proportion in a kind of Complex River |
CN109101781A (en) * | 2018-07-25 | 2018-12-28 | 水利部交通运输部国家能源局南京水利科学研究院 | The calculation method of pollution sources contribution proportion in a kind of Complex River |
CN108921139A (en) * | 2018-08-04 | 2018-11-30 | 肖恒念 | Sewage water treatment method based on UAV Video |
CN109633111B (en) * | 2018-11-26 | 2020-08-21 | 中国环境科学研究院 | Lake and reservoir grey water footprint evaluation method and application thereof |
CN109633111A (en) * | 2018-11-26 | 2019-04-16 | 中国环境科学研究院 | A kind of lake and reservoir ash water footprints appraisal procedure and its application |
CN110288211A (en) * | 2019-06-12 | 2019-09-27 | 江苏汇环环保科技有限公司 | A kind of water environment management method based on 3D map |
CN110597932A (en) * | 2019-07-05 | 2019-12-20 | 袁静 | Environment comprehensive evaluation prediction method based on remote sensing image |
CN110967461A (en) * | 2019-12-19 | 2020-04-07 | 浙江清华长三角研究院 | A method to realize dynamic distribution of river water quality based on GIS technology |
CN110967461B (en) * | 2019-12-19 | 2020-08-25 | 浙江清华长三角研究院 | Method for realizing dynamic distribution of river water quality based on GIS technology |
CN113139756A (en) * | 2020-10-20 | 2021-07-20 | 中科三清科技有限公司 | Pollution source pollution discharge sensitivity evaluation method and device |
CN113592668A (en) * | 2021-06-25 | 2021-11-02 | 杭州智果科技有限公司 | Water quality area division management system |
CN113592668B (en) * | 2021-06-25 | 2023-11-03 | 杭州智果科技有限公司 | Water quality area division management system |
CN115098512A (en) * | 2022-07-18 | 2022-09-23 | 重庆长安汽车股份有限公司 | Display method, device, electronic device and storage medium for tabular data |
CN116629035A (en) * | 2023-07-25 | 2023-08-22 | 欧梯恩智能科技(苏州)有限公司 | River pollution diffusion simulation method, device and system |
CN116629035B (en) * | 2023-07-25 | 2023-09-15 | 欧梯恩智能科技(苏州)有限公司 | River pollution diffusion simulation method, device and system |
CN118136146A (en) * | 2024-05-08 | 2024-06-04 | 芯视界(北京)科技有限公司 | Method, device, electronic equipment and storage medium for tracing source of flood season pollution |
CN118136146B (en) * | 2024-05-08 | 2025-02-14 | 芯视界(北京)科技有限公司 | Method, device, electronic equipment and storage medium for tracing source of flood season pollution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102184487A (en) | Pollution source management system based on geographic information system (GIS) technology and one-dimensional water quality model and operation method thereof | |
Zhang | Public participation in the Geoweb era: Defining a typology for geo-participation in local governments | |
Moore et al. | The road to Nhdp lus—advancements in digital stream networks and associated catchments | |
Wang et al. | Analysis on urban densification dynamics and future modes in southeastern Wisconsin, USA | |
WO2021139811A1 (en) | Type recognition method for regional carbon emission characteristic, and electronic device | |
CN101673369A (en) | Projection pursuit-based drainage pipe network flood risk evaluation method | |
CN110533212A (en) | Urban waterlogging public sentiment monitoring and pre-alarming method based on big data | |
CN104392100A (en) | Pollution source diffusion early-warning method based on water quality on-line monitoring system | |
CN105512166A (en) | Traffic parallel method with mapping between microblog public sentiments and city road conditions | |
CN108492553A (en) | A kind of movable vehicle horizontal analysis method towards real-time road network emission evaluation | |
Zhou et al. | Characteristic analysis of rainstorm-induced catastrophe and the countermeasures of flood hazard mitigation about Shenzhen city | |
CN115587667A (en) | Pollution analysis management module and method of water environment management system of smart environmental protection platform | |
CN107562953A (en) | A kind of river information system based on GIS geographical information technologies | |
CN114510566B (en) | Method and system for mining, classifying and analyzing hotword based on worksheet | |
CN108304680A (en) | A kind of Sewage outlet planning simulation and evaluation system based on WebGIS | |
Wen et al. | Research on urban road network evaluation based on fractal analysis | |
Li et al. | The influence mechanism of supporting cities' development on the spatial expansion of economic development zones: Evidence from China's coast | |
Guo et al. | Automatic setting of urban drainage pipe monitoring points based on scenario simulation and fuzzy clustering | |
Ghosh et al. | Typologies and basic descriptors of New Zealand residential urban forms | |
Li et al. | Research on evolution of population and economy spatial distribution pattern in ecologically fragile areas: A case study of ningxia, China | |
CN118485230A (en) | A method and device for constructing a knowledge graph and linking it with a map for comprehensive water resources planning | |
Gao et al. | Accessibility evaluation of a newly planned high-speed railway station in a metropolitan core area based on a modified two-step floating catchment area method | |
Fedorko et al. | Spatial distribution of land type in regression models of pollutant loading | |
Zheng et al. | Evolving Threshold of Flood-Leading Precipitation in a User-Oriented Forecast System Based on the TIGGE Dataset | |
Seddiki et al. | Modeling of water demand management in an arid area: case of Bechar city |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20110914 |