CN102171823A - 分析物传感器、测试设备和制造方法 - Google Patents

分析物传感器、测试设备和制造方法 Download PDF

Info

Publication number
CN102171823A
CN102171823A CN2009801389974A CN200980138997A CN102171823A CN 102171823 A CN102171823 A CN 102171823A CN 2009801389974 A CN2009801389974 A CN 2009801389974A CN 200980138997 A CN200980138997 A CN 200980138997A CN 102171823 A CN102171823 A CN 102171823A
Authority
CN
China
Prior art keywords
transducer
analyte sensor
matrix
active region
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801389974A
Other languages
English (en)
Other versions
CN102171823B (zh
Inventor
费江枫
雷安·吉福德
纳拉辛汉·帕拉斯尼斯
塞尔邦·彼得尤
孙海昌
王瑗
伍牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Healthcare LLC
Original Assignee
Bayer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Corp filed Critical Bayer Corp
Publication of CN102171823A publication Critical patent/CN102171823A/zh
Application granted granted Critical
Publication of CN102171823B publication Critical patent/CN102171823B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明在一些方面中提供用于检测生物流体样品中的分析物浓度水平的分析物传感器。该分析物传感器可以包括与基体连接的传感器第一构件,其中该传感器第一构件包含半导体材料;与该基体连接的传感器第二构件;以及至少接触该传感器第一构件的活性区。在一些方面中,该传感器第一构件可以是纤维,并且可以具有导电芯部和包围该芯部的半导体包层。在其他方面中,本发明提供制造上述传感器的方法和利用上述传感器的设备。

