CN102169955B - For measuring the sensor element in magnetic field, magnetic field sensor and the method for the manufacture of sensor element - Google Patents
For measuring the sensor element in magnetic field, magnetic field sensor and the method for the manufacture of sensor element Download PDFInfo
- Publication number
- CN102169955B CN102169955B CN201110003497.9A CN201110003497A CN102169955B CN 102169955 B CN102169955 B CN 102169955B CN 201110003497 A CN201110003497 A CN 201110003497A CN 102169955 B CN102169955 B CN 102169955B
- Authority
- CN
- China
- Prior art keywords
- punch
- sensor element
- semiconductor substrate
- face
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 235000012431 wafers Nutrition 0.000 description 15
- 230000005284 excitation Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/07—Hall effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/07—Hall effect devices
- G01R33/072—Constructional adaptation of the sensor to specific applications
- G01R33/075—Hall devices configured for spinning current measurements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
- H10N52/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
- H10N52/101—Semiconductor Hall-effect devices
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
一种用于测量磁场的传感器元件(42,42’),具有晶片结构(12),该晶片结构(12)具有半导体衬底(13)、绝缘层(14,14’)和半导体层(15,15’)。传感器元件具有穿过绝缘层(14,14’)穿通接触的凸模(16,16’),该凸模带有半导体衬底端面(17)、半导体层端面(18)和在半导体衬底(13)中的成对的平行的侧面(19;19’),其中所述端面(17,18)和侧面(19;19’)具有带有高导电性的区段(28,29,30),并且所述凸模(16,16’)在内部(27)中具有带低导电性的掺杂。
A sensor element (42, 42') for measuring a magnetic field, having a wafer structure (12) with a semiconductor substrate (13), an insulating layer (14, 14') and a semiconductor layer (15 , 15'). The sensor element has a punch (16, 16') for punch-through contact through the insulating layer (14, 14'), the punch has a semiconductor substrate end face (17), a semiconductor layer end face (18) and a semiconductor substrate ( Pairs of parallel sides (19; 19') in 13), wherein the end faces (17, 18) and sides (19; 19') have sections (28, 29, 30) with high electrical conductivity , and said punch (16, 16') has a doping with low conductivity in the interior (27).
Description
技术领域 technical field
本发明涉及一种用于测量磁场的传感器元件。 The invention relates to a sensor element for measuring a magnetic field.
背景技术 Background technique
基于霍尔元件的磁性传感器如今可以使用在平面的半导体工艺中。于是,EP 1 462 770描述了一种带有传感器元件的霍尔传感器,该传感器元件带有设置在模型中的、在半导体衬底上的接触部。在芯片平面中流动的激励电流被引入所选择的接触部并且在其他接触部上测量霍尔电压。通过切换接触部选择,可以消除偏差。通过施加激励电流和相应的在不同方向上的测量,可以在芯片平面以及垂直于芯片平面中检测磁场。借助这种传感器,可以非常好地检测在芯片平面上垂直的磁场分量。对于在芯片平面中的场分量,借助纯粹平面的电极装置只能实现非常低的灵敏度。 Magnetic sensors based on Hall elements can now be used in planar semiconductor processes. EP 1 462 770 thus describes a Hall sensor with a sensor element having contacts arranged in a mold on a semiconductor substrate. An excitation current flowing in the plane of the chip is introduced into the selected contacts and the Hall voltage is measured at the other contacts. By switching the contact part selection, deviation can be eliminated. By applying an excitation current and corresponding measurements in different directions, the magnetic field can be detected in the plane of the chip as well as perpendicular to the plane of the chip. With this sensor, magnetic field components perpendicular to the plane of the chip can be detected very well. For field components in the chip plane, only very low sensitivities can be achieved with a purely planar electrode arrangement.
