CN102175727A - 光激发微分电容法测定低背景载流子浓度的方法 - Google Patents

光激发微分电容法测定低背景载流子浓度的方法 Download PDF

Info

Publication number
CN102175727A
CN102175727A CN 201110008829 CN201110008829A CN102175727A CN 102175727 A CN102175727 A CN 102175727A CN 201110008829 CN201110008829 CN 201110008829 CN 201110008829 A CN201110008829 A CN 201110008829A CN 102175727 A CN102175727 A CN 102175727A
Authority
CN
China
Prior art keywords
determined
differential capacitance
carrier concentration
optical excitation
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110008829
Other languages
English (en)
Other versions
CN102175727B (zh
Inventor
李天信
夏辉
陆卫
殷豪
黄文超
王文娟
胡伟达
李宁
陈平平
李志峰
陈效双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN 201110008829 priority Critical patent/CN102175727B/zh
Publication of CN102175727A publication Critical patent/CN102175727A/zh
Application granted granted Critical
Publication of CN102175727B publication Critical patent/CN102175727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种半导体材料器件中低背景载流子浓度的测定方法,包括步骤:测量待定区域表面的平带电压和光激发条件下的微分电容响应,待测定及邻近区域的数值建模,比较数值模型拟合和实际测量的待测定区域光激发条件下表面微分电容确定平衡载流子浓度。该方法适用于具有复杂结构的半导体材料或器件中背景载流子浓度低于1015cm-3特定功能区域的精确测定,并且能够对集成或阵列器件中单个微观区块实施检测。