Description

分析物传感器、测试设备和制造方法
相关申请
本申请要求于2008年9月19日提交的题目为“Analyte Sensors And Manufacturing Methods”的美国临时专利申请No.61/098,720(代理人案卷No.BHDD-003/L)的优先权,在此将其全部内容并入作为参考。
技术领域
本发明涉及可用于检测生物流体样品中的分析物浓度水平的电化学分析物传感器、包括该分析物传感器的设备及其制造方法。
背景技术
生物流体中分析物浓度水平的监控可能是健康诊断的重要部分。例如,电化学分析物传感器可以用于监控血糖水平,作为患者的糖尿病治疗和护理的一部分。
例如,通过检测生物流体样品中的分析物浓度水平可以离散地使用电化学分析物传感器(‘离散监控’),所述生物流体样品来自经由刺血针(例如,利用针刺或针)从患者取得的血液或其他间质液的单一样品。任选地,通过将传感器植入到患者中一段时间可以连续地使用该分析物传感器(‘连续监控’)。在离散监控中,生物流体样品收集过程和分析物浓度水平的测量可以分离。通常,在例如通过使用刺血针从患者得到生物流体样品后,可以将样品转移至介质(例如,试验带传感器或检测器),用于测量生物流体样品的分析物浓度水平。
由于常规电化学分析物传感器可能具有相对较低的灵敏度,并且由于生物流体样品转移至传感器可能相对低效,因此可能需要相对较大的样品体积,以获得分析物浓度水平的精确测量。在这些情况下,如果提供的样品具有不足的样品体积,则可能导致没有读数或者不精确的读数。因此,可能需要抽取额外的生物流体样品,因此可能需要重复刺血针插入,这样可能会进一步引起患者的疼痛和不适。
另外,常规传感器对于工作和/或参比/对电极可能要求使用贵金属,这样会显著增加分析物传感器的成本。
因此,有益的是,提供一种适用于生物流体分析物取样的分析物传感器,所述分析物传感器可以从获得的生物流体样品一致地提供分析物浓度水平测量,这样可以要求减少的样品体积,和/或还可以提供更低成本的制造。
发明内容
在一个方面,本发明提供一种分析物传感器,它包括:基体;与所述基体连接的传感器第一构件,所述传感器第一构件包含半导体材料;与所述基体连接并与所述传感器第一构件分隔开的传感器第二构件;以及至少接触所述传感器第一构件的活性区。
在另一个方面,本发明提供一种用于检测生物流体样品中的分析物浓度水平的分析物传感器,它包括:基体;与所述基体连接并由半导体材料构成的传感器第一构件;靠近所述传感器第一构件的末端形成的空腔;以及位于所述空腔内的活性区,所述活性区与所述传感器第一构件的末端连接。
在另一个方面,本发明提供一种用于检测生物流体样品中的分析物浓度水平的分析物传感器,它包括:基体;与所述基体连接的传感器纤维构件,所述传感器纤维构件至少包含由半导体材料构成的一部分;靠近所述传感器纤维构件的末端形成的空腔;以及位于所述空腔内的活性区,所述活性区与所述传感器纤维构件的末端连接。
在另一个方面,本发明提供一种用于检测生物流体样品中的分析物浓度水平的分析物传感器,它包括:绝缘基体;传感器第一构件,其与所述基体连接并由导电材料的芯部和包围所述芯部的半导体材料的包层构成;传感器第二构件,其与所述基体连接并由导电材料的芯部和包围所述芯部的半导体材料的包层构成;靠近所述传感器第一和第二构件的末端形成的空腔;位于所述空腔内的活性区,所述活性区与所述传感器第一和第二构件连接;以及与所述基体连接的盖子,其中所述基体和盖子至少部分地限定所述空腔。
在另一个方面,本发明提供一种测试设备,它包括:接收分析物传感器的端口,其中所述分析物传感器进一步包括:基体;与所述基体连接的传感器第一构件,所述传感器第一构件包含半导体材料;与所述基体连接并与所述传感器第一构件分隔开的传感器第二构件;以及至少接触所述传感器第一构件的活性区。
在一个方法方面,本发明提供一种制造分析物传感器的方法,包括以下步骤:提供基体;将传感器第一构件安装在所述基体上,其中所述传感器第一构件由半导体材料构成;在所述传感器第一构件的一部分上涂布活性区;以及提供与所述基体连接的盖子。
在另一个方法方面,本发明提供一种制造多个分析物传感器的方法,包括以下步骤:提供基体材料片;将多个纤维安装在所述基体材料片上,其中所述纤维由半导体材料构成;在至少一些纤维上涂布活性区;连接盖材,形成单块体;以及切削所述单块体,提供多个分析物传感器。
从以下详细说明、所附权利要求书和附图,本发明的其他特征和方面将变得更加清楚。
附图说明
图1是根据本发明提供的示例性实施方案的分析物传感器的俯视图。
图2是图1的分析物传感器沿剖面线2-2的放大剖视图。
图3是根据本发明示例性实施方案的图1的分析物传感器的分解立体图,为了清楚盖子被分隔开。
图4是根据本发明的测试设备的主视图,其包括在所述设备的端口中接收的示例性实施方案的分析物传感器。
图5是根据本发明另一示例性实施方案的分析物传感器的俯视图。
图6是根据本发明另一示例性实施方案的分析物传感器的部分剖切的俯视图。
图7是根据本发明另一示例性实施方案的分析物传感器的俯视图。
图8是根据本发明实施方案的图7的分析物传感器的编码区的放大部分剖视图。
图9是示出在根据本发明示例性实施方案的分析物传感器内包括的传感器构件上形成导电轨道的示图。
图10A是根据本发明另一示例性实施方案的分析物传感器的俯视图。
图10B是图10A的示例性实施方案沿剖面线10B-10B的剖切的侧视图。
图11是示出根据本发明的制造分析物传感器构件的方法的流程图。
图12是示出适于从较大单块体切下的多个图10A的分析物传感器构件的俯视图。
图13是示出根据本发明制造多个分析物传感器的方法的另一流程图。
具体实施方式
根据本发明的一个方面,提供一种分析物传感器,它包括传感器第一构件,例如是由半导体材料(例如,碳化硅(SiC))构成的纤维。所述传感器第一构件可以安装在基体(例如,绝缘材料基体)上。在一些实施方案中,所述传感器第一构件可以包括导电芯部和由半导体材料构成的包层,所述导电芯部可以包括分析物传感器的工作电极的一部分。活性区可以设置成至少接触所述传感器第一构件。例如,所述活性区可以接触所述传感器第一构件并与其电连接,使得可以通过连接到测试设备而完成分析物检测。传感器第二构件还可以安装在所述基体上,其中所述第二传感器构件可以作为参比电极或对电极工作。所述传感器第二构件还可以包含半导体材料,并且在一些实施方案中,可以由导电芯部和包层构成,所述包层由半导体材料构成。类似地,所述传感器第二构件可以接触所述活性区并与其电连接。在一些实施方案中,所述传感器第一构件和甚至所述传感器第二构件的导电芯部可以包含碳(例如,石墨)并且包层可以包含碳化硅。
另外,所述分析物传感器可以包括空腔和活性区,所述空腔可以靠近所述传感器第一构件的末端。所述空腔可以用于接收生物流体样品。本文中定义的术语“空腔”是指具有适于容纳并限制生物流体样品的壁的中空、锯齿状或凹入的区域。在一些实施方案中,所述空腔可以至少部分地由所述基体和与所述基体连接的盖子形成并由它们限定。
所述分析物传感器的活性区可以包含一种或多种催化剂和/或试剂,它们适于与所述空腔内接收的生物流体样品中的分析物反应并将其转化为反应产物,从而可以产生电流。得到的电流可以在所述传感器第一构件中流动(例如,在芯部和/或包层中)。在一些实施方案中,所述传感器第一构件形成工作电极的至少一部分。然后,可以例如通过与工作电极连接的测试设备(例如,安培计)来检测产生的电流,从而能够测定和读取生物流体样品中所含的分析物的浓度水平。提供的电流可以具有例如与样品中的分析物浓度相关联的大小。
下面参照图1-13说明分析物传感器、包括该分析物传感器的设备和制造该分析物传感器的方法的这些和其他实施方案。