发明内容 Contents of the invention
与此相对,根据本发明的用于测量磁场的传感器元件具有的优点是,霍尔效应也针对处于芯片平面中的磁场方向被最大化。这样,可以在所有三个空间方向上以良好的精度来确定磁场矢量。特别地,可以在一个结构上同时检测所有的磁场分量。由此,它们经受相同的、例如由于温度过程、应力影响导致的漂移。当所述结构在所有方向上具有类似的长度时,可以尤其良好地保证这一点。借助霍尔元件的与磁场方向正交的电流引导,将其灵敏度最大化。另一优点是,霍尔传感器可以借助有效的制造方法在所有三个空间方向上被结构化。 In contrast, the sensor element according to the invention for measuring a magnetic field has the advantage that the Hall effect is also maximized for the direction of the magnetic field lying in the plane of the chip. In this way, the magnetic field vector can be determined with good accuracy in all three spatial directions. In particular, all magnetic field components can be detected simultaneously on one structure. They are thus subject to the same drift, for example due to temperature processes, stress influences. This can be ensured particularly well when the structures have similar lengths in all directions. The sensitivity of the Hall element is maximized by means of current conduction orthogonal to the direction of the magnetic field. Another advantage is that the Hall sensor can be structured in all three spatial directions by means of efficient production methods.
用于测量磁场的传感器元件具有晶片结构,其中该晶片结构具有半导体衬底、绝缘层和半导体层。这能够实现垂直于芯片平面的精确结构的有效的制造方法。传感器元件具有穿过穿通接触(durchkontakierten)的凸模(Stempel),该凸模带有半导体衬底端面、半导体层端面和在半导体衬底中的成对的平行的侧面,其中所述端面和侧面具有带有高导电性的区段,并且所述凸模在带有高导电性的区段之间具有带较低导电性的内部掺杂物。在工作中,激励电流可以相继地在不同方向上被引导通过凸模,并且霍尔电压可以在与其垂直的、带有高导电性的区段上被截取。该区段的高导电性能够通过在凸模的端面和侧面上有效地收集和引导开形成霍尔电压的载流子而实现良好的测量。 A sensor element for measuring a magnetic field has a wafer structure, wherein the wafer structure has a semiconductor substrate, an insulating layer and a semiconductor layer. This enables an efficient fabrication method of precise structures perpendicular to the plane of the chip. The sensor element has a punch through the punch-through contact, the punch having a semiconductor substrate end face, a semiconductor layer end face and pairs of parallel side faces in the semiconductor substrate, wherein the end face and the side faces There are sections with high conductivity, and the punch has internal dopants with lower conductivity between the sections with high conductivity. During operation, the excitation current can be guided successively in different directions through the punch, and the Hall voltage can be intercepted perpendicularly thereto in a section with high conductivity. The high electrical conductivity of this section enables good measurement due to the effective collection and separation of the charge carriers forming the Hall voltage at the end faces and sides of the punch.
在俯视图中,凸模优选具有多面体的形状。有利的是,凸模在高度和宽度上具有类似的长度。借助矩形的横截面,可以形成简单的、立方体形状的凸模,其在三个维度上具有对称的灵敏度和漂移。借助八面体形状的横截面,借助在芯片平面中的“自旋电流”的测量是可能的,其中激励电流相继地馈入相邻的侧面中并且霍尔电压在与其垂直的侧面上被测量。相应的内容也适用于更高数目的多面体,其中在四的倍数情况下,多面体分别具有彼此垂直的侧面的对。 In plan view, the punch preferably has the shape of a polyhedron. Advantageously, the punches have similar lengths in height and width. With the aid of a rectangular cross-section, simple, cube-shaped punches can be formed with symmetrical sensitivities and drifts in three dimensions. With the octahedral cross-section, measurements are possible by means of “spin currents” in the chip plane, wherein the excitation current is fed successively into the adjacent sides and the Hall voltage is measured on the side perpendicular thereto. The same applies for higher numbers of polyhedra, wherein in multiples of four the polyhedra each have pairs of sides perpendicular to one another.
端面和侧面的具有高导电性的区段优选彼此间隔。这些区段有利地与传感器元件的表面上的键合面导电连接。二者改进了形成霍尔电压的载流子的截取。 The highly conductive sections of the end faces and sides are preferably spaced apart from one another. These sections are advantageously electrically conductively connected to the bonding pads on the surface of the sensor element. Both improve the interception of carriers forming the Hall voltage.