Description

光激发微分电容法测定低背景载流子浓度的方法
技术领域
本发明涉及一类半导体材料器件特征参数的测量方法,特别是关于一种半导体材料器件中特定区域极低背景载流子浓度的测定。属于半导体材料表征领域。
背景技术
半导体器件通过其中自由电子即载流子的输运、跃迁和弛豫来实现其电学或光电功能,因此测量和控制各功能区域的载流子浓度是半导体材料和器件工艺的重要内容之一。在一些半导体器件的特定区域,例如半导体光电探测器的吸收区,需要很低的背景载流子浓度(≤1015cm-3),以获得低噪声、高迁移率和较长的少数载流子寿命等关键性能;为此需采用弱掺杂、不掺杂乃至低浓度补偿掺杂的工艺,这使得通过分析杂质浓度获得载流子信息的二次离子质谱(SIMS)方法不再有效。
目前,检测半导体材料中载流子浓度的主要方法还有微分电容(包括电化学电容-偏压ECV法以及扫描电容显微SCM法等)、霍尔效应测量(Hall effect)和分布电阻探针法(SRP)等。其中霍尔效应测量的精度高,并能同时获得载流子迁移率等信息,但要求试样待测区域的电导显著高于邻近区域,因此不适合多层结构中相对低载流子浓度区域的测量。分布电阻探针法空间分辨率高,适合多层结构,但在测量低载流子浓度,尤其1015cm-3以下浓度时,偏差增大,甚至不可用。
电化学电容-偏压ECV方法能够以较高的精确度提供试样深度方向的载流子分布,分辨可至纳米级,其可检测的浓度范围原则上可低至1012cm-3;但受德拜长度的限制(P.Blood,Semicond.Sci.Technol.1(1986)7-27),低浓度测量对该区域厚度要求增加,例如对1×1015cm-3的载流子浓度,高仅0.1eV的肖特基势垒对应的德拜长度也已达到0.32微米;即便如此,对载流子浓度落差大的半导体多层结构,由于串联电阻以及有效腐蚀面积偏差等因素的影响,ECV检测的误差也大大增加,因此目前尚未见ECV方法在含1×1015cm-3以下载流子浓度区域的多层结构上可靠应用的报道。另外,ECV方法需要一定尺寸(直径在毫米级)的横向腐蚀面,无法应用于半导体集成器件或阵列器件指定功能区块的检测。
扫描电容显微方法(SCM)的基本原理和ECV方法相似,但为了获得二维空间分辨使用纳米探针做移动电极,其微分电容的灵敏响应范围受到限制,因此常规SCM方法对载流子浓度可靠的测量范围在1015~1019cm-3,不具备更低浓度的定量检测能力。
发明内容
本发明的目的是提供一种半导体材料器件中特定区域低背景(平衡)载流子浓度的测定方法。该方法利用光激发手段,结合局域微分电容测量和数值拟合,实现对局部区域低于1015cm-3载流子浓度的定量测定。
本发明提供一种光激发微分电容法测定半导体材料或器件中特定区域低背景载流子浓度的方法,该方法利用光激发改变待测区域的非平衡载流子浓度,从而引起表面微分电容的系统变化,该变化可以被扫描电容显微方法SCM检测;这种激发光强和微分电容的相关性在一定条件范围内是单调惟一的,并且其关联特征直接依赖于该区域的平衡(背景)载流子浓度,因而构成了本发明的原理基础和实施依据。
在定量测定的实施方式方面,利用光激发引起微分电容信号正负极性的反转点作为数值模拟和实验的比对点,易于判断和实施,并且避免了扫描电容显微方法SCM在测量低载流子浓度的微分电容时定量响应偏差的影响,提高背景载流子浓度的确定精度。在方法实施中,可根据待测区域实际的表面电势特征,设置相应的直流偏压,使得被测区域表面处于或接近反型状态,从而便于实现光激发引发微分电容信号的反转,并有利于提高测量精度。
依据上述原理的低背景(平衡)载流子浓度测定方法步骤如下:
1.在半导体材料或器件的表面或侧壁制备形成薄介电层覆盖的平整表面,其中介电层厚度不超过1纳米,覆盖区域包含载流子浓度待测定的区域;对IV族半导体材料,可以利用紫外辐照臭氧环境中的表面氧化制备介电层,对III-V族及其它化合物半导体可以利用清洁表面(或剖面)的自然氧化层作为介电层。
2.以连接待测定区域的欧姆电极为公共电极,利用扫描电容显微镜(SCM)测量薄介电层覆盖平整表面的二维微分电容显微分布,依据该二维分布确定待测定区域的范围。
3.在暗背景下利用SCM测量载流子浓度待测定区域中心处微分电容与直流偏压的关系曲线,依据该关系曲线确定待测定区域表面平带偏压VFB和表面强反型临界偏压VT。其中表面平带偏压(VFB,flat-band voltage)是指使得待测区域表面能带平直所需的直流偏压,表面强反型(strong surface inversion)临界偏压VT是指使得待测区域表面显著反型所需的最低偏压,强反型条件由以下公式确定
|eφS,inv|≥2|(Ef-Ei)|
公式中eφS,inv是强反型条件(临界偏压VT)下表面能带弯曲量,Ef是一定背景(平衡)载流子浓度下的费米能级位置,Ei是本征半导体的费米能级位置。表面平带偏压VFB和表面强反型临界偏压VT的确定方法是使用高斯公式拟合测得的微分电容与直流偏压的关系曲线,并依下述判据确定:表面平带偏压VFB为高斯公式拟合的峰值(或谷值)偏压,表面强反型临界偏压VT为高斯公式拟合中5%峰值(或谷值)微分电容所对应的偏压。
4.使用光子能量大于待测定区域半导体材料能带隙的光源激发试样待的测区域,测量并记录不同光激发强度下待测定区域中心处的微分电容信号;调节直流偏置电压,直至微分电容信号的极性在激发强度变化范围内发生反转,确定一定直流偏压下微分电容信号趋零时的光激发功率密度阈值。
5.根据半导体材料或器件的实际结构及参数,利用器件模拟软件建立待测定区及其邻近区域的数值模型。
6.设定一待测定区域平衡载流子浓度的初值,计算其费米能级位置;