图1-3示出根据本发明提供的分析物传感器100的第一示例性实施方案的不同视图。分析物传感器100可以包括优选由绝缘材料形成的基体110。基体110可以具有安装在其上的传感器第一构件120。基体110可以由聚合物材料制成,例如,聚碳酸酯、聚对苯二甲酸乙二醇酯、聚酰亚胺、高密度聚乙烯或聚苯乙烯材料。此外,传感器第一构件120可以通过在基体110内设置某种程度的物理凹陷而安装到基体110上。例如,当基体110是可变形聚合物时,可以施加足够的压力和/或热量,从而使传感器第一构件120在基体110内形成凹陷。任选地,凹陷可以模制到基体110中。任选地,传感器第一构件120可以粘附、胶合、热熔、超声熔合或以其他方式安装到基体110上。在一些实施方案中,传感器第一构件120可以通过夹置在基体110和盖子150之间而简便地安装到基体110上。基体110的大小和形状并不重要,可以使用任何合适的大小和形状。基体110简便地发挥着安装传感器构件120并允许用户容易操作的作用。
传感器第一构件120可以包含半导体材料。例如,传感器构件120可以包括由导电材料构成的芯部122和由半导体材料构成的包层124。优选地,第一构件120是长度远大于其宽度的纤维或细丝。在一些实施方案中,纤维可以包括导电芯部122,其可至少部分地被包层124包围。在示出的示例性实施方案中,包层124可以呈环形形状,其可以沿着芯部122长度的至少一部分完全包围芯部122。芯部122可以呈例如圆柱棒的形状。在工作时,可以包含导电材料的芯部122和可以包含半导体材料的包层124都能够传导电流,尽管与芯部122相比半导体材料可以具有更高的电阻率,并因而可以输送比芯部122更小的电流。在一些实施方案中,芯部122可以包含碳(例如,石墨)并且包层124可以包含碳化硅(SiC)。具有合适的SiC包层和碳芯部的SiC/C纤维例如由Lowell,Massachusetts的Specialty Materials Inc.生产。然而,芯部122的导电材料还可以包含其他导电金属材料,包括贵金属(例如,金、银、铂等)、铜和铝。包层124可以包含其他半导体材料,包括第IV族元素(例如,硅和锗)、第IV族化合物(例如,锗化硅(SiGe))和第III-V族化合物(例如,砷化镓(GaAs)和磷化铟(InP))。在一些实施方案中,可以使用没有导电芯部的半导体纤维。
在一些实施方案中,传感器第一构件120的总直径(包括芯部122和包层124)可以为约150微米以下、约100微米以下、约75微米以下或甚至约50微米以下,并且在一些实施方案中在约50微米至约150微米之间(尽管还可使用更大或更小的尺寸)。芯部122的直径可以为约10微米至约100微米或甚至为约20微米至约40微米,优选为约30微米,尽管还可以使用其他尺寸。在所示实施方案中,传感器第一构件120可以包括露出芯部122的端部(‘剥离末端’)。例如当芯部122用作电极时,这样可以扩大和增强导电芯部122的有效接触面积并因而扩大和增强导电面积。任何合适的技术均可用于除去包层材料,从而形成剥离末端,例如机械加工、蚀刻等。可以使用利用酸(例如,HN、HCF或组合)的电化学湿法蚀刻。下面说明用于增强芯部的有效接触面积的其他机理。
分析物传感器100还可以包括传感器第二构件130,在一些实施方式中其还可以包含半导体材料。该传感器第二构件例如可以包括由导电材料构成的芯部132和由半导体材料构成的包层134。传感器第二构件130的材料可以与上面对于传感器第一构件120所述的材料相同。任选地,传感器第二构件130可以是更常规的材料,例如碳、石墨、金、银、钯或铂。例如,第二传感器构件可以由碳/石墨PTF或Ag/AgCl形成。然而,优选地,传感器第二构件130可以是另一个纤维,如图1所示,其可以与传感器第一构件120呈大致平行关系取向,并且可以包含半导体材料。然而,如图5所示,可以设置成其他取向,例如非平行取向。
再次参照图1-3,活性区140可以涂布在基体110上并且至少与传感器第一构件120接触和电连接(下面将对其进行更完全地说明)。然而,简言之,活性区140可适于接触生物流体样品。活性区140可以包含一种或多种催化剂或试剂,适用于促进生物流体样品内的分析物与活性区140中包含的催化剂或试剂之间的电化学反应。这样生成反应产物和迁移电子,然后可以例如通过传感器第一构件120的芯部122传导。本文中稍后描述的介体可以供应在活性区140中,以辅助电子输送至导电芯部122的表面。
根据本发明的一些实施方案,可以形成空腔155并且邻近具有露出的芯部122的传感器第一构件120的工作端135设置。空腔155接收例如在开口端插入的生物流体样品。特别地,空腔155可以例如至少部分地由盖子150的内表面和基体110的表面(具有涂布的活性区140)形成和限定。空腔155可以具有任何形状,但优选具有促进毛细管作用以使生物流体液滴在芯部122,132之间吸入并静置而使得样品接触活性区140的形状。设置孔152,以辅助生物流体的毛细管作用。空腔155可以例如具有约2-5mm的长度和约0.5-1.5mm的宽度。
在一些实施方案中,用于检测分析物浓度水平的足够生物流体样品可以具有例如小于约0.5微升、小于约0.3微升或甚至小于约0.2微升的体积。还可以使用其他样品体积。为了有助于减少生物流体样品体积的需要,可以使用纤维状的传感器第一构件120。这可以为待涂布的活性区140提供三维形状的大致相对的表面141W,141R(其中W表示“工作”,R表示“参比”)以及露出电极的相对较大的有效表面积。这样,使用相对较少样品体积的生物流体,可以实现优异的分析物检测。因此,可以最小化或避免必须再次刺扎手指等以获得测试用的足够流体体积的趋势。
参照图2,活性区140可以位于空腔155内,并且优选位于空腔155的底部,从而允许活性区140接触进入空腔155的样品生物流体。如图所示,活性区140涂布在芯部122,132上并与其接触。在将生物流体样品插入空腔155中时,在流体样品中的分析物与活性区140的催化剂或试剂之间发生电化学反应,从而产生反应产物并产生电子流。然后芯部122可以传导和引导电子流,提供可以与生物流体样品中的分析物浓度成比例的电流。然后,电流可以被调整并以任何合适的读数形式显示,例如在测试设备460的数字读数器470中(例如,图4所示)。
如图4进一步所示,实施方案的分析物传感器400,例如参照图1-3所述的分析物传感器,或者本文所述的另外实施方案中的任一种,可以插入并接收在测试设备460的端口465中。设备460中的电接头(未示出)可以与传感器构件120,130(例如,其芯部和/或包层)的导电端部电接触,从而进行与设备460的电路系统的电连接。在施加偏电压(例如,约400mV)时,常规处理程序和电路系统可以将由传感器构件120供应的电流换算为分析物浓度水平。
再次参照图1-3,用于设置活性区140的一组催化剂可以是氧化酶类,其包括例如葡萄糖氧化酶(其转化葡萄糖)、乳酸氧化酶(其转化乳酸盐)和D-天冬氨酸氧化酶(其转化D-天冬氨酸盐和D-谷氨酸盐)。在葡萄糖是目标分析物的实施方案中,可以任选地使用葡萄糖脱氢酶(GDH)。还可以依情况使用吡咯喹啉醌(PQQ)或黄素腺嘌呤二核苷酸(FAD)。可以用在本发明中的氧化酶的更详细列表在Clark Jr.的美国专利No.4,721,677中提供,其题目为“Implantable Gas-containing Biosensor and Method for Measuring an Analyte such as Glucose”,在此将其全部内容并入作为参考。还可使用除了氧化酶之外的催化酶。
活性区140可以包括一层或多层(未明确示出),催化剂(例如,酶)和/或其他试剂可以在其中固定或沉积。所述一层或多层可以包含多种聚合物,例如包括硅树脂系或有机聚合物(例如聚乙烯吡咯烷酮、聚乙烯醇、聚环氧乙烷)、纤维素聚合物(例如,羟乙基纤维素或羧甲基纤维素)、聚乙烯、聚氨酯、聚丙烯、聚四氟乙烯、嵌段共聚物、溶胶-凝胶等。多种不同的技术可用于使酶固定在活性区140的一层或多层中,包括但不限于使酶固定到聚合物基质例如溶胶-凝胶的晶格中、使试剂交联到合适的基质(例如戊二醛)、电聚合以及利用共价键在酶之间形成阵列,等等。