侧面的具有高导电性的区段有利地具有侧面掺杂,该侧面掺杂高于凸模内部的内部掺杂。上端面的导电区段有利地具有端面掺杂,其高于内部掺杂。由此,可以产生所希望的不同的导电性。 The side sections with high conductivity advantageously have a side doping which is higher than the inner doping of the inside of the punch. The conductive section of the upper face advantageously has a doping of the face that is higher than the doping of the interior. As a result, desired different conductivities can be produced.
在本发明的一个扩展方案中,与侧面的具有高导电性的区段导电连接的键合面在凸模上基本上设置在侧面的具有高导电性的区段上方。 In one refinement of the invention, the bonding surface, which is electrically conductively connected to the highly conductive portion of the side surface, is arranged on the punch substantially above the portion with high conductivity of the side surface.
在对此可替选的本发明扩展方案中,侧面处于沟道中,并且侧面的具有高导电性的区段分别与导电层连接,该导电层通过沟道在其对置的侧上朝向衬底的上侧延伸。与侧面的具有高导电性的区段导电连接的键合面设置在凸模旁的半导体衬底上。 In an alternative development of the invention, the side faces are situated in the trenches, and the highly conductive sections of the side faces are each connected to a conductive layer, which faces the substrate on its opposite side via the trenches. extension on the upper side. The bonding surface, which is electrically conductively connected to the side sections with high conductivity, is arranged on the semiconductor substrate next to the punch.
传感器元件优选具有穿过穿通接触的导电的接触凸模,其中凸模和接触凸模在绝缘层之下彼此导电连接。接触凸模用于将凸模的下侧与传感器元件的上侧上的键合面电连接。由此,全部的键合面位于传感器元件的上侧上。在凸模和接触凸模之间的电连接通过在绝缘层之下的半导体层中的导电区段进行,或者通过在传感器的下侧上的导体进行。 The sensor element preferably has an electrically conductive contact punch passing through the feedthrough, wherein the punch and the contact punch are electrically conductively connected to one another beneath the insulating layer. The contact punch is used to electrically connect the lower side of the punch to the bonding surface on the upper side of the sensor element. As a result, all bonding surfaces are located on the upper side of the sensor element. The electrical connection between the punch and the contact punch takes place via electrically conductive sections in the semiconductor layer below the insulating layer, or via conductors on the underside of the sensor.
带有根据本发明的用于多维测量磁场的传感器元件的磁场传感器具有控制单元,用于电激励传感器元件以及测量和分析霍尔电压。 A magnetic field sensor with a sensor element according to the invention for the multidimensional measurement of a magnetic field has a control unit for electrically actuating the sensor element and for measuring and evaluating the Hall voltage.
优选的是三维磁场测量,然而本发明也可以简化地针对二维测量而构建,例如具有仅仅一对如上所述地配置的侧面。 Preference is given to three-dimensional magnetic field measurements, but the invention can also be designed simply for two-dimensional measurements, for example with only one pair of sides configured as described above.
将描述根据本发明的用于制造用于测量磁场的传感器元件的方法,其中所有方法步骤不必以该顺序来实施。该方法包含如下方法步骤: A method according to the invention for producing a sensor element for measuring a magnetic field will be described, in which all method steps do not have to be carried out in this order. The method comprises the following method steps:
a) 制造带有半导体衬底、绝缘层和半导体层的晶片结构,半导体衬底并且因此传感器元件的上侧位于晶片的背面上; a) production of the wafer structure with the semiconductor substrate, the insulating layer and the semiconductor layer, the upper side of the semiconductor substrate and thus the sensor elements being located on the back side of the wafer;
b) 形成穿过穿通接触的凸模,该凸模具有半导体衬底端面、半导体层端面和成对的平行的、在半导体衬底中的侧面,所述穿通接触形成在半导体层端面上的高导电性的区段; b) forming a punch through the through contact, the punch having a semiconductor substrate end face, a semiconductor layer end face and a pair of parallel side faces in the semiconductor substrate, the through contact being formed on the height of the semiconductor layer end face Conductive section;
c) 对具有低导电性的凸模的内部进行掺杂; c) doping the interior of the punch with low conductivity;
d) 在半导体衬底端面和侧面上形成具有高导电性的区段。 d) Formation of highly conductive segments on the end faces and side faces of the semiconductor substrate.