7.依据费米能级位置、表面平带偏压VFB和强反型临界偏压VT,推算一定平衡载流子浓度初值下待测定区域的表面电势eφS,eq.。表面电势由公式eφS,eq.=eVFB·|2(EF-Ei)/(eVT-eVFB)|确定,公式中由强反型的临界偏压和能带条件比值|(eVT-eVFB)/2(EF-Ei)|决定了测量系统的水平臂因子(level arm factor)。
8.在数值模型中的待测定区域加入表面固定电荷,拟合推算得的表面电势。
9.利用计入表面电势的数值模型拟合待测定区域在不同光激发强度下近表面和体内的非平衡载流子分布,其中直流偏压条件与步骤4调节设定的值相同。
10.依据非平衡载流子分布计算在所设偏压和光激发条件下待测定区域的表面微分电容。
11.依据计算得的表面微分电容与光激发强度的关系,推定一定平衡载流子浓度初值条件下,待测定区域表面微分电容趋零时的光激发功率密度。
12.改变平衡载流子浓度的初值,重复步骤6至步骤11,依据数值拟合和推算,得到不同平衡载流子浓度下待测定区域表面微分电容趋零时的光激发功率密度。
13.依据推算获得的待测定区域表面微分电容趋零时的光激发功率密度与平衡载流子浓度的关系以及步骤4测得的实际光激发功率密度阈值,确定半导体材料或器件待测定区域的平衡载流子浓度。
14.对2个及以上的载流子浓度待测定区域重复步骤1至步骤13,或步骤2至步骤13,直至完成所有区域的载流子浓度测定。
与现有技术相比,本发明具有如下优势:
本发明利用了光激发引起待测区域表面微分电容的变化和极性反转,因此能够定量测定极低背景(平衡)载流子浓度;并且由于实验特征变化显著,由此确定的背景载流子浓度精度高。
本发明利用扫描微分电容分布对待测区域实施定位、检测,具有二维空间分辨能力,能够对小于0.1微米尺寸的区域进行检测,尤其适用于含复杂结构的半导体材料或器件中特定功能区域的精确测定,并且能够对集成或阵列器件中单个微观区块实施检测。
附图说明
图1是本发明具体实施方式中InGaAs/InP雪崩二极管结构InGaAs非故意掺杂区域的微分电容与直流偏压关系的实测数据和高斯拟合;
图2是本发明具体实施方式中雪崩二极管结构InGaAs非故意掺杂区域的微分电容与激发功率密度的实测关系;
图3是数值模型计算的三种平衡载流子(电子)浓度初值情况下微分电容与激发功率密度的关系;
图4是数值模型计算的光激发功率密度阈值与平衡载流子浓度的关系;
其中:
VT-表面强反型临界偏压VT
VFB-表面平带偏压VFB
Pthr.-引起表面微分电容信号反转的激发功率密度阈值;
具体实施方式
下面通过对InGaAs/InP雪崩光电二极管结构中InGaAs非掺杂吸收区载流子浓度测定进一步说明本发明的实质特点和相对优势,但并非限制本发明,即本发明绝非局限于该实施例。
本发明适用的InGaAs/InP雪崩光电二极管结构包括:在InP基底上依次是N型InP底电极层、非故意掺杂的InGaAs吸收层、n型InGaAsP层、n型InP层、非故意掺杂的InP倍增层以及P型的InP层。
该二极管结构是沿材料生长方向的纵向分布结构,因此需要制备形成经过非故意掺杂InGaAs吸收层的光洁剖面作为测量表面,这可以利用InP基半导体的晶体特性沿与基底晶面垂直的晶向,一般为[110],解理获得;
对于集成或列阵器件的指定区块测量,可以在显微探针台上用探针划过该区块,再解理获得平整剖面;
InP和其它III-V族半导体光洁剖面的自然氧化层可以作为显微电容测量的薄介电层;
公共电极由经过N型InP底电极层的欧姆接触提供。
在实验测量部分,先用扫描电容显微镜SCM侦测试样剖面的二维微分电容分布;然后根据厚度和掺杂特征对各层材料进行指认,确定待测定的非故意掺杂InGaAs吸收区域。
在暗背景下,将扫描探针定位在InGaAs吸收区域的中心测量微分电容dC/dV和直流偏压的关系如图1所示,对该实施例材料结构,直流偏压范围设定为-2至+2伏,dC/dV测量的交流偏压范围不超过0.6伏,以避免击穿和自然氧化层不稳定。
由高斯线型拟合确定待测表面的平带偏压VFB和表面强反型临界偏压VT,其中平带偏压由高斯公式拟合的谷值偏压确定VFB=0.6V,表面强反型临界偏压由高斯公式拟合中5%谷值微分电容所对应的偏压确定VT=-3.2V。
然后测量InGaAs吸收区中心的微分电容dC/dV随光激发强度的关系(图2),并得到InGaAs吸收区dC/dV信号反转对应的激发功率密度阈值为Pthr.=0.88mW/cm2.使用的激发光光子能量hv需能够激发InGaAs吸收层的带间Eg,InGaAs跃迁,而低于InP能带隙Eg,InP,即Eg,InP>hv>Eg,InGaAs,本实施例使用的激发波长为0.98微米。如有必要,测量中可以调节直流偏压使得一定光强下微分电容dC/dV信号发生正负反转。
根据InGaAs/InP雪崩光电二极管的实际结构参数包括各已知区域的尺寸、掺杂浓度,和材料本征特性参数如能带隙、光吸收系数、电子(空穴)的有效质量、迁移率、少子寿命等,假定InGaAs吸收区背景载流子浓度初值,使用Sentaurus Device软件建立数值模型,通过自洽求解半导体基本方程,获得不同光激发条件下InGaAs吸收区载流子浓度分布的数值模拟结果,其中,需考虑一定的表面固定电荷密度以获得表面能带弯曲即表面势(由公式eφS,eq.=eVFB·|2(EF-Ei)/(eVT-eVFB)|确定)。
由光激发载流子浓度分布计算表面的微分电容dC/dV,再通过微分电容dC/dV和激发光强的关系(图3)提取InGaAs吸收区一定背景(平衡)载流子浓度初值下dC/dV信号反转对应的阈值功率密度。
最后,由实测的dC/dV信号反转阈值光强0.88mW/cm2,在数值计算获得的光激发功率密度阈值与平衡载流子浓度的关系上(图4)确定InGaAs吸收区的背景载流子(电子)浓度为3.0×1014cm-3

