CN102165606A - 抑制具有异质结的光电器件中外延生长的方法和光电器件 - Google Patents

抑制具有异质结的光电器件中外延生长的方法和光电器件 Download PDF

Info

Publication number
CN102165606A
CN102165606A CN2009801379031A CN200980137903A CN102165606A CN 102165606 A CN102165606 A CN 102165606A CN 2009801379031 A CN2009801379031 A CN 2009801379031A CN 200980137903 A CN200980137903 A CN 200980137903A CN 102165606 A CN102165606 A CN 102165606A
Authority
CN
China
Prior art keywords
cone
crystalline silicon
veining
base portion
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801379031A
Other languages
English (en)
Inventor
S·奥利贝特
C·莫纳琼
J·达蒙-拉考斯特
C·巴里夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Neuchatel
Original Assignee
Universite de Neuchatel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Neuchatel filed Critical Universite de Neuchatel
Publication of CN102165606A publication Critical patent/CN102165606A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种用于在具有异质结的光电器件中抑制外延生长的方法,该光电器件包括晶体硅基质和至少一个无定形或微晶硅层,其中,所述方法特征在于其包括纹理化晶体硅表面的步骤。

Description

抑制具有异质结的光电器件中外延生长的方法和光电器件
技术领域
本发明涉及光电器件领域,更特别地,涉及用于抑制具有异质结的光电器件中外延生长的方法,该光电器件包括晶体硅基质。本发明还涉及所述光电器件。
本发明对于意欲用于生产电能的光电池发现了特别有意义的应用,但其更普遍地应用于其中将光辐射转化成电信号的任何结构中,例如光检测器。
背景技术
已知,具有异质结的光电器件包括晶体硅基质,该晶体硅基质覆盖有一层或几层无定形硅或微晶硅。由此,此种器件可依次包括晶体硅基质、氢化非晶硅层和氢化微晶硅层。
为了提高具有异质结的包括晶体硅基质的光电器件的性能,尤其是输出电流,已知通过用各向异性蚀刻法形成许多锥形不规则切面来如何修饰晶体硅基质的纹理,正如在美国专利4,137,123中所述。用于形成锥体的在碱性介质中的该各向异性湿化学蚀刻方法可以产生谷,该谷的底部具有陡沿/锐边。将连接锥体基部的区域称作谷。
在某些文献中,尤其是在美国专利6,207,890中,可以看出,在具有陡沿的这些谷中,氢化非晶硅的沉积不够厚,其缺点是减少具有带晶体硅基质的异质结的太阳能电池的开路电压(Voc)和填充系数(FF)。美国专利6,207,890通过以下来解决此问题:提议进行基质的各向异性蚀刻,以将谷的底部磨圆,其效果是能够用等离子体增强化学气相沉积方法(PECVD)来沉积均匀厚度的无定形或微晶硅层。
通过使用本领域技术人员已知的适合沉积条件(PECVD),可能获得具有如下异质结的电池:即使所述基质在使用各向异性蚀刻方法后具有锥形纹理,在该异质结中沉积在晶体硅基质上的无定形或微晶硅层也具有恒定的厚度。然而,如图1所示,在氢化无定形或晶体硅生长期间,在晶体硅基质的具有陡沿的谷中观察到外延过程。实际上,在锥体平面上非常清晰的无定形硅和微晶硅层的界面,在形成于晶体硅基质上的锥体的陡沿谷中变得不清晰。此局部外延生长具有以下缺点:降低具有晶体硅基质的太阳能异质结电池的开路电压(Voc)以及由此降低其效率。
因此,本发明的目的是通过提出方法来克服此缺点,用该方法,在氢化无定形或微晶硅生长期间,在具有异质结的光电器件中,可以使局部外延生长降低和使外延的影响受到抑制,光电器件包括具有锥体纹理的晶体硅基质。