优选的是,凸模具有基本上多边形的横截面,并且所述方法具有如下方法步骤: Preferably, the punch has a substantially polygonal cross-section, and the method has the following method steps:
e) 去除凸模的彼此邻接的侧面的角(Ecken)。由此,在侧面上的具有高导电性的区段彼此隔离。 e) Remove the corners (Ecken) of the adjacent sides of the punch. As a result, the highly conductive sections on the sides are separated from one another.
有利的是,在另一方法步骤中,进行: Advantageously, in another method step, carry out:
f) 在半导体衬底的上侧上形成键合面,该键合面与具有高导电性的区段导电连接。 f) Forming a bonding surface on the upper side of the semiconductor substrate, which is electrically conductively connected to the highly conductive section.
在侧面上的具有高导电性的区段为此在第一变形方案中被引导直到半导体衬底的上侧上,并且在那里将键合面金属化。在第二变形方案中,侧面的具有高导电性的区段通过沟道的侧壁被引导至传感器元件的上侧上并且在凸模之外。 For this purpose, in the first variant, the highly conductive sections on the sides are guided as far as the upper side of the semiconductor substrate, and the bonding surface is metallized there. In a second variant, the side sections with high conductivity are guided through the side walls of the trench to the upper side of the sensor element and outside the punch.
凸模下侧的电连接有利地借助在传感器元件的上侧上的键合面通过如下方法步骤来进行: The electrical connection of the underside of the punch is advantageously carried out by means of the bonding surface on the upper side of the sensor element through the following method steps:
g) 形成穿过穿通接触的导电接触凸模; g) forming conductive contact punches through the feed-through contacts;
h) 在半导体层中形成凸模和接触凸模的导电连接。 h) Forming the punch and the electrically conductive connections contacting the punch in the semiconductor layer.
附图说明 Description of drawings
本发明的实施例将借助附图来阐述,其中: Embodiments of the invention will be illustrated with the aid of the accompanying drawings, in which:
图1示出了根据本发明的方法的流程图; Figure 1 shows a flow chart of the method according to the invention;
图2以示意图示出了根据本发明的在晶片中制造传感器元件; Figure 2 schematically shows the fabrication of sensor elements in a wafer according to the invention;
图3示意性地示出了根据本发明的传感器元件的凸模的加工; Fig. 3 shows schematically the machining of the punch of the sensor element according to the invention;
图4以示意图示出了根据本发明的在晶片中制造具有接触部的传感器元件; 4 schematically shows the production of a sensor element with contacts in a wafer according to the invention;
图5以示意图示出了根据本发明的在晶片中制造带有另一接触部的传感器元件;并且 FIG. 5 schematically shows the fabrication of a sensor element with another contact in a wafer according to the invention; and
图6示出了根据本发明的带有传感器元件的晶片背面的俯视图。 FIG. 6 shows a top view of the backside of a wafer with sensor elements according to the invention.
具体实施方式 Detailed ways
在图1中在流程图10中示出了根据本发明的用于制造用于测量磁场的传感器元件的方法,其中所有在下面描述的方法步骤不必以该顺序来实施。流程图10的方法步骤借助并且与图2至5一同来阐述。 The method according to the invention for producing a sensor element for measuring a magnetic field is shown in a flowchart 10 in FIG. 1 , wherein all method steps described below do not have to be carried out in this order. The method steps of flowchart 10 are explained with the aid of and together with FIGS. 2 to 5 .
首先参照图2A,在方法步骤a)制造带有半导体衬底13、绝缘层14和半导体层15的晶片结构12;从半导体衬底13。在半导体衬底13上沉积绝缘层14,其以半导体层15覆盖。半导体层15借助绝缘层14与半导体衬底13电绝缘。于是,在硅技术情况中得到例如绝缘体上硅(SOI)晶片。 Referring firstly to FIG. 2A , in method step a) a wafer structure 12 is produced with a semiconductor substrate 13 , an insulating layer 14 and a semiconductor layer 15 ; from the semiconductor substrate 13 . An insulating layer 14 is deposited on a semiconductor substrate 13 , which is covered with a semiconductor layer 15 . The semiconductor layer 15 is electrically insulated from the semiconductor substrate 13 by means of the insulating layer 14 . In the case of silicon technology this results, for example, in silicon-on-insulator (SOI) wafers.
在随后的方法步骤中,参照图2B进行b)形成穿过14穿通接触的凸模16,该凸模具有半导体衬底端面17、半导体层端面18和成对的平行的、在半导体衬底13中的侧面19。借助沟刻蚀构建出的凸模16借助穿通接触部20来穿通接触。侧面19在沟道22、23中。在图2B中此外可以看到接触凸模24,其借助穿通接触部25来穿通接触并且位于沟道23和26之间。穿通接触部20用高导电性的区段覆盖半导体层端面18。 In a subsequent method step, b) with reference to FIG. 2B , forming a punch 16 through 14 for a feed-through contact, the punch has a semiconductor substrate end face 17 , a semiconductor layer end face 18 and a pair of parallel, on-semiconductor substrate 13 19 in the side. The punch 16 formed by means of trench etching is contacted via vias 20 . The sides 19 are in the channels 22 , 23 . Also visible in FIG. 2B is a contact punch 24 , which is contacted through vias 25 and is located between channels 23 and 26 . The via 20 covers the semiconductor layer end face 18 with a highly conductive section.
方法步骤c)对具有低导电性的凸模16的内部27进行掺杂例如可以在方法步骤b)之后进行或者已经通过选择预先掺杂的晶片而事先进行。 Method step c) of doping the interior 27 of the punch 16 with low electrical conductivity can be carried out, for example, after method step b) or already beforehand by selecting a predoped wafer.
现在参照图2C执行方法步骤d)在半导体衬底端面17和侧面19上形成具有高导电性的区段28、29、30。这通过用较高掺杂的半导体层覆盖凸模16或者优选通过将掺杂物扩散进入来进行。凸模16和半导体衬底13、可选地还有绝缘层14借助掩模32部分地保护以防扩散进入。接着,可以例如借助扩散入掺杂物来导电地覆盖侧面或者端面接触部。 Referring now to FIG. 2C , method step d) is carried out to form sections 28 , 29 , 30 with high conductivity on the end faces 17 and side faces 19 of the semiconductor substrate. This is done by covering the stamp 16 with a more highly doped semiconductor layer or preferably by diffusing in dopants. Emboss 16 and semiconductor substrate 13 , and optionally also insulating layer 14 , are partially protected against ingress by diffusion by means of mask 32 . Subsequently, the side or end face contacts can be covered electrically conductively, for example by means of dopant diffusion.
图3)现在相应地示出了方法步骤e)去除凸模16的彼此邻接的侧面19、34的角33;如凸模16被再次结构化那样,以便实现侧面19、34的电分离。由此,在侧面上的具有高导电性的区段彼此隔离。如果完成的传感器元件在以后的工作中借助通过端面17、18引导的激励电流来驱动,则可以彼此独立地测量霍尔电压Ux 35和Uy 36。 FIG. 3 ) now correspondingly shows method step e) removal of corners 33 of mutually adjoining sides 19 , 34 of punch 16 ; as punch 16 is restructured in order to achieve electrical separation of sides 19 , 34 . As a result, the highly conductive sections on the sides are separated from one another. If the completed sensor element is subsequently driven by means of an excitation current conducted via the end faces 17 , 18 , the Hall voltages Ux 35 and Uy 36 can be measured independently of one another.
图4说明了另一方法步骤f)在半导体衬底13的上侧39上形成键合面37、38,这些键合面与具有高导电性的区段28、29、30连接。在侧面上的具有高导电性的区段28、29在第一变形方案中被引导直到半导体衬底13的上侧39上,并且在那里将键合面37以及38金属化。键合面37、38可以通过键合线40连接到分析电子设备或者另一芯片上。 FIG. 4 illustrates a further method step f) of forming bonding pads 37 , 38 on the upper side 39 of the semiconductor substrate 13 , which are connected to the highly conductive sections 28 , 29 , 30 . In a first variant, the highly conductive sections 28 , 29 on the sides are guided as far as the upper side 39 of the semiconductor substrate 13 and the bonding surfaces 37 and 38 are metallized there. The bonding surfaces 37 , 38 can be connected via bonding wires 40 to the evaluation electronics or to another chip.