Claims (5)

1.一种光激发微分电容法测定半导体材料器件中低背景载流子浓度的方法,其特征在于包括以下步骤:
1.)在半导体材料或器件的表面或侧壁制备形成薄介电层覆盖的平整表面,其中介电层厚度不超过1纳米,覆盖区域包含载流子浓度待测定的区域;
2.)以连接待测定区域的欧姆电极为公共电极,测量薄介电层覆盖平整表面的二维微分电容显微分布,依据该二维分布确定待测定区域的范围;
3.)在暗背景下测量载流子浓度待测定区域中心处微分电容与直流偏压的关系曲线,依据该关系曲线确定待测定区域表面平带偏压VFB和表面强反型临界偏压VT
4.)测量并记录不同光激发强度下待测定区域中心处的微分电容信号;调节直流偏置电压,直至微分电容信号的极性在激发强度变化范围内发生反转,确定一定直流偏压下微分电容信号趋零时的光激发功率密度阈值;
5.)利用器件模拟软件,根据半导体材料或器件的实际结构及参数,建立待测定区及其邻近区域的数值模型;
6.)设定一待测定区域平衡载流子浓度的初值,计算其费米能级位置;
7.)依据费米能级位置、表面平带偏压VFB和强反型临界偏压VT,推算一定平衡载流子浓度初值下待测定区域的表面电势eφS,eq.;
8.)在数值模型中的待测定区域加入表面固定电荷,拟合推算得的表面电势;
9.)利用计入表面电势的数值模型拟合待测定区域在不同光激发强度下近表面和体内的非平衡载流子分布,其中直流偏压条件与步骤4调节设定的值相同;
10.)依据非平衡载流子分布计算在所设偏压和光激发条件下待测定区域的表面微分电容;
11.)依据计算得的表面微分电容与光激发强度的关系,推定一定平衡载流子浓度初值条件下,待测定区域表面微分电容趋零时的光激发功率密度;
12.)改变平衡载流子浓度的初值,重复步骤6至步骤11,依据数值拟合和推算,得到不同平衡载流子浓度下待测定区域表面微分电容趋零时的光激发功率密度;
13)依据推算获得的待测定区域表面微分电容趋零时的光激发功率密度与平衡载流子浓度的关系以及步骤4测得的实际光激发功率密度阈值,确定半导体材料或器件待测定区域的平衡载流子浓度;
14)对2个及以上的载流子浓度待测定区域重复步骤1至步骤13,或步骤2至步骤13,直至完成所有区域的载流子浓度测定。
2.根据权利要求1所述的一种光激发微分电容法测定半导体材料器件中低背景载流子浓度的方法,其特征在于:步骤2中所述的测量二维微分电容显微分布以及步骤3、步骤4中所述的测量低背景载流子浓度区域中心处微分电容信号包括使用扫描电容显微镜。
3.根据权利要求1所述的一种光激发微分电容法测定半导体材料器件中低背景载流子浓度的方法,其特征在于:步骤3中所述的确定待测定区域表面平带偏压VFB和表面强反型临界偏压VT包括使用高斯公式拟合测得的微分电容与直流偏压的关系曲线,并依下述判据确定:表面平带偏压VFB为高斯公式拟合的峰值(或谷值)偏压,表面强反型临界偏压VT为高斯公式拟合中5%峰值(或谷值)微分电容所对应的偏压。
4.根据权利要求1所述的一种光激发微分电容法测定半导体材料器件中低背景载流子浓度的方法,其特征在于:步骤4中所述的光激发条件使用光子能量大于待测定区域半导体材料能带隙的激发光源。
5.根据权利要求1所述的一种光激发微分电容法测定半导体材料器件中低背景载流子浓度的方法,其特征在于:步骤7中所述的一定平衡载流子浓度初值下待测定区域的表面电势由公式eφS,eq.=eVFB·|2(EF-Ei)/(eVT-eVFB)|计算得到,其中EF为一定平衡载流子浓度下的费米能级位置,Ei为待测定区半导体材料的本征费米能级。
CN 201110008829 2011-01-14 2011-01-14 光激发微分电容法测定低背景载流子浓度的方法 Active CN102175727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110008829 CN102175727B (zh) 2011-01-14 2011-01-14 光激发微分电容法测定低背景载流子浓度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110008829 CN102175727B (zh) 2011-01-14 2011-01-14 光激发微分电容法测定低背景载流子浓度的方法