发明内容
为此目的,根据本发明,提出用于在具有异质结的光电器件中抑制外延生长的方法,该光电器件包括晶体硅基质和至少一个无定形或微晶硅层,该方法特征在于其包括使晶体硅表面纹理化的步骤。
在称为选择A的第一个可选择实施方案中,所述纹理化步骤包括在晶体硅基质上形成锥体,所述锥体具有尺寸严格大于5μm的基部。
在称为选择B的第二个可选择实施方案中,所述纹理化步骤包括在晶体硅基质上形成锥体,所述锥体具有规则布局,以便少于20%的晶体硅表面覆盖有具有亚微尺寸的锥体,和至少一半以上晶体硅表面覆盖有如下锥体:基部的平均尺寸b包括在b±5μm的范围内,其中b严格大于1μm。
根据称为选择C的第三个可选择实施方案,所述纹理化步骤包括在晶体硅基质上形成锥体和谷,所述谷具有磨圆的底部。
本发明还涉及具有异质结的光电器件,该光电器件包括晶体硅基质,其中在氢化无定形或微晶硅在所述晶体硅基质上生长期间,根据上述前两种方法A和B之一使外延过程受到抑制。
附图说明
参考附图,阅读后述说明书,本发明其它特征将变得更清楚,在附图中:
图1是通过透射电子显微镜获得的显微照片,其显示在现有技术的具有异质结的光电器件中的外延生长,包括在具有锥体的晶体硅基质上的无定形硅层和微晶硅层,其谷具有陡沿。
图2是显示晶体硅基质的照片,该晶体硅基质表面根据本发明方法的步骤A已纹理化。
图3是显示晶体硅基质的照片,该晶体硅基质表面根据本发明方法的步骤B已纹理化。
图4是通过透射电子显微镜获得的显微照片,其显示在具有异质结的光电器件中外延生长的抑制,包括在晶体硅基质上的无定形硅层和微晶硅层,所述晶体硅基质已根据组合本发明步骤A、B和C的方法纹理化。
具体实施方式
根据本发明,用于抑制在具有异质结的光电器件中外延生长的方法包括晶体硅表面的纹理化步骤,所述光电器件包括晶体硅基质和至少一个微晶硅或无定形硅层。
在称为选择A的第一个可选择实施方案中,所述纹理化步骤包括在晶体硅基质上形成锥体,所述锥体具有基部,该基部的侧边具有严格大于5μm的尺寸。
优选地,大多数c-Si表面,即,严格地多余一半c-Si表面,覆盖有具有基部的锥体,该基部的侧边具有严格大于5μm的尺寸。优选地,所述锥体基部的侧边具有包括在如下范围内的尺寸:5至25μm,更优选地10(不包括)至20μm。大尺寸锥体的形成允许降低每单位面积的谷的密度。锥体的高度h可以很一般地通过公式tan(54.74)=(2xh)/c与基部的边缘c的尺寸相关。锥体的尺寸和它们的均匀度可以通过扫描显微图像处理或立体重建来容易地确定(Kuchler等人的STEREOSCOPIC RECONSTRUCTION OF RANDOMLY TEXTURED SILICON SURFACES,17th European Photovoltaic Solar Energy Conference,October 22nd to 26th,2001,Munich)。
所述锥体可以通过各向异性蚀刻用例如以下来形成:KOH/IPA混合物或NaOH或TMAH溶液(具有或不具有IPA)或Na2CO3/NaHCO3的混合物。优选地,对于此各向异性蚀刻,使用2-3重量%IPA浓度和6-8体积%的水浓度的KOH溶液,在80℃下蚀刻时间为5-40分钟。锥体的尺寸随着蚀刻时间而增加,并强烈地依赖于所选硅基质的杂质水平和类型。KOH浓度的降低、IPA浓度的降低或蚀刻时间的增加促进大锥体形成。这些参数将根据想要的锥体尺寸来调整。注意,将增加蚀刻时间直至获得想要的锥体尺寸。本领域技术人员控制通过上述方法获得的尺寸以便确定各向异性蚀刻参数。
图2示出晶体硅基质,其表面已根据步骤A纹理化。获得的锥体具有基部,该基部的侧边平均大于20μm,具有良好的均匀度。
在称为选择B的第二个可选择实施方案中,所述纹理化步骤包括在晶体硅基质上形成锥体,所述锥体具有如下定义的规则布局:低百分比的亚微锥体(少于20%的c-Si表面覆盖有具有亚微尺寸的锥体),和至少一半以上c-Si表面覆盖有如下锥体:基部侧边的平均尺寸b包括在b±5μm的范围内,其中b严格大于1μm。优选地,少于10%的c-Si表面覆盖有具有亚微尺寸的锥体,超过2/3的c-Si表面覆盖有如下锥体:基部侧边的平均尺寸b包括在b±2.5μm的范围内。使用此步骤,通过一方面抑制亚微纹理元件和另一方面抑制嵌套锥体,可以降低每单位表面的谷密度。
因此,相对于选择A,选择B特征在于锥体尺寸的更好均匀度,与选择A不同,锥体尺寸小于5μm,但具有小比例的具有亚微尺寸的锥体。图3示出晶体硅基质,其表面已根据步骤B纹理化。锥体较小并具有基部,该基部的侧边平均小于5μm,很少有锥体具有亚微尺寸。
所述锥体基部的侧边的平均尺寸优选包括在如下范围内:3μm至25μm,更优选5μm(不包括)至20μm。
步骤B可以通过各向异性蚀刻来实现,例如用KOH/IPA混合物,并注意温度的均匀性(例如根据描述于如下文件中的方法:W.Sparber等人的《Comparison of Texturing Methods for Monocrystalline Silicon Solar Cells using KOH and Na2CO3》”,Proc.of the 3rd World Conf.on Photovoltaic,Osaka,2003),或用NaOH或TMAH溶液(具有或不具有IPA)或Na2CO3/NaHCO3的混合物。蚀刻方法的参数根据晶体硅基质的初始表面情况来调整。优选地,将使用类似于用于选择A的一个方法的KOH/IPA溶液,同时注意KOH浓度的降低、IPA浓度的降低或蚀刻时间的增加促进大锥体形成。因此,对于选择B来说,如果想要获得小尺寸锥体,通常将使用比选择A所用的蚀刻时间更短的蚀刻时间。对于选择B来说,温度和搅拌的均匀度是根本的,以便锥体尺寸具有更好的均匀度。
在称为选择C的第三个可选择实施方案中,所述纹理化步骤包括在晶体硅基质上形成锥体和谷,所述谷具有磨圆的底部。
所述谷磨圆的底部具有大于0.005μm的曲率半径,优选0.05μm至15μm的曲率半径。至少50%的锥体应当具有此磨圆的底部,优选至少它们的75%。
该步骤可以通过各向异性蚀刻来实现,例如,用所谓的CP133溶液,即HF(50%在去离子水中),HNO3(100%发烟酸)和CH3COOH(100%),比例为1∶3∶3的混合物。还可以使用仅含有HF和HNO3的溶液。处理时间优选为3至20秒,同样依赖于所选的硅基质。
依赖于晶体硅基质的初始表面情况,该步骤可以分解成两个步骤,首先在晶体硅基质上形成不规则锥体,例如根据描述于如下出版物中的方法:W.Sparber等人的《Comparison of Texturing Methods for Monocrystalline Silicon Solar Cells using KOH and Na2CO3》,Proc.of the 3rd World Conf.on Photovoltaic,Osaka,2003,然后通过各向异性蚀刻将谷的底部磨圆。
本领域技术人员掌握用于形成锥体的方法,根据两者中的任何一个,他们知道如何调整这些不同方法的参数以便获得具有所追求特征锥体。本发明不是基于用于形成锥体的方法,而是基于利用这些锥体的尺寸和分布,来降低在氢化无定形或微晶硅生长期间在具有异质结的光电器件中在具有锥体纹理的晶体管基质上的局部外延生长。注意,本领域技术人员可以参考以下出版物:W Sparber,O.Schultz,D.Biro,G.Emanuel,R.Preu,A.Poddey and D.Borchert,“Comparison of Texturing Methods for Monocrystalline Silicon Solar Cells Using KOH and Na2CO3”,Proc.of the 3rd World Conf.on Photovoltaic,Osaka,2003。此外,温度和搅拌的均匀度对于获得均匀的结构是至关重要的。
这三个可选择实施方案A、B和C可以彼此、其中两个或三个组合。
因此,可以通过如下方式来应用本发明的方法:单独应用选择A、B或C中的任何一个,或组合A和B、A和C、B和C、或A、B和C。A和B的组合步骤可以在单个步骤中实现。
图4示出通过透射电子显微镜获得的照片,其显示在具有异质结的光电器件中外延生长的抑制,包括在晶体硅基质上的无定形硅层和微晶硅层,所述晶体硅基质已根据组合本发明步骤A、B和C的方法纹理化。在此图中,晶体硅层、无定形硅层和微晶硅层之间的界面可以清楚地看出,这显示外延生长的降低。
在用于纹理化晶体硅表面的步骤之后,将至少一个无定形或微晶硅层沉积在由此纹理化的晶体硅基质上,以便根据本领域技术人员已知的方法获得具有异质结的光电器件。
本发明涉及具有异质结的光电器件,该光电器件包括晶体硅基质,其中在氢化无定形或微晶硅在所述晶体硅基质上生长期间,根据上述前两种方法A和B之一使外延过程受到抑制。根据第一个可选择实施方案,此器件可包括纹理化的晶体硅基质,在该晶体硅基质表面上具有锥体,锥体具体基部,该基部具有严格大于5μm的尺寸,优选5μm至25μm,更优选地10至20μm。
根据另一可选择实施方案,本发明的光电器件包括纹理化的晶体硅基质,在该晶体硅基质表面上具有锥体,锥体的规则布局如下:低百分比的亚微锥体(少于20%的c-Si表面覆盖有具有亚微尺寸的锥体),和至少一半以上c-Si表面覆盖有如下锥体:基部侧边的平均尺寸b包括在b±5μm的范围内,其中b严格大于1μm。优选地,至少10%的c-Si表面覆盖有具有亚微尺寸的锥体,超过2/3的c-Si表面覆盖有如下锥体:基部的尺寸b包括在b±2.5μm的范围内。
另外,根据所述两个方案中的任何一个,所述纹理化的晶体硅基质可包括具有磨圆底部的谷。所述谷的磨圆底部具有大于0.005μm的曲率半径,优选具有0.05μm至15μm的曲率半径。该谷的磨圆底部根据上述方法C获得。
此外,可将上述限定的两个可选方案合并以获得包括纹理化晶体硅基质的器件,在该晶体硅基质表面具有锥体,锥体带基部,该基部的尺寸严格大于5μm,并且具有如下定义的规则布局:低百分比的亚微锥体(少于20%的c-Si表面覆盖有具有亚微尺寸的锥体),和至少一半以上c-Si表面覆盖有如下锥体:基部的尺寸b包括在b±5μm的范围内。优选地,少于10%的c-Si表面覆盖有具有亚微尺寸的锥体,超过2/3的c-Si表面覆盖有如下锥体:基部的尺寸b包括在b±2.5μm的范围内。
另外,如上所述,此处所述的纹理化的晶体硅基质可以包括具有磨圆的底部的谷。
此外,如果控制各向同性蚀刻时间,磨圆谷底部的步骤还给出以下可能:通过控制该过程来磨圆锥体的顶部从而不降低捕获的光。这能够提高装配期间太阳能电池的稳健性。实际上,通过减少可能破损的锥体尖顶的数量,特别是当这些尖顶是特别锐利的时候,磨圆锥体的顶部能够显著降低电池在装配期间的机械损坏。
由此,根据本发明优选的可选实施方案,可获得具有异质结的光电器件,该光电器件包括纹理化的晶体硅基质,在该晶体硅基质表面具有锥体和谷,所述锥体具有基部,该基部的尺寸b严格大于5μm,所述锥体具有如下定义的规则布局:低百分比的亚微锥体(少于20%的c-Si表面覆盖有具有亚微尺寸的锥体),和至少一半以上c-Si表面覆盖有如下锥体:基部的尺寸b包括在b±5μm的范围内。优选地,少于10%的c-Si表面覆盖有具有亚微尺寸的锥体,超过2/3的c-Si表面覆盖有如下锥体:基部的尺寸b包括在b±2.5μm的范围内,所述谷具有磨圆的底部,该底部的曲率半径大于0.005μm,优选0.05μm至15μm。
根据本发明获得的器件的效率大于现有异质结器件的效率。
实施例
通过用于纹理化晶体硅基质的步骤A,B,A和B,以及A、B和C制备3个具有异质结的光电池。
步骤A和B根据以下出版物实现:W.Sparber,O.Schultz,D.Biro,G.Emanuel,R.Preu,A.Poddey and D.Borchert,″Comparision of Texturing Methods for Monocrystalline Silicon Solar Cells Using KOH and Na2CO3”,Proc.of the 3rd World Conf.on Photovoltaic,Osaka,2003,以便获得本发明的特征。
至于步骤C,将基质浸入新鲜制备的包括以下的水溶液:50%氟化氢(HF)、硝酸(100%发烟酸)和100%乙酸(CH3COOH),比例:1∶3∶3,浸入约5秒或约1分钟。
作为对比,根据描述于以下出版物的方法:″ Experimental Optimization of an Anisotropic etching process for random texturization of silicon so
测量以下参数:按照AM1.5标准的开路电压(Voc)、填充系数(FF)、短路电流密度(Jsc)和效率。
结果示于下表:
  实施例   Voc(mV)   FF(%)   Jsc(mA/cm2)   效率
  比较   601   68.4   34.5   14.2
  步骤A   631   72.9   34.6   15.5
  步骤B   618   69.5   34.6   14.9
  步骤A+B   660   68.9   35.6   16.0
  步骤A+B+C   700   67.0   36.5   17.0
此表的结果显示:通过本发明的方法,带异质结的光电器件的性能提高了,特别是当将三个步骤A、B和C合并时。

Claims (22)

1.一种用于在具有异质结的光电器件中抑制外延生长的方法,该光电器件包括晶体硅基质和至少一个无定形或晶体硅层,其特征在于:该方法包括用于纹理化所述晶体硅基质表面的步骤。
2.根据权利要求1所述的方法,其特征在于:所述纹理化步骤为步骤A,其包括在该晶体硅基质上形成锥体,所述锥体具有基部,所述基部尺寸严格大于5μm。
3.根据权利要求2所述的方法,其特征在于:所述纹理化步骤A包括在该晶体硅基质上形成锥体,大部分该晶体硅基质表面覆盖有锥体,所述锥体的尺寸严格大于5μm。
4.根据权利要求2和3中任一项所述的方法,其特征在于:所述锥体的基部具有5μm至25μm的尺寸,不包括5μm,更优选10μm至20μm的尺寸。
5.根据前述任一项权利要求中所述的方法,其特征在于:所述晶体硅基质表面的纹理化步骤A通过各向异性蚀刻实现。
6.根据权利要求1所述的方法,其特征在于:所述纹理化步骤为步骤B,包括在所述晶体硅基质上形成锥体,所述锥体具有规则布局,以便少于20%的所述晶体硅表面覆盖有具有亚微尺寸的锥体,至少一半以上所述晶体硅表面覆盖有如下锥体:其基部尺寸b包括在b±5μm的范围内,其中b严格大于1μm。
7.根据权利要求6所述的方法,其特征在于:所述纹理化步骤B包括在所述晶体硅基质上形成锥体,所述锥体具有规则布局,以便少于10%的所述晶体硅表面覆盖有具有亚微尺寸的锥体,至少2/3所述晶体硅表面覆盖有如下锥体:其基部尺寸b包括在b±2.5μm的范围内。
8.根据权利要求6和7中任一项所述的方法,其特征在于:所述晶体硅基质表面的纹理化步骤B通过各向异性蚀刻实现。
9.根据权利要求1所述的方法,其特征在于:所述纹理化步骤为步骤C,包括在所述晶体硅基质上形成锥体和谷,所述谷具有磨圆的底部。
10.根据权利要求9所述的方法,其特征在于:所述谷的磨圆底部具有大于0.005μm的曲率半径,优选0.005μm至15μm的曲率半径。
11.根据权利要求9和10中任一项所述的方法,其特征在于:至少50%的所述锥体通过谷连接,优选至少75%的所述锥体通过谷连接,所述谷的磨圆底部具有大于0.005μm的曲率半径,优选0.05μm至15μm的曲率半径。
12.根据权利要求9和11中任一项所述的方法,其特征在于:所述晶体硅基质表面的纹理化步骤C通过各向同性蚀刻实现。
13.根据权利要求9和11中任一项所述的方法,其特征在于:将所述晶体硅基质表面的纹理化步骤C分解为两个步骤,即,首先,通过各向异性蚀刻在所述晶体硅基质上形成不规则锥体,然后,通过各向同性蚀刻将所述谷底部磨圆。
14.根据前述任一项权利要求中所述的方法,其特征在于:所述晶体硅基质表面的纹理化步骤由合并纹理化步骤A、B和C中的两个或三个组成。
15.根据权利要求14所述的方法,其特征在于包括:
用于纹理化所述晶体硅基质表面的步骤通过各向异性蚀刻实现,以便在所述晶体硅基质表面形成锥体,该锥体具有基部,其尺寸b严格大于5μm,并且该锥体具有规则布局以便少于20%的所述晶体硅表面覆盖有具有亚微尺寸的锥体,至少一半以上所述晶体硅表面覆盖有如下锥体:其基部尺寸b包括在b±5μm的范围内;和
用于纹理化所述晶体硅基质表面的步骤通过各向同性蚀刻实现,以便在所述锥体中获得具有磨圆底部的谷。
16.一种具有异质结的光电器件,该光电器件包括晶体硅基质,该晶体硅基质具有纹理化的表面和至少一个无定形或微晶硅层,其中在所述无定形或微晶硅在所述晶体硅基质上生长期间外延受到抑制,该外延的抑制通过根据权利要求1至15任一项中的方法获得。
17.一种具有异质结的光电器件,该光电器件包括晶体硅基质,该晶体硅基质具有纹理化的表面和至少一个无定形或微晶硅层,其中在所述无定形或微晶硅在所述晶体硅基质上生长期间外延受到抑制,其特征在于:所述纹理化的晶体硅基质在其表面具有锥体,该锥体具有基部,其尺寸b严格大于5μm,优选5μm至25μm,不包括5μm,更优选10μm至20μm。
18.根据权利要求17所述的器件,其特征在于:所述锥体进一步具有规则布局,以便少于20%的所述晶体硅表面覆盖有具有亚微尺寸的锥体,至少一半以上所述晶体硅表面覆盖有如下锥体:其基部尺寸b包括在b±5μm的范围内。
19.一种具有异质结的光电器件,该光电器件包括晶体硅基质表面和至少一个无定形或微晶硅层,其中在所述无定形或微晶硅在所述晶体硅基质上生长期间外延受到抑制,其特征在于:所述纹理化的晶体硅基质在其表面具有锥体,所述锥体具有规则布局,以便少于20%的晶体硅表面覆盖有具有亚微尺寸的锥体,至少一半以上所述晶体硅表面覆盖有如下锥体:其基部尺寸b包括在b±5μm的范围内,其中b严格大于1μm。
20.根据权利要求18和19中任一项所述的器件,其特征在于:少于10%的所述晶体硅表面覆盖有具有亚微尺寸的锥体,和至少2/3所述晶体硅表面覆盖有如下锥体:其基部尺寸b包括在b±2.5μm的范围内。
21.根据权利要求16至20中任一项所述的器件,其特征在于:所述晶体硅基质在所述锥体间具有谷,该谷具有磨圆的底部。
22.根据权利要求21所述的器件,其特征在于:所述谷的所述磨圆底部具有大于0.005μm的曲率半径,优选0.05μm至15μm的曲率半径。
CN2009801379031A 2008-09-01 2009-08-31 抑制具有异质结的光电器件中外延生长的方法和光电器件 Pending CN102165606A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08163425.5 2008-09-01
EP08163425A EP2159851A1 (fr) 2008-09-01 2008-09-01 Procédé pour limiter la croissance épitaxiale dans un dispositif photoélectrique à hétérojonctions et un tel dispositif photoélctrique
PCT/EP2009/061223 WO2010023318A1 (fr) 2008-09-01 2009-08-31 Procede pour limiter la croissance epitaxiale dans un dispositif photoelectrique a heterojonctions et un tel dispositif photoelectrique

Publications (1)

Publication Number Publication Date
CN102165606A true CN102165606A (zh) 2011-08-24

Family

ID=40469951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801379031A Pending CN102165606A (zh) 2008-09-01 2009-08-31 抑制具有异质结的光电器件中外延生长的方法和光电器件

Country Status (4)

Country Link
US (1) US20110174371A1 (zh)
EP (2) EP2159851A1 (zh)
CN (1) CN102165606A (zh)
WO (1) WO2010023318A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253626A (zh) * 2013-05-15 2013-08-21 西北工业大学 一种硅材料锥形结构及其制备方法
CN105144399A (zh) * 2013-03-19 2015-12-09 长州产业株式会社 光伏元件及其制造方法
CN107706250A (zh) * 2016-08-08 2018-02-16 松下知识产权经营株式会社 太阳能电池和用于制造太阳能电池的方法
CN116844937A (zh) * 2023-06-30 2023-10-03 淮安捷泰新能源科技有限公司 硅片的rca清洗方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2003390C2 (en) 2009-08-25 2011-02-28 Stichting Energie Solar cell and method for manufacturing such a solar cell.
CN102400225A (zh) * 2010-09-16 2012-04-04 上海神舟新能源发展有限公司 一种单晶硅太阳能电池的制绒液及其制备方法和应用
US20120085397A1 (en) * 2010-10-11 2012-04-12 Choul Kim Solar cell
NL2006298C2 (en) * 2011-02-24 2012-08-27 Energieonderzoek Ct Nederland Solar cell and method for manufacturing such a solar cell.
TWI453927B (zh) * 2011-06-29 2014-09-21 Ind Tech Res Inst 多重反射結構以及光電元件
WO2014155833A1 (ja) 2013-03-28 2014-10-02 三洋電機株式会社 太陽電池
EP3404724B1 (en) * 2017-05-19 2022-08-03 LG Electronics Inc. Solar cell and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137123A (en) 1975-12-31 1979-01-30 Motorola, Inc. Texture etching of silicon: method
US6207890B1 (en) 1997-03-21 2001-03-27 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
JP2000022185A (ja) * 1998-07-03 2000-01-21 Sharp Corp 太陽電池セル及びその製造方法
JP2002359293A (ja) * 2001-05-31 2002-12-13 Toshiba Corp 半導体装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144399A (zh) * 2013-03-19 2015-12-09 长州产业株式会社 光伏元件及其制造方法
CN103253626A (zh) * 2013-05-15 2013-08-21 西北工业大学 一种硅材料锥形结构及其制备方法
CN107706250A (zh) * 2016-08-08 2018-02-16 松下知识产权经营株式会社 太阳能电池和用于制造太阳能电池的方法
US10872986B2 (en) 2016-08-08 2020-12-22 Panasonic Intellectual Property Management Co., Ltd. Solar cell and method for manufacturing solar cell
CN116844937A (zh) * 2023-06-30 2023-10-03 淮安捷泰新能源科技有限公司 硅片的rca清洗方法
CN116844937B (zh) * 2023-06-30 2024-04-09 淮安捷泰新能源科技有限公司 硅片的rca清洗方法

Also Published As

Publication number Publication date
WO2010023318A1 (fr) 2010-03-04
US20110174371A1 (en) 2011-07-21
EP2332182A1 (fr) 2011-06-15
EP2159851A1 (fr) 2010-03-03

Similar Documents

Publication Publication Date Title
CN102165606A (zh) 抑制具有异质结的光电器件中外延生长的方法和光电器件
Gangopadhyay et al. Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication
JP5374504B2 (ja) エミッタ構造の作製方法とその結果のエミッタ構造
US20100108130A1 (en) Thin Interdigitated backside contact solar cell and manufacturing process thereof
AU2022283784B2 (en) Solar cell, manufacturing method thereof, and photovoltaic module
US7705235B2 (en) Photovoltaic device
Muñoz et al. Optimization of KOH etching process to obtain textured substrates suitable for heterojunction solar cells fabricated by HWCVD
JP2010538495A (ja) 多接合太陽電池
EP3021366A1 (en) Solar cell and method of manufacturing thereof
Kafle et al. On the emitter formation in nanotextured silicon solar cells to achieve improved electrical performances
Fesquet et al. Modification of textured silicon wafer surface morphology for fabrication of heterojunction solar cell with open circuit voltage over 700 mV
US9812601B2 (en) Solar celll
US9231061B2 (en) Fabrication of surface textures by ion implantation for antireflection of silicon crystals
Hao et al. High efficiency solar cells on direct kerfless 156 mm mono crystalline Si wafers by high throughput epitaxial growth
Bearda et al. Thin epitaxial silicon foils using porous-silicon-based lift-off for photovoltaic application
US20170012149A1 (en) High efficiency single crystal silicon solar cell with epitaxially deposited silicon layers with deep junction(s)
Al-Thani et al. The influence of texturing bath conditions on the morphology and optical properties of crystalline silicon
US20200203553A1 (en) Smoothed doped layer for solar cell
Tian et al. Pyramid size control and its effects on the performance of silicon heterojunction solar cells
Kim et al. The Effects of Various Surface Texturing on Crystalline Silicon Solar Cell Efficiency
Balamou et al. Reduction of the interface defect density on crystalline silicon solar cell substrates by wet-chemical preparation of ultrathin SiOx passivation layers
Schmich et al. Emitter epitaxy for crystalline silicon thin-film solar cells
CN118693177A (zh) 太阳能电池、包含其的太阳能电池组件及制备方法
Kraiem et al. Elit Process: Epitaxial Layers for Interdigitated Back Contacts Solar Cells Transferred
Treideris et al. Silicon Nanostructures For Efficient Light Absorption In Photovoltaic Devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110824