图4和图2B此外说明了凸模下侧或者端面18与传感器元件42的上侧上的键合面41通过如下方法步骤的有利的电连接:g)形成穿过14穿通接触的导电的接触凸模24;h)形成凸模16和接触凸模24在绝缘层14之下的导电连接43。 FIGS. 4 and 2B also illustrate the advantageous electrical connection of the punch underside or end face 18 to the bonding surface 41 on the upper side of the sensor element 42 by the following method steps: g) Formation of an electrically conductive contact through 14 through-contact. The punch 24 ; h) forms the punch 16 and the electrically conductive connection 43 contacting the punch 24 under the insulating layer 14 .
在图4中所示的凸模16和接触凸模24的导电连接43实施为在半导体层15上的传感器元件42的下侧上的导体44。凸模16和接触凸模24的晶片区段45、46通过沟道47彼此电分离。 The punch 16 shown in FIG. 4 and the electrically conductive connection 43 of the contact punch 24 are embodied as conductors 44 on the underside of the sensor element 42 on the semiconductor layer 15 . The punch 16 and the wafer sections 45 , 46 contacting the punch 24 are electrically separated from each other by a channel 47 .
图5示出了一个实施形式,其相对于图4具有彼此独立的可替选的设计。与图4中类似的元件设置有带撇的参考数字。第一可替选的设计涉及将凸模16的键合面向外移动。在此,现在侧面19’的具有高导电性的区段同样可替选地作为金属层48、49通过沟道50的侧壁向传感器元件42’的上侧39’上引导,用于形成侧壁接触部51。完全填充的沟道也是可能的。在此,键合线直接连接到金属层48、49的侧壁接触部51上。这种在空间上彼此拉开的设计使得键合变得容易。 FIG. 5 shows an embodiment which has alternative designs to FIG. 4 independently of each other. Elements similar to those in Figure 4 are provided with primed reference numerals. A first alternative design involves moving the bonding face of the punch 16 outwards. In this case, the now highly conductive sections of the side surfaces 19 ′ can also alternatively be guided as metal layers 48 , 49 via the side walls of the trench 50 onto the upper side 39 ′ of the sensor element 42 ′ in order to form side surfaces 19 ′. Wall contact portion 51 . Completely filled trenches are also possible. In this case, the bonding wire is directly connected to the sidewall contact 51 of the metal layers 48 , 49 . This design, which is spaced apart from each other, makes bonding easier.
第二可替选的设计涉及将凸模下侧或者端面18与传感器元件42的上侧上的键合面41的电连接。在图4中所示的凸模16’和接触凸模24’的导电连接53实施为在绝缘层之下的半导体层15’中的掺杂连接54。接触凸模被沟道55包围。 A second alternative configuration involves the electrical connection of the punch underside or end face 18 to the bonding face 41 on the top side of the sensor element 42 . The punch 16' shown in FIG. 4 and the conductive connection 53 contacting the punch 24' are implemented as doped connections 54 in the semiconductor layer 15' below the insulating layer. The contact punch is surrounded by a channel 55 .
在图6中示出了具有根据本发明的图5中的传感器元件42’的晶片的背面,传感器元件的上侧位于晶片的背面上。在晶片结构12’上,具有带矩形横截面的金属键合面38’的凸模16’被金属侧壁接触部51、51包围。在其旁边,接触凸模24’作为同样具有金属键合面41的下侧接触部被沟道55包围。 In Fig. 6 is shown the backside of the wafer with the sensor element 42' in Fig. 5 according to the invention, the upper side of the sensor element being located on the backside of the wafer. On the wafer structure 12', a punch 16' having a metal bonding surface 38' with a rectangular cross-section is surrounded by metal sidewall contacts 51,51. Next to it, the contact punch 24' is surrounded by a trench 55 as an underside contact, which likewise has a metallic bonding surface 41 .
参照图6中的坐标轴x、y阐述带有根据本发明的用于多维测量磁场的传感器元件的磁场传感器的功能,其中z轴垂直于图像平面向上走向。用于电激励传感器元件以及测量和分析霍尔电压的控制单元将预先确定的激励电流相继地在x、y和z方向上分别在正坐标方向以及在负坐标方向上通过接触对38’与41’、51和52来引导。 The function of a magnetic field sensor with a sensor element according to the invention for multidimensional magnetic field measurement is explained with reference to the coordinate axes x, y in FIG. 6 , wherein the z-axis runs upward perpendicular to the image plane. The control unit for electrically actuating the sensor element and measuring and evaluating the Hall voltage passes a predetermined excitation current successively in the x, y and z directions respectively in the direction of the positive coordinate and in the direction of the negative coordinate through the contact pairs 38' and 41 ', 51 and 52 to boot.
通过接触对38’与41’引导的激励电流lz垂直地在z方向上流过凸模16’,在芯片平面中的磁场分量也在垂直于磁场分量的芯片平面中产生霍尔电压。通过磁场分量Bx在x方向上产生的霍尔电压在接触对52上在y方向上被测量,并且通过磁场分量By在y方向上产生的霍尔电压在接触对51上在x方向上被测量。 The excitation current lz conducted via the contact pairs 38' and 41' flows through the punch 16' perpendicularly in the z direction, the magnetic field component in the chip plane also generating a Hall voltage in the chip plane perpendicular to the magnetic field component. The Hall voltage generated by the magnetic field component Bx in the x direction is measured on the contact pair 52 in the y direction, and the Hall voltage generated by the magnetic field component By in the y direction is measured on the contact pair 51 in the x direction .
通过接触对51引导的激励电流Ix水平地在x方向上流过凸模16’,在y和z方向上的磁场分量也产生z和y方向上垂直于磁场分量的霍尔电压。通过磁场分量By在y方向上产生的霍尔电压在接触对38’与41’上在z方向上被测量,并且通过磁场分量Bz在z方向上产生的霍尔电压在接触对52上在y方向上被测量。 The excitation current Ix conducted via the contact pair 51 flows horizontally through the punch 16' in the x direction, and the magnetic field components in the y and z directions also generate Hall voltages in the z and y directions perpendicular to the magnetic field components. The Hall voltage generated by the magnetic field component By in the y direction is measured on the contact pair 38 ′ and 41 ′ in the z direction, and the Hall voltage generated by the magnetic field component Bz in the z direction is measured on the contact pair 52 in the y direction. direction is measured.
相应的内容适用于通过接触对52引导的激励电流Iy。通过对相同磁场分量的多次测量的冗余(尤其是加上在分别两个电流方向的情况),被用于持续地确定偏差和漂移。 The same applies for the excitation current Iy conducted via the contact pair 52 . The redundancy of the multiple measurements of the same magnetic field component (in particular added in each case in both current directions) is used to continuously determine deviations and drifts.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010000769A DE102010000769A1 (en) | 2010-01-11 | 2010-01-11 | Sensor element for magnetic field measurement, magnetic field sensor and method for producing a sensor element |
DE102010000769.2 | 2010-01-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102169955A CN102169955A (en) | 2011-08-31 |
CN102169955B true CN102169955B (en) | 2015-09-09 |
Family
ID=43975353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110003497.9A Expired - Fee Related CN102169955B (en) | 2010-01-11 | 2011-01-10 | For measuring the sensor element in magnetic field, magnetic field sensor and the method for the manufacture of sensor element |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN102169955B (en) |
DE (1) | DE102010000769A1 (en) |
FR (1) | FR2955211B1 (en) |
IT (1) | IT1403298B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2778704B1 (en) * | 2013-03-11 | 2015-09-16 | Ams Ag | Magnetic field sensor system |
DE102013209514A1 (en) | 2013-05-22 | 2014-11-27 | Micronas Gmbh | Three-dimensional Hall sensor for detecting a spatial magnetic field |
CN107966669B (en) * | 2017-12-19 | 2019-11-08 | 大连理工大学 | Semiconductor three-dimensional hall sensor suitable for high temperature working environment and manufacturing method thereof |
DE102018009110B4 (en) * | 2018-11-21 | 2025-04-03 | Tdk-Micronas Gmbh | SOI semiconductor structure and method for producing an SOI semiconductor structure |
DE102018009162A1 (en) * | 2018-11-22 | 2020-05-28 | Tdk-Micronas Gmbh | Semiconductor sensor structure |
DE102019000165B4 (en) * | 2019-01-14 | 2024-06-27 | Tdk-Micronas Gmbh | Semiconductor sensor structure |
CN117098447B (en) * | 2023-10-20 | 2024-02-06 | 北京智芯微电子科技有限公司 | Vertical Hall sensor, manufacturing method and chip |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5543988A (en) * | 1993-04-30 | 1996-08-06 | International Business Machines Corporation | Hall sensor with high spatial resolution in two directions concurrently |
DE10244096A1 (en) * | 2002-09-23 | 2004-04-01 | Robert Bosch Gmbh | Spinning current Hall sensor with homogeneous space charge zone |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10313642A1 (en) | 2003-03-26 | 2004-10-14 | Micronas Gmbh | Hall sensor with reduced offset |
JP4466276B2 (en) * | 2004-08-17 | 2010-05-26 | 株式会社デンソー | Vertical Hall element and manufacturing method thereof |
JP4674578B2 (en) * | 2006-01-13 | 2011-04-20 | 株式会社デンソー | Magnetic sensor and magnetic detection method |
-
2010
- 2010-01-11 DE DE102010000769A patent/DE102010000769A1/en not_active Withdrawn
-
2011
- 2011-01-07 FR FR1150125A patent/FR2955211B1/en not_active Expired - Fee Related
- 2011-01-10 IT ITMI2011A000008A patent/IT1403298B1/en active
- 2011-01-10 CN CN201110003497.9A patent/CN102169955B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5543988A (en) * | 1993-04-30 | 1996-08-06 | International Business Machines Corporation | Hall sensor with high spatial resolution in two directions concurrently |
DE10244096A1 (en) * | 2002-09-23 | 2004-04-01 | Robert Bosch Gmbh | Spinning current Hall sensor with homogeneous space charge zone |
Also Published As
Publication number | Publication date |
---|---|
IT1403298B1 (en) | 2013-10-17 |
FR2955211A1 (en) | 2011-07-15 |
CN102169955A (en) | 2011-08-31 |
ITMI20110008A1 (en) | 2011-07-12 |
DE102010000769A1 (en) | 2011-07-14 |
FR2955211B1 (en) | 2016-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102169955B (en) | For measuring the sensor element in magnetic field, magnetic field sensor and the method for the manufacture of sensor element | |
JP5496329B2 (en) | Hall sensor element and method for measuring magnetic field | |
JP4766143B2 (en) | Semiconductor device and manufacturing method thereof | |
CN103035834B (en) | Thermoelectric device and autofrettage, energy collecting system, heat transfer unit (HTU) and temperature-sensitive element | |
CN102030307B (en) | Manufacturing method for micromechanical component and micromechanical component | |
JP2005333103A (en) | Vertical hall device and manufacturing method of the same | |
US10050082B1 (en) | Hall element for 3-D sensing using integrated planar and vertical elements and method for producing the same | |
US9599682B2 (en) | Vertical hall element | |
CN114096865B (en) | Hall integrated sensor and corresponding manufacturing process | |
WO2015042701A1 (en) | Mems device including an electrode guard ring and method of manufacturing the same | |
CN206767639U (en) | Integrated-semiconductor device | |
CN108351267A (en) | Capacitance pressure transducer, and its manufacturing method | |
CN102231373A (en) | Semiconductor substrate and methods for the production thereof | |
JP2009272477A (en) | Mems sensor and its manufacturing method | |
JP2008022022A (en) | Vertical Hall element and manufacturing method thereof | |
JP2007003237A (en) | Current sensor | |
TWI668886B (en) | Vertical Hall element | |
US8736003B2 (en) | Integrated hybrid hall effect transducer | |
CN111211219B (en) | Semiconductor sensor structure | |
CN111435700B (en) | Semiconductor sensor structure | |
CA2937361C (en) | Method for producing a component | |
JP2004296469A (en) | Hall element | |
JP5401414B2 (en) | Wafer, wafer manufacturing method, and capacitive acceleration sensor manufacturing method | |
US20250132090A1 (en) | Method for manufacturing an electronic device with an integrated permanent magnet and electronic device with an integrated permanent magnet | |
JP2022111675A (en) | Hall element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150909 Termination date: 20200110 |
|
CF01 | Termination of patent right due to non-payment of annual fee |