Publications (2)

Publication Number Publication Date
CN102175727A true CN102175727A (zh) 2011-09-07
CN102175727B CN102175727B (zh) 2013-01-09

Family

ID=44518932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110008829 Active CN102175727B (zh) 2011-01-14 2011-01-14 光激发微分电容法测定低背景载流子浓度的方法

Country Status (1)

Country Link
CN (1) CN102175727B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868952A (zh) * 2014-02-27 2014-06-18 中国电子科技集团公司第十一研究所 离子注入层载流子浓度测试方法
CN108646160A (zh) * 2018-04-10 2018-10-12 中国科学院上海技术物理研究所 窄禁带半导体中少数载流子空间分布的测量装置和方法
CN109449095A (zh) * 2018-10-29 2019-03-08 西安微电子技术研究所 一种监控离子注入掺杂浓度的方法
CN109473369A (zh) * 2018-10-29 2019-03-15 西安微电子技术研究所 一种监控高温炉管内掺杂浓度的方法
CN111366832A (zh) * 2020-05-11 2020-07-03 中国科学院半导体研究所 pin型GaN雪崩器件p层载流子浓度测量方法
CN111693850A (zh) * 2020-06-17 2020-09-22 西安微电子技术研究所 一种芯片抗辐照性能的监控方法
CN112730549A (zh) * 2021-01-13 2021-04-30 福建中科光芯光电科技有限公司 一种提高半导体掺杂浓度测试精度的方法
CN114371194A (zh) * 2022-01-12 2022-04-19 湖南大学 一种使用电导法确定mos器件中半导体掺杂杂质分布的方法
WO2022110097A1 (en) * 2020-11-30 2022-06-02 Suzhou Xpectsense Technology Co., Ltd. Image sensor based on charge carrier avalanche