在一些实施方案中,电化学活性层(未明确示出)可以邻近传感器构件的露出末端(例如,剥离部分)。电化学活性层可以包含例如贵金属(例如,铂、钯、金或铑)或其他合适的材料。在葡萄糖检测的实施方案中,当合适地极化时,活性层可以与过氧化氢进行氧化还原反应。氧化还原反应利用电子转移导致电流产生,电流与已经转化为过氧化氢的分析物的浓度成比例。该电流可以从电化学活性层通过芯部122和/或包层124传导和输送到如前面参照图4所述的测试设备。
在一些实施方案中,介体可以在活性区140内,以促进分析物转化为可检测的反应产物。介体包括在催化剂和工作电极(例如,露出的芯部的表面、芯部的表面积增强剂或涂布到芯部上的电化学活性层等)之间充当中间物的物质。例如,介体可以促进反应中心(在那里发生分析物的催化分解)和工作电极之间的电子转移,并且可以增强工作电极处的电化学活性。合适的介体可以包括以下中的一种或多种:金属络合物(包括二茂铁)及其衍生物、氰亚铁酸盐、吩噻嗪衍生物、锇络合物、奎宁、酞菁、有机染料以及其他物质。在一些实施方案中,介体可以与催化剂一起直接交联到工作电极上。
如上所述,分析物传感器100还可以包括传感器第二构件130,其可以用作提供电流返回路径的参比电极。在一个或多个实施方案中,传感器第二构件130可起到对电极的作用。如参照图1-3和图5-10B进一步所述的,参比电极可以以多种不同方式布置、形成和/或实施。在图1-3所示的实施方案中,传感器构件130可以包含安装到基体110上的纤维,并且可以由半导体材料构成。例如,传感器构件130可以包括导电芯部132,并且可以包括半导体包层134。然而,应该认识到,参比电极可以呈现其他形式(例如,线圈、箔、带或膜),并且可由其他合适的材料制成,例如上述材料。
为了形成电化学电池,传感器第二构件130可以与空腔155中的活性区140连接。特别地,活性区140可以被涂布成与芯部122,132接触并构造成在芯部122,132之间延伸。如图2所示,活性区140可以沿着芯部122,132的大致相对表面141W,141R延伸,使得生物流体滴(由虚线156表示)可以接收在由活性区140形成的三维特征中,所述活性区涂布在芯部122,132和基体110的表面上。
图5示出本发明的分析物传感器500的另一实施方案。象前述实施方案中那样,第一和第二构件520,530可以安装在基体510(例如,绝缘材料基体)上,并且活性区540可以涂布在各构件的芯部522,532上,并优选与其接触。然而,在该实施方案中,各构件可沿大致平行之外的关系(例如,以大于0度并且小于或等于90度的角度β)。换言之,在末端536处的传感器构件520,530的末端523,533之间的间隔可以大于在工作端535处接触活性区540的传感器构件520,530之间的间隔。这种构造允许传感器构件520,530和芯部522,532一起定位成非常靠近活性区540,但分开构件520,530的末端523,533,从而容易地电连接至测试设备(未示出)。孔552例如可以允许通气,从而容易地将生物流体样品插入空腔端部(未明确示出)中,该空腔由盖子550和基体510配合在活性区540附近形成。通过与传感器构件520,530的末端523,533的电接触,可以实现与测试设备的电连接。
为了增强图1-3和图5所示的实施方案中第一构件120的导电芯部122的有效导电面积,可以沿着纤维的长度剥离包层。另外或任选地,本发明人已经发现了可用于增强本发明的实施方案中工作电极的有效导电面积的其他机理。
在图6中,例如,示出分析物传感器600的另一实施方案的部分剖切的俯视图。在图6所示的实施方案中,传感器第一和第二构件620,630可以安装到基体610上,象前面实施方案中那样。然而,在该实施方案中,通过在芯部622的末端上设置导电涂层680W可以增大电极的有效导电面积。类似地,传感器第二构件630可以包括涂层680R。
在所示的实施方案中,活性区640可以设置在基体610上并接触传感器构件620,630的大致相对表面641W,641R。涂层680R,680W可以包含碳或任何其他合适的导电材料(例如,Ag/AgCl、金、银、钯、铜、铝等)。在本实施方案中,涂层680W,680R可被设置成与芯部622,632的简便裂开的末端电接触,并且可涂布在构件620,630的整个末端上,但也可涂布在包层624,634的外周面上。这样,接触活性区640的芯部的有效导电面积可以大大增加,因为导电涂层680W,680R起到芯部延长的作用,并且涂层680W,680R的表面可分别成为工作电极和参比电极。因此,活性区640可以在相对较大区域上与芯部620,630接触。任选地,可以通过在构件120,130的末端以直角之外的角度进行裂开操作(例如,除了简单裂开)、从而露出更多的芯部而增加芯部的有效接触面积。
另外图6的实施方案中示出在分析物传感器600和测试设备(未示出)之间提供电接触的另一种方法。在前面的实施方案中,与测试设备的电接触利用与传感器构件120,130(图1-3)和520,530(图5)的末端电接触来实现。相反,在本实施方案中,与工作电极和参比电极的电接触可以利用与电接触片690W和690R接触来实现。接触片690W,690R由导电性粘结化合物构成,例如导电环氧胶(例如,银环氧胶或碳环氧胶),导电性粘结化合物被设置成与传感器第一和第二构件620,630的芯部622,632和/或包层624,634接触。如图所示,盖子650可与基体610连接,并且在尺寸上短于基体610,使得接触片可以被测试设备(未示出)自由地接近。
图7是根据本发明另一实施方案的分析物传感器700的俯视图。分析物传感器700包括传感器第一构件720和传感器第二构件730。各传感器构件720,730可以由半导体材料构成。例如,构件720,730可以包括由导电材料构成的芯部和由半导体材料构成的包层。它们均可设置为纤维形式,并且可以包括沿着纤维长度的至少一部分包围芯部的包层。象前面实施方案中那样,可以包括至少与传感器第一构件720接触的活性区740,并且该活性区可以设置成与接触第一和第二构件720,730。在该实施方案中,纤维可以包括形成于其中的一定弯曲(为了清楚放大示出),使得工作端735的纤维可靠近地分隔开,然而末端736的纤维可以进一步分隔开。这可以允许足够的间隔以与接触片790W,790R(参照图6所述的类型)电连接。
另外,在图7所示的实施方案中,分析物传感器700的一个或多个传感器构件720,730可以设置有编码区793。编码区793可以允许某些信息编码到一个或多个传感器构件720,730上。编码的信息可以涉及到传感器700的性能和/或特征。例如,生产日期、批次号、部件号或版本号、校准数据或常数、和/或有效期可以被编码。
如图8中的放大视图所示,并且在使用SiC包层材料的情况下,编码区793可以由一个或多个导电率改变的轨道(例如,环)795A-795C形成并包括它们。轨道可以形成在传感器第一构件720的包层724上。轨道795A-795C可向内延伸到芯部722。在所示的实施方案中,示出三个导电率改变的轨道795A-795C。然而,可以使用更多或更少数量的轨道。例如,在一个实施方案中,可以使用变化宽度的单一轨道,其中可以进行电阻的两点电气测量以测量和确定电阻水平。然后,电阻值可以例如与查询表中的编码相关联。
如图9所示,诸如导电率改变的轨道995A等编码区993可以例如通过使传感器构件920的SiC包层924经历强烈的局部热量而形成。例如,随着构件920和激光器997相对运动(由箭头928表示),包层可以接触从激光器997发射的激光束996。一旦一半轨道在一侧上形成,就可以将纤维翻过来,以形成轨道的另一半。出于效率原因,多个纤维可以并排方式放置,并且可以一次被处理。可以使用其他高强度热源,例如热等离子体。对由SiC构成的包层924进行强烈的局部加热可能会引起SiC包层的电阻率局部改变。这样,局部加热可以提供环绕芯部922的导电率改变的轨道995A,其可以优选渗透到达芯部922的深度。与未经历热处理的周围SiC材料相比,轨道995A可以具有明显不同的导电率(例如,几个数量级或更大)。
在图7-8所示的实施方案中,多个间隔的导电轨道可以设置在传感器构件720上。位于构件720上的轨道可以用于提供编码的信息的位元(例如,1和0),随后可以通过设置在测试设备(未示出)中的合适的读数器从构件720读取。例如,在与传感器700的末端736隔开的限定位置处存在的轨道可以用于表示“1”,而在限定位置(参见位置791)处不存在轨道可以表示“0”。因此,通过仅使用4个预定的轨道位置,可以提供24位元或16个编码,然后可以例如通过测试设备(未示出)读取。例如,电接头可以接触每个预定位置以确定是否存在轨道。在一些实施方案中,可选地或另外,可能希望在第二构件730上编码信息。
在图7示出的实施方案中,示出与传感器第一构件720连接的子组件。该子组件包括导电片792,794和导体723。子组件的目的是使得能够读取是否存在轨道或其他编码。例如,对于每个轨道位置可以存在电路,例如组合792,723,794,使得可以在传感器700的末端容易地访问编码。
根据本发明的分析物传感器1000的另一实施方案示于图10A和图10B中。所示传感器1000的设计可以有助于传感器带的大规模生产制造。分析物传感器1000可以包括传感器第一构件1020和传感器第二构件1030。各传感器构件1020,1030可以是纤维,可以包含半导体材料。例如,芯部可以由导电材料构成,包层可以由半导体材料构成。象前面实施方案中那样,可以包括至少与传感器第一构件1020接触的活性区1040,并优选与第一和第二构件1020,1030接触。如所构造的那样,第一构件1020可以包括工作电极,第二构件1030可以包括参比电极或对电极。此外,象前面示出的实施方案那样,一个或多个构件1020,1030可以设置有编码区1093,以允许编码有关传感器1000的性能和/或特征的信息。在该实施方案中,盖子1050可被切短,以允许读取访问编码区。
根据另一方面,填充检测器1015可以邻近活性区1040设置,从而确保当进行分析物浓度的检测时存在足够的生物流体样品。在所示的实施方案中,可以通过在各构件1020,1030邻近活性区1040的位置处形成导电轨道并且优选距活性区等距,从而设置填充检测器1015。如参照图9所述的,可以通过在各传感器构件1020,1030上形成高导电率的局部区域而形成轨道。轨道可以位于并包含在形成于基体1010和盖子1050之间的空腔1055中,如图10B所示。在工作时,如果存在足够的生物流体样品,则一部分生物流体样品可以在填充检测器1015的轨道之间静置,并且可以提供通过流体样品的导电途径。因此,当在填充检测器1015的位置处存在流体时,可以测量到构件1020,1030之间的电阻明显降低。
在所示的实施方案中,活性区1040可以涂布成接触在构件1020上形成的增强区。增强区可以包括高导电率区域,并且可以通过除去包层1024的一部分(例如,剥离或蚀刻),如图所示,使得芯部1022在活性区1040附近露出而形成。任选地,增强区可以通过使纤维的包层经历强烈的局部热量,从而引起包层材料的电阻率和/或电化学活性明显改变而局部产生。此后,活性区1040可以涂布到该增强区上。类似的处理可应用于第二构件1030。任选地,活性区可以涂布到包层1024上,而未涂布到其他地方,即使纤维末端上也未涂布。
下面,参照图11说明本发明实施方案的制造分析物传感器的方法。本发明的制造分析物传感器的方法可以包括以下步骤:在步骤1101中,提供基体(例如,绝缘材料基体);在步骤1102中,将传感器第一构件安装在基体上,其中传感器第一构件可以由半导体材料构成(例如,导电芯部和半导体包层);在步骤1103中,在传感器第一构件的一部分上涂布活性区;以及在步骤1104中,提供盖子。可以通过上述任一种机理进行传感器构件的安装。同样,可以通过用于涂布催化剂和/或试剂的任何常规方法或上述方法进行涂布活性区的步骤。类似地,盖子可被提供,并可以直接连接到基体、通过粘合层连接到基体或者通过将传感器构件固定到基体、然后将盖子固定到传感器构件而连接到基体。盖子可以沿着基体全长或仅沿着其一部分延伸。盖子可以从内部形成有合适凹陷的可变形聚合物材料预成型,盖子与基体和纤维配合形成空腔。同样,盖子可以包括孔(例如,通过切削形成),用于使空腔通气并促进流体样品的毛细管作用。
下面参照图12和图13说明制造图10A-10B中示出的多个分析物传感器1000的方法。因此,可以提供基体材料片1210,例如聚碳酸酯。例如,可以将其中包括一段或多段传感器构件1020,1030的多对纤维1211,1212安装在基体材料片1210上,并且通过夹具1116保持在与基体材料1210对齐的合适位置。在一些实施方案中,如上所述,各纤维1211,1212可以包含半导体材料(例如,导电芯部和半导体包层(例如SiC))。此外,各纤维1211,1212可以包括沿着它们的长度设置的一个或多个高导电率区域(例如,剥离包层的区域、导电涂层区域等)或活性增强的区域(例如,通过激光处理)。纤维1211,1212可以任选地包括参照图10A和图10B所述的填充检测器1015,并且另外或任选地,可以包括一个或多个编码区1093,其可用于编码关于传感器1000的各种特征。纤维1211,1212可被预加工,以按照参照图9所述的方式包括数个高导电率区域、编码信息的轨道和/或填充检测器。然后,纤维1211,1212可以通过粘合剂、点焊、超声焊或者通过施加热量和/或压力而安装在基体材料1210上。任选地,它们可简便地夹置在基体材料片1210和盖材1250之间(下面更完全地描述)。
在安装纤维1211,1212后,一个或多个活性区1040涂布在纤维上(例如,涂布在高导电率区域上),或者沿其长度涂布,在活性区中进行分析物检测。如上所述,活性区1040可以含有一种或多种催化剂或试剂(例如,酶),其可以与生物流体样品中的分析物反应而产生可电化学测量的化学物种。活性区1040可以通过逐层沉积、自动分配、滴落、丝网印刷或其他类似技术来涂布。在形成活性区1040后,盖材1250可以应用在纤维1211,1212和基体材料1210上。盖材1250可以例如通过粘合剂、热量、超声或其他焊剂技术等连接到基体、纤维或两者。此外,盖材1250可以含有多个凹陷区域,其中形成有凸出的凹陷,当连接基体材料和纤维时,形成接近各活性区1040的空腔1055。各空腔1055可以包括优选在连接之前在盖材1250中预成型的一个或多个孔1052,从而例如允许空腔的通气。如果需要直接访问编码区1093,则可以条带的形式应用盖材1250,或任选地,可以仅在盖材1250的这些区域中设置切口以允许访问。
在上述部件装配成单块体1280后,可以使用冲模、激光、锯或其他合适的切削技术切下各个传感器单元(例如,传感器1000)。因此,可以从一个单块体1280制造多个分析物传感器1000。图12中示出8个传感器1000。然而,应该认识到,使用上述方法可以适用于制造更多或更少传感器的方法。
概言之,参照图13,本发明的制造分析物传感器的方法可以包括以下步骤:在步骤1301中,提供基体材料片(例如,绝缘片材基体);在步骤1302中,将多个纤维安装在基体材料片上,其中纤维由半导体材料构成(例如,导电芯部和半导体包层);在步骤1303中,在至少一些纤维的一部分上涂布活性区;在步骤1304中,连接盖材,形成单块体;以及在步骤1305中,切削形成的单块体,提供多个分析物传感器。
上述说明仅以示例性方式公开了本发明的分析物传感器、包括它的设备和制造传感器的方法的实施方案。对上述公开的分析物传感器、包括它的设备及其制造方法的改进落入本发明的范围内,并且这些改进对于本领域技术人员而言是显然的。
因此,尽管已经结合示例性实施方案公开了本发明,但是应该理解,其他实施方案也落入所附权利要求书限定的本发明的精神和范围内。

Claims (24)

1.一种分析物传感器,包括:
基体;
与所述基体连接的传感器第一构件,所述传感器第一构件包含半导体材料;
与所述基体连接并与所述传感器第一构件分隔开的传感器第二构件;以及
至少接触所述传感器第一构件的活性区。
2.根据权利要求1所述的分析物传感器,其中所述传感器第一构件包括导电材料的芯部和半导体材料的包层。
3.根据权利要求1所述的分析物传感器,其中所述半导体材料包括碳化硅。
4.根据权利要求1所述的分析物传感器,其中所述传感器第二构件包括导电材料的芯部和半导体材料的包层。
5.根据权利要求1所述的分析物传感器,还包括与所述基体连接并至少部分地限定靠近所述活性区的空腔的盖子。
6.根据权利要求1所述的分析物传感器,其中所述传感器第一构件包含纤维。
7.根据权利要求1所述的分析物传感器,其中所述传感器第一构件的芯部和所述传感器第二构件的芯部与所述活性区接触。
8.根据权利要求1所述的分析物传感器,其中所述传感器第一构件包括增强区。
9.根据权利要求8所述的分析物传感器,其中所述增强区包括所述芯部的露出部分。
10.根据权利要求8所述的分析物传感器,其中所述增强区包括导电涂层。
11.根据权利要求8所述的分析物传感器,其中所述增强区包括导电率或电化学活性增强的包层的至少一部分。
12.根据权利要求1所述的分析物传感器,还包括至少部分地形成在所述基体和与所述基体连接的盖子之间的空腔。
13.根据权利要求12所述的分析物传感器,其中所述传感器第一构件的端部和所述传感器第二构件的端部靠近所述空腔。
14.根据权利要求1所述的分析物传感器,其中所述传感器第一构件的包层部分地压印到所述基体中。
15.根据权利要求1所述的分析物传感器,还包括填充检测器。
16.根据权利要求1所述的分析物传感器,还包括编码区。
17.根据权利要求1所述的分析物传感器,其中所述分析物传感器适用于感测分析物,所述分析物包括葡萄糖、乳酸盐、天冬氨酸盐和谷氨酸盐中的一种或多种。
18.根据权利要求1所述的分析物传感器,还包括:
靠近所述传感器第一构件的末端形成的空腔;以及
所述活性区位于所述空腔内,所述活性区与所述传感器第一构件的末端连接。
19.根据权利要求1所述的分析物传感器,其中所述传感器第一构件包括:
与所述基体连接的传感器纤维构件;
靠近所述传感器纤维构件的末端形成的空腔;以及
所述活性区位于所述空腔内,所述活性区与所述传感器纤维构件的末端连接。
20.根据权利要求1所述的分析物传感器,还包括:
所述基体是绝缘材料;
所述传感器第一构件由导电材料的芯部和包围所述芯部的半导体材料的包层构成;
与所述基体连接的传感器第二构件由导电材料的芯部和包围所述芯部的半导体材料的包层构成;
靠近所述传感器第一和第二构件的末端形成的空腔;
所述活性区位于所述空腔内,所述活性区与所述传感器第一和第二构件连接;以及
与所述基体连接的盖子,其中所述基体和盖子至少部分地限定所述空腔。
21.一种测试设备,包括:
接收分析物传感器的端口,其中所述分析物传感器进一步包括:
基体;
与所述基体连接的传感器第一构件,所述传感器第一构件包含半导体材料;
与所述基体连接并与所述传感器第一构件分隔开的传感器第二构件;以及
至少接触所述传感器第一构件的活性区。
22.一种制造分析物传感器的方法,包括以下步骤:
提供基体;
将传感器第一构件安装在所述基体上,其中所述传感器第一构件由半导体材料构成;
在所述传感器第一构件的一部分上涂布活性区;以及
提供与所述基体连接的盖子。
23.根据权利要求22所述的方法,还包括将传感器第二构件安装在所述基体上的步骤,其中所述传感器第二构件由半导体材料构成。
24.一种制造多个分析物传感器的方法,包括以下步骤:
提供基体材料片;
将多个纤维安装在所述基体材料片上,其中所述纤维由半导体材料构成;
在至少一些纤维上涂布活性区;
连接盖材,形成单块体;以及
切削所述单块体,提供多个分析物传感器。
CN200980138997.4A 2008-09-19 2009-09-17 分析物传感器、测试设备和制造方法 Expired - Fee Related CN102171823B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9872008P 2008-09-19 2008-09-19
US61/098,720 2008-09-19
PCT/US2009/057264 WO2010033668A1 (en) 2008-09-19 2009-09-17 Analyte sensors, testing apparatus and manufacturing methods

Publications (2)

Publication Number Publication Date
CN102171823A true CN102171823A (zh) 2011-08-31
CN102171823B CN102171823B (zh) 2014-04-16

Family

ID=42039858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980138997.4A Expired - Fee Related CN102171823B (zh) 2008-09-19 2009-09-17 分析物传感器、测试设备和制造方法

Country Status (5)

Country Link
US (1) US8551400B2 (zh)
EP (1) EP2345077A4 (zh)
CN (1) CN102171823B (zh)
CA (1) CA2735666A1 (zh)
WO (1) WO2010033668A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426921A (zh) * 2017-02-13 2018-08-21 华邦电子股份有限公司 气体传感器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511665A (ja) 2008-02-04 2011-04-14 バイエル・ヘルスケア・エルエルシー 半導体を素材とする分析対象物センサー及び方法
US9022953B2 (en) 2008-09-19 2015-05-05 Bayer Healthcare Llc Lancet analyte sensors and methods of manufacturing
CN102171557B (zh) 2008-09-19 2016-10-19 安晟信医疗科技控股公司 具有增强的电化学活性的电化学装置及其制造方法
CA2735666A1 (en) 2008-09-19 2010-03-25 Bayer Healthcare Llc Analyte sensors, testing apparatus and manufacturing methods
CA2735670A1 (en) 2008-09-19 2010-03-25 Swetha Chinnayelka Analyte sensors, systems, testing apparatus and manufacturing methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476776A (en) * 1989-07-19 1995-12-19 University Of New Mexico Immobilized enzymes for use in an electrochemical sensor
US6743635B2 (en) * 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US20070096164A1 (en) * 2005-10-31 2007-05-03 Peters Kevin F Sensing system

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326927A (en) 1980-07-25 1982-04-27 Becton, Dickinson And Company Method and device for the detection and measurement of electrochemically active compounds
JPS59106572A (ja) * 1982-12-06 1984-06-20 信越化学工業株式会社 炭素繊維の表面処理方法
DK0471898T3 (da) * 1990-08-22 1999-09-06 Nellcor Puritan Bennett Inc Apparat til foster-pulsoximetri
US5361314A (en) 1992-09-04 1994-11-01 The Regents Of The University Of Michigan Micro optical fiber light source and sensor and method of fabrication thereof
US5431800A (en) 1993-11-05 1995-07-11 The University Of Toledo Layered electrodes with inorganic thin films and method for producing the same
JP3566377B2 (ja) 1995-03-01 2004-09-15 株式会社神戸製鋼所 ダイヤモンド薄膜バイオセンサ
US5666353A (en) 1995-03-21 1997-09-09 Cisco Systems, Inc. Frame based traffic policing for a digital switch
US5611900A (en) 1995-07-20 1997-03-18 Michigan State University Microbiosensor used in-situ
US6218661B1 (en) * 1996-09-09 2001-04-17 Schlumberger Technology Corporation Methods and apparatus for mechanically enhancing the sensitivity of transversely loaded fiber optic sensors
US5866353A (en) 1996-12-09 1999-02-02 Bayer Corporation Electro chemical biosensor containing diazacyanine mediator for co-enzyme regeneration
US20070142776A9 (en) 1997-02-05 2007-06-21 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
EP1085320A1 (en) * 1999-09-13 2001-03-21 Interuniversitair Micro-Elektronica Centrum Vzw A device for detecting an analyte in a sample based on organic materials
EP1222455B1 (en) 1999-10-07 2006-06-21 Pepex Biomedical, LLC Sensor comprising an outer insulating layer comprising a plurality of electrically conductive fibers covered by a sensitive material on at least some of the fibres and voids between the fibres
US20020092612A1 (en) 2000-03-28 2002-07-18 Davies Oliver William Hardwicke Rapid response glucose sensor
DE10057832C1 (de) 2000-11-21 2002-02-21 Hartmann Paul Ag Blutanalysegerät
TWI313059B (zh) 2000-12-08 2009-08-01 Sony Corporatio
US7310543B2 (en) 2001-03-26 2007-12-18 Kumetrix, Inc. Silicon microprobe with integrated biosensor
US7011814B2 (en) 2001-04-23 2006-03-14 Sicel Technologies, Inc. Systems, methods and devices for in vivo monitoring of a localized response via a radiolabeled analyte in a subject
US20020177763A1 (en) 2001-05-22 2002-11-28 Burns David W. Integrated lancets and methods
US6824974B2 (en) 2001-06-11 2004-11-30 Genorx, Inc. Electronic detection of biological molecules using thin layers
US6793632B2 (en) 2001-06-12 2004-09-21 Lifescan, Inc. Percutaneous biological fluid constituent sampling and measurement devices and methods
KR100455284B1 (ko) 2001-08-14 2004-11-12 삼성전자주식회사 탄소나노튜브를 이용한 고용량의 바이오분자 검출센서
US6814844B2 (en) 2001-08-29 2004-11-09 Roche Diagnostics Corporation Biosensor with code pattern
US7074519B2 (en) 2001-10-26 2006-07-11 The Regents Of The University Of California Molehole embedded 3-D crossbar architecture used in electrochemical molecular memory device
FR2831790B1 (fr) 2001-11-06 2004-07-16 Oreal Dispositif de mesure et/ou d'analyse d'au moins un parametre d'une portion externe du corps humain
US8154093B2 (en) * 2002-01-16 2012-04-10 Nanomix, Inc. Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices
US20030143113A2 (en) 2002-05-09 2003-07-31 Lifescan, Inc. Physiological sample collection devices and methods of using the same
AU2003258969A1 (en) 2002-06-27 2004-01-19 Nanosys Inc. Planar nanowire based sensor elements, devices, systems and methods for using and making same
US7415299B2 (en) 2003-04-18 2008-08-19 The Regents Of The University Of California Monitoring method and/or apparatus
US20080197024A1 (en) 2003-12-05 2008-08-21 Dexcom, Inc. Analyte sensor
US7138041B2 (en) 2004-02-23 2006-11-21 General Life Biotechnology Co., Ltd. Electrochemical biosensor by screen printing and method of fabricating same
JP4313703B2 (ja) * 2004-03-12 2009-08-12 彼方株式会社 情報処理装置、システム、方法及びプログラム
US7601299B2 (en) 2004-06-18 2009-10-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
EP1828759B1 (en) 2004-11-22 2010-12-15 Nipro Diagnostics, Inc. Biosensors comprising ruthenium containing mediators and method of using the same
US7951632B1 (en) 2005-01-26 2011-05-31 University Of Central Florida Optical device and method of making
JP2011511665A (ja) 2008-02-04 2011-04-14 バイエル・ヘルスケア・エルエルシー 半導体を素材とする分析対象物センサー及び方法
CA2735666A1 (en) 2008-09-19 2010-03-25 Bayer Healthcare Llc Analyte sensors, testing apparatus and manufacturing methods
CN102171557B (zh) 2008-09-19 2016-10-19 安晟信医疗科技控股公司 具有增强的电化学活性的电化学装置及其制造方法
US9022953B2 (en) 2008-09-19 2015-05-05 Bayer Healthcare Llc Lancet analyte sensors and methods of manufacturing
CA2735670A1 (en) 2008-09-19 2010-03-25 Swetha Chinnayelka Analyte sensors, systems, testing apparatus and manufacturing methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476776A (en) * 1989-07-19 1995-12-19 University Of New Mexico Immobilized enzymes for use in an electrochemical sensor
US6743635B2 (en) * 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US20070096164A1 (en) * 2005-10-31 2007-05-03 Peters Kevin F Sensing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426921A (zh) * 2017-02-13 2018-08-21 华邦电子股份有限公司 气体传感器
CN108426921B (zh) * 2017-02-13 2021-04-06 华邦电子股份有限公司 气体传感器

Also Published As

Publication number Publication date
EP2345077A1 (en) 2011-07-20
CN102171823B (zh) 2014-04-16
US8551400B2 (en) 2013-10-08
EP2345077A4 (en) 2017-03-29
CA2735666A1 (en) 2010-03-25
WO2010033668A1 (en) 2010-03-25
US20110171071A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US10022080B2 (en) Analyte sensors, systems, testing apparatus and manufacturing methods
US7879213B2 (en) Sensor for in vitro determination of glucose
CN102171823B (zh) 分析物传感器、测试设备和制造方法
US10408782B2 (en) Electrical devices with enhanced electrochemical activity and manufacturing methods thereof
CN102202575A (zh) 刺血针分析物传感器和制造方法
EP3152559B1 (en) Electrochemical sensors made using advanced printing technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160711

Address after: Basel, Switzerland

Patentee after: BAYER HEALTHCARE LLC

Address before: American New York

Patentee before: BAYER HEALTHCARE LLC

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140416

Termination date: 20210917

CF01 Termination of patent right due to non-payment of annual fee