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632552A (zh) * 2004-12-17 2005-06-29 中国科学院上海微系统与信息技术研究所 一类用于测量锑化物材料载流子浓度剖面的电解液
CN101236219A (zh) * 2008-02-26 2008-08-06 上海大学 金属表面钝化膜载流子密度的检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632552A (zh) * 2004-12-17 2005-06-29 中国科学院上海微系统与信息技术研究所 一类用于测量锑化物材料载流子浓度剖面的电解液
CN101236219A (zh) * 2008-02-26 2008-08-06 上海大学 金属表面钝化膜载流子密度的检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《华南理工大学学报(自然科学版)》 20031231 文尚胜等 电化学C-V测量AlGaInP LED外延片中载流子浓度的分布 第85-87、95页 1-5 第31卷, 第02期 *
《微纳电子技术》 20071231 李晓云等 电化学C-V法测量化合物半导体载流子浓度的研究进展 第106-110页 1-5 , 第02期 *
《物理学报》 20000831 李志锋等 GaN载流子浓度和迁移率的光谱研究 第1614-1619页 1-5 第49卷, 第08期 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868952B (zh) * 2014-02-27 2016-05-25 中国电子科技集团公司第十一研究所 离子注入层载流子浓度测试方法
CN103868952A (zh) * 2014-02-27 2014-06-18 中国电子科技集团公司第十一研究所 离子注入层载流子浓度测试方法
CN108646160B (zh) * 2018-04-10 2023-07-04 中国科学院上海技术物理研究所 窄禁带半导体中少数载流子空间分布的测量装置和方法
CN108646160A (zh) * 2018-04-10 2018-10-12 中国科学院上海技术物理研究所 窄禁带半导体中少数载流子空间分布的测量装置和方法
CN109449095A (zh) * 2018-10-29 2019-03-08 西安微电子技术研究所 一种监控离子注入掺杂浓度的方法
CN109473369A (zh) * 2018-10-29 2019-03-15 西安微电子技术研究所 一种监控高温炉管内掺杂浓度的方法
CN109449095B (zh) * 2018-10-29 2020-10-27 西安微电子技术研究所 一种监控离子注入掺杂浓度的方法
CN111366832A (zh) * 2020-05-11 2020-07-03 中国科学院半导体研究所 pin型GaN雪崩器件p层载流子浓度测量方法
CN111693850A (zh) * 2020-06-17 2020-09-22 西安微电子技术研究所 一种芯片抗辐照性能的监控方法
CN111693850B (zh) * 2020-06-17 2023-03-28 西安微电子技术研究所 一种芯片抗辐照性能的监控方法
WO2022110097A1 (en) * 2020-11-30 2022-06-02 Suzhou Xpectsense Technology Co., Ltd. Image sensor based on charge carrier avalanche
TWI798924B (zh) * 2020-11-30 2023-04-11 大陸商蘇州幀觀傳感科技有限公司 圖像感測器
CN112730549A (zh) * 2021-01-13 2021-04-30 福建中科光芯光电科技有限公司 一种提高半导体掺杂浓度测试精度的方法
CN114371194A (zh) * 2022-01-12 2022-04-19 湖南大学 一种使用电导法确定mos器件中半导体掺杂杂质分布的方法
CN114371194B (zh) * 2022-01-12 2023-11-24 湖南大学 使用电导法确定mos器件中半导体掺杂杂质分布的方法

Also Published As

Publication number Publication date
CN102175727B (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
CN102175727B (zh) 光激发微分电容法测定低背景载流子浓度的方法
Blood Capacitance-voltage profiling and the characterisation of III-V semiconductors using electrolyte barriers
Ambridge et al. An automatic carrier concentration profile plotter using an electrochemical technique
Mochizuki et al. Probing the surface potential of oxidized silicon by assessing terahertz emission
Hoffmann et al. A calibration algorithm for nearfield scanning microwave microscopes
Lepage et al. Measuring the lifetime of silicon nanocrystal solar cell photo-carriers by using Kelvin probe force microscopy and x-ray photoelectron spectroscopy
US4028207A (en) Measuring arrangements
Glover Determination of deep levels in semiconductors from CV measurements
Heinz et al. Doping density in silicon and solar cells analyzed with micrometer resolution
CN102830260B (zh) 半导体量子阱中载流子浓度的测量方法
Ban et al. Two-dimensional profiling of carriers in a buried heterostructure multi-quantum-well laser: Calibrated scanning spreading resistance microscopy and scanning capacitance microscopy
Prins et al. Photoelectrical properties of semiconductor tips in scanning tunneling microscopy
Fink et al. Determination of background doping polarity of unintentionally doped semiconductor layers
Lei et al. Accurate electronic transport characterization of B+ ion-implanted silicon wafers with self-normalized nonlinear photocarrier radiometry
CN101769941B (zh) GaN基光伏探测器器件结构的电子学检测方法
Chism Z-scanning laser photoreflectance as a tool for characterization of electronic transport properties
Geng et al. Three-Dimensional Kelvin Probe Force Microscopy
Yin et al. Scanning capacitance microscopy characterization on diffused pn junctions of InGaAs/InP infrared detectors
Guo et al. Towards quantification of doping in gallium arsenide nanostructures by low‐energy scanning electron microscopy and conductive atomic force microscopy
Heath et al. Diffused junctions in multicrystalline silicon solar cells studied by complementary scanning probe microscopy and scanning electron microscopy techniques
US20060208256A1 (en) Self-calibration in non-contact surface photovoltage measurement of depletion capacitance and dopant concentration
Bolotov et al. Two dimensional dopant profiling by scanning tunneling microscopy
US20100314608A1 (en) Photodetectors
Frederickson et al. Capacitance‐voltage measurement of charged defect concentration profile near semiconductor depletion zones
Dobryden et al. Morphological and electrical characterization of Cu-doped PbS thin films with AFM

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant