CN102162397A - 压水堆核动力燃汽轮机循环发电系统 - Google Patents

压水堆核动力燃汽轮机循环发电系统 Download PDF

Info

Publication number
CN102162397A
CN102162397A CN2011100068744A CN201110006874A CN102162397A CN 102162397 A CN102162397 A CN 102162397A CN 2011100068744 A CN2011100068744 A CN 2011100068744A CN 201110006874 A CN201110006874 A CN 201110006874A CN 102162397 A CN102162397 A CN 102162397A
Authority
CN
China
Prior art keywords
outlet
communicated
inlet
heat exchanger
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100068744A
Other languages
English (en)
Inventor
黄德中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN2011100068744A priority Critical patent/CN102162397A/zh
Publication of CN102162397A publication Critical patent/CN102162397A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种压水堆核动力燃汽轮机循环发电系统,包括压水堆核反应系统,发电机,以及控制装置,还包括蒸汽发生器,用于驱动所述发电机的三级燃气轮机,三级压缩机,三级换热器,二级中冷器,低温换热器,和冷却塔,上述装置和系统通过管路,构成第一回路系统、由水做传热工质的第二回路系统、由氦气做传热工质并用于驱动三级燃气轮机的第三回路系统、以及三条冷却回路系统。本发明压水堆核动力燃汽轮机循环发电系统,体积小,可靠性好,发电效率高,没有CO2温室气体产生,不污染空气,是一种无碳发电技术。

Description

压水堆核动力燃汽轮机循环发电系统
技术领域
本发明涉及发电系统,尤其是一种压水堆核动力燃汽轮机循环发电系统。
背景技术
目前的燃气轮机,基本上是以燃油为能量来源,体积大,功率有限,可靠性不高。而且浪费不可再生的能源,污染空气。
发明内容
本发明的目的在于:提供一种压水堆核动力燃汽轮机循环发电系统,体积小,可靠性好,发电效率高,没有CO2温室气体产生,不污染空气。
为实现上述目的,本发明可采取下述技术方案:
本发明一种压水堆核动力燃汽轮机循环发电系统,包括压水堆核反应系统,发电机,以及控制装置,还包括蒸汽发生器, 用于驱动所述发电机的三级燃气轮机, 三级压缩机,三级换热器,二级中冷器,低温换热器,和冷却塔,
所述压水堆核反应系统的高压加热水箱的出水口通过带有稳压器的管道与所述蒸汽发生器下部的U型管入口连通,所述U型管的出口通过带有主泵的管道与所述高压加热水箱的回水口连通,构成第一回路系统;
所述蒸汽发生器的热蒸汽出口通过管路分别与所述三级换热器的第一入口连通,三级换热器的第一出口分别通过管路与所述蒸汽发生器的回水口连通,构成由水做传热工质的第二回路系统;
所述三级压缩机中的第三级压缩机出口通过管路与回热器的第二入口连通,回热器的第二出口与所述三级换热器中的第一级换热器的第二入口连通,第一级换热器的第二出口与所述三级燃气轮机中的第一级燃气轮机的入口连通,第一级燃气轮机的出口第二级换热器的第二入口连通,第二级换热器的第二出口与第二级燃气轮机的入口连通,第二级燃气轮机的出口第三级换热器的第二入口连通,第三级换热器的第二出口与回热器的第一入口连通,回热器的第一出口与低温换热器的第二入口连通,低温换热器的第二出口与所述第一级压缩机的入口连通,第一级压缩机的出口与所述二级中冷器中的第一级中冷器的第一入口连通,第一级中冷器的第一出口与第二级压缩机的入口连通,第二级压缩机的出口与第二级中冷器的第一入口连通,第二级中冷器的第一出口与第三级压缩机的入口连通,构成由氦气做传热工质、并用于驱动三级燃气轮机的第三回路系统;
所述冷却塔的第一、第二、第三出口分别与低温换热器的第一入口、第一级中冷器的第二入口、第二级中冷器的第二入口连通,冷却塔的第一、第二、第三入口分别与低温换热器的第一出口、第一级中冷器的第二出口、第二级中冷器的第二出口连通,分别构成三条冷却回路系统。
所述的三级压缩机均为轴流式压缩机。
与现有技术相比本发明的有益效果是:
本发明压水堆核动力燃汽轮机循环发电系统,由压水堆核反应系统,吸热与热能传递系统(由所述蒸汽发生器、三级燃气轮机、三级压缩机、三级换热器、二级中冷器、低温换热器、以及冷却塔构成),发电系统三部分组成,压水堆核反应系统将核能转化为工作流体的高温热能,吸热与热能传递系统将蒸汽热量变为高温高压氦气,推动燃气轮机发电。整个系统体积小,可靠性好,发电效率高,没有CO2温室气体产生,不污染空气,是一种无碳发电技术。
附图说明
图1是本发明压水堆核动力燃汽轮机循环发电系统的结构示意图。
图2是本发明实施例工作于恒温热源T1和T0间的不可逆闭式中冷回热再热三级燃气轮机循环模型示意图。
具体实施方式
如图1所示,本发明一种压水堆核动力燃汽轮机循环发电系统,包括压水堆核反应系统S,发电机D,以及控制装置,还包括蒸汽发生器V, 用于驱动所述发电机D的三级燃气轮机(第一级燃气轮机TU1、第二级燃气轮机TU2和第三级燃气轮机TU3), 三级轴流式压缩机(第一级轴流式压缩机C1、第二级轴流式压缩机C2和第三级轴流式压缩机C3),三级换热器(第一级换热器R5、第二级换热器R6和第三级换热器R7),二级中冷器(第一级中冷器R1和第二级中冷器R2),低温换热器R3,和冷却塔C;
所述压水堆核反应系统S的高压加热水箱的出水口通过带有稳压器P的管道与所述蒸汽发生器V下部的U型管入口连通,所述U型管的出口通过带有主泵P1的管道与所述高压加热水箱的回水口连通,构成第一回路系统。第一回路系统中,高压水吸收压水堆核反应系统S燃料元件的释热后,进入蒸汽发生器V下部的U型管内,将热量传给第二回路系统的水;
所述蒸汽发生器V的热蒸汽出口通过管路分别与所述三级换热器R5、R6和R7的第一入口连通,三级换热器(第一级换热器R5、第二级换热器R6和第三级换热器R7)的第一出口分别通过管路与所述蒸汽发生器V的回水口连通,构成由水做传热工质的第二回路系统。第二回路系统的水在蒸汽发生器V下部的U型管外部流过,吸收第一回路系统的热量后沸腾,产生的蒸汽从蒸汽发生器V上部的热蒸汽出口流出,将热量传给第三回路系统三级换热器(第一级换热器R5、第二级换热器R6和第三级换热器R7)中的氦气;
所述三级轴流式压缩机(第一级轴流式压缩机C1、第二级轴流式压缩机C2和第三级轴流式压缩机C3)中的第三级轴流式压缩机C3出口通过管路与回热器R4的第二入口连通,回热器R4的第二出口与所述三级换热器中的第一级换热器R5的第二入口连通,第一级换热器R5的第二出口与所述三级燃气轮机(第一级燃气轮机TU1、第二级燃气轮机TU2和第三级燃气轮机TU3)中的第一级燃气轮机TU1的入口连通,第一级燃气轮机TU1的出口第二级换热器R6的第二入口连通,第二级换热器R6的第二出口与第二级燃气轮机TU2的入口连通,第二级燃气轮机TU2的出口第三级换热器R7的第二入口连通,第三级换热器R7的第二出口与回热器R4的第一入口连通,回热器R4的第一出口与低温换热器R3的第二入口连通,低温换热器R3的第二出口与所述第一级轴流式压缩机C1的入口连通,第一级轴流式压缩机C1的出口与所述二级中冷器R1、R2中的第一级中冷器R1的第一入口连通,第一级中冷器R1的第一出口与第二级轴流式压缩机C2的入口连通,第二级轴流式压缩机C2的出口与第二级中冷器R2的第一入口连通,第二级中冷器R2的第一出口与第三级轴流式压缩机C3的入口连通,构成由氦气做传热工质、并用于驱动三级燃气轮机(第一级燃气轮机TU1、第二级燃气轮机TU2和第三级燃气轮机TU3)的第三回路系统。第三回路系统中的氦气在所述三级换热器中吸收热量变为高温高压气体,在所述燃气轮机内膨胀作功,驱动所述燃气轮机,燃气轮机驱动所述发电机D发电;
所述冷却塔C的第一、第二、第三出口分别与低温换热器R3的第一入口、第一级中冷器R1的第二入口、第二级中冷器R2的第二入口连通,冷却塔C的第一、第二、第三入口分别与低温换热器R3的第一出口、第一级中冷器R1的第二出口、第二级中冷器R2的第二出口连通,分别构成三条冷却回路系统。
图2所示为工作于恒温热源T1和T0间的不可逆闭式中冷回热再热三级燃气轮机循环的温熵图。所述的回热再热中冷循环中,再热是指第一级涡轮机膨胀作功后气体再由第二级换热器加热,回热是指第二级涡轮机膨胀作功后气体与第二级压缩机出来的气体进行热交换,中冷是指第一级压缩机出来的气体由冷却水冷却后进入第二级压缩机。其中:T为温度,S为工质的热力学熵,为不可逆恒温源布雷顿循环l—2—3—4—5—6 —7—8—9—10—11—12—13—14—l。l-2为气体在低压压气机中的不可逆绝热压缩过程 (压比为 
Figure DEST_PATH_IMAGE001
,也称中冷压比);2-3为气体在中冷器中的冷却过程;3--4为气体在中压压气机中的不可逆绝热压缩过程 (压比为
Figure 765728DEST_PATH_IMAGE001
,压比相同);5-6为气体在高压压气机中的不可逆绝热压缩过程 (压比为
Figure DEST_PATH_IMAGE002
为总压比)6-7为气体在回热器中的预热过程;7-8为工质从第一级换热器R5吸热过程;8-9为工质在第一级涡轮中的不可逆绝热膨胀过程 ;9—10为工质从第二级换热器R6吸热过程,10-11为工质在第二级涡轮中的不可逆绝热膨胀过程 ;11-12为工质从第三级换热器R7吸热过程,12-13为工质在第三级涡轮中的不可逆绝热膨胀过程 ;13—14为排气在回热器中的放热过程;14一l为排气向低温热源的放热过程。1--2 s 、3—4 s 和6—7 s为 l 一2、3 —4和 6 —7相应的可逆绝热压缩和膨胀过程。压气机内损失用内效率
Figure DEST_PATH_IMAGE003
(设高压压气机和低压压气机的效率相同),涡轮机的内损失用内效率
Figure DEST_PATH_IMAGE004
来表示,即有:
Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE006
设工质为定比热的理想气体,其热容率为Cwf ;工质与高低温热源间的换热器R5的热导率UH2,换热器R6、R7热导率UH1、回热器R3热导率UL1,换热器均为逆流式,热导率为传热系数与传热面积之积。由工质性质、热源与工质间的传热和换热器理论可知吸、放热率、回热热流率和中冷换热热流率分别为:
Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE013
其中
Figure DEST_PATH_IMAGE014
-
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE017
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE020
Figure DEST_PATH_IMAGE021
,分别代表图2中各工况点温度;
式中,EH、EL、E1分别为高低温侧换热器R5、R6、R7、回热器R3和中冷器R4的有效度,
EH=l-exp(-NN),EL=l-exp(-NL),
ER=NR/(NR+1),E1=l-exp(-N1)
其中,Ni(i=H,L,R,I)为传热单元数,Ni=Ui/CWf。循环输出功率和效率为:
P=Q1+Q2+Q3-Q4-Q6-Q7
Figure DEST_PATH_IMAGE022
=P/(Q1+Q2+Q3)。

Claims (2)

1.一种压水堆核动力燃汽轮机循环发电系统,包括压水堆核反应系统(S),发电机(D),以及控制装置,其特征在于:还包括蒸汽发生器(V), 用于驱动所述发电机(D)的三级燃气轮机(TU1、TU2和TU3), 三级压缩机(C1、C2和C3),三级换热器(R5、R6和R7),二级中冷器(R1和R2),低温换热器(R3),和冷却塔(C),
所述压水堆核反应系统(S)的高压加热水箱的出水口通过带有稳压器(P)的管道与所述蒸汽发生器(V)下部的U型管入口连通,所述U型管的出口通过带有主泵(P1)的管道与所述高压加热水箱的回水口连通,构成第一回路系统;
所述蒸汽发生器(V)的热蒸汽出口通过管路分别与所述三级换热器(R5、R6和R7)的第一入口连通,三级换热器(R5、R6和R7)的第一出口分别通过管路与所述蒸汽发生器(V)的回水口连通,构成由水做传热工质的第二回路系统;
所述三级压缩机(C1、C2和C3)中的第三级压缩机(C3)出口通过管路与回热器(R4)的第二入口连通,回热器(R4)的第二出口与所述三级换热器(R5、R6和R7)中的第一级换热器(R5)的第二入口连通,第一级换热器(R5)的第二出口与所述三级燃气轮机(TU1、TU2和TU3)中的第一级燃气轮机(TU1)的入口连通,第一级燃气轮机(TU1)的出口第二级换热器(R6)的第二入口连通,第二级换热器(R6)的第二出口与第二级燃气轮机(TU2)的入口连通,第二级燃气轮机(TU2)的出口第三级换热器(R7)的第二入口连通,第三级换热器(R7)的第二出口与回热器(R4)的第一入口连通,回热器(R4)的第一出口与低温换热器(R3)的第二入口连通,低温换热器(R3)的第二出口与所述第一级压缩机(C1)的入口连通,第一级压缩机(C1)的出口与所述二级中冷器(R1、R2)中的第一级中冷器(R1)的第一入口连通,第一级中冷器(R1)的第一出口与第二级压缩机(C2)的入口连通,第二级压缩机(C2)的出口与第二级中冷器(R2)的第一入口连通,第二级中冷器(R2)的第一出口与第三级压缩机(C3)的入口连通,构成由氦气做传热工质、并用于驱动三级燃气轮机(TU1、TU2和TU3)的第三回路系统;
    所述冷却塔(C)的第一、第二、第三出口分别与低温换热器(R3)的第一入口、第一级中冷器(R1)的第二入口、第二级中冷器(R2)的第二入口连通,冷却塔(C)的第一、第二、第三入口分别与低温换热器(R3)的第一出口、第一级中冷器(R1)的第二出口、第二级中冷器(R2)的第二出口连通,分别构成三条冷却回路系统。
2.根据权利要求1所述的压水堆核动力燃汽轮机循环发电系统,其特征在于:所述的三级压缩机(C1、C2和C3)均为轴流式压缩机。
CN2011100068744A 2011-01-13 2011-01-13 压水堆核动力燃汽轮机循环发电系统 Pending CN102162397A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100068744A CN102162397A (zh) 2011-01-13 2011-01-13 压水堆核动力燃汽轮机循环发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100068744A CN102162397A (zh) 2011-01-13 2011-01-13 压水堆核动力燃汽轮机循环发电系统

Publications (1)

Publication Number Publication Date
CN102162397A true CN102162397A (zh) 2011-08-24

Family

ID=44463810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100068744A Pending CN102162397A (zh) 2011-01-13 2011-01-13 压水堆核动力燃汽轮机循环发电系统

Country Status (1)

Country Link
CN (1) CN102162397A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807021A (zh) * 2013-02-01 2014-05-21 摩尔动力(北京)技术股份有限公司 叶轮机构发动机
CN106369858A (zh) * 2015-12-30 2017-02-01 李华玉 第一类热驱动压缩式热泵
CN109268085A (zh) * 2018-08-06 2019-01-25 国核电力规划设计研究院有限公司 压水堆核电站循环系统和压水堆核电站发电方法
CN113753992A (zh) * 2021-09-07 2021-12-07 武伟 高效率的真空升华蒸发冷热能分离系统和分离方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1468308A (en) * 1975-01-08 1977-03-23 Orlov V Nuclear power plant
GB2050679A (en) * 1979-05-09 1981-01-07 Maschf Augsburg Nuernberg Ag A Process and Installation for Utilising Heat Generated by a Nuclear Reactor
WO1997013961A1 (en) * 1995-10-07 1997-04-17 Jae Hwan Kim Power generating system by use of fluid
CN1656570A (zh) * 2002-04-12 2005-08-17 法玛通Anp公司 由高温核反应堆的堆芯所产生的热量来发电的设备和方法
CN101915224A (zh) * 2010-08-06 2010-12-15 绍兴文理学院 塔式太阳能循环热力发电系统
CN101936274A (zh) * 2010-08-06 2011-01-05 绍兴文理学院 太阳能回热再热中冷燃气轮机循环的热力发电系统
CN201991617U (zh) * 2011-01-13 2011-09-28 绍兴文理学院 压水堆核动力燃气轮机循环发电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1468308A (en) * 1975-01-08 1977-03-23 Orlov V Nuclear power plant
GB2050679A (en) * 1979-05-09 1981-01-07 Maschf Augsburg Nuernberg Ag A Process and Installation for Utilising Heat Generated by a Nuclear Reactor
WO1997013961A1 (en) * 1995-10-07 1997-04-17 Jae Hwan Kim Power generating system by use of fluid
CN1656570A (zh) * 2002-04-12 2005-08-17 法玛通Anp公司 由高温核反应堆的堆芯所产生的热量来发电的设备和方法
CN101915224A (zh) * 2010-08-06 2010-12-15 绍兴文理学院 塔式太阳能循环热力发电系统
CN101936274A (zh) * 2010-08-06 2011-01-05 绍兴文理学院 太阳能回热再热中冷燃气轮机循环的热力发电系统
CN201991617U (zh) * 2011-01-13 2011-09-28 绍兴文理学院 压水堆核动力燃气轮机循环发电系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807021A (zh) * 2013-02-01 2014-05-21 摩尔动力(北京)技术股份有限公司 叶轮机构发动机
CN103807021B (zh) * 2013-02-01 2016-06-22 摩尔动力(北京)技术股份有限公司 叶轮机构发动机
CN106369858A (zh) * 2015-12-30 2017-02-01 李华玉 第一类热驱动压缩式热泵
CN106369858B (zh) * 2015-12-30 2020-11-03 李华玉 第一类热驱动压缩式热泵
CN109268085A (zh) * 2018-08-06 2019-01-25 国核电力规划设计研究院有限公司 压水堆核电站循环系统和压水堆核电站发电方法
CN113753992A (zh) * 2021-09-07 2021-12-07 武伟 高效率的真空升华蒸发冷热能分离系统和分离方法及其应用

Similar Documents

Publication Publication Date Title
CN100425925C (zh) 利用天然工质以及太阳能或废热的发电、空调及供暖装置
CN101915224B (zh) 塔式太阳能循环热力发电系统
Yari et al. A novel recompression S-CO2 Brayton cycle with pre-cooler exergy utilization
CN110887278B (zh) 用于低品位热源的能量自给型二氧化碳冷热电联产系统
JP3230516U (ja) 廃熱回収用超臨界二酸化炭素ブレイトンサイクル発電システム
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
CN107401431B (zh) 超临界二氧化碳广义概括性卡诺循环系统
CN108005744B (zh) 超临界co2循环的机炉冷能回收与发电一体化供热方法
WO2022166391A1 (zh) 基于co2气液相变的热能转化机械能多级压缩储能装置
CN111128415A (zh) 一种采用闭式气体布雷顿循环的热管反应堆及其运行方法
CN112554983A (zh) 一种耦合卡琳娜循环的液态二氧化碳储能系统及方法
CN105401988B (zh) 利用涡流管的高效热力循环系统
CN201916139U (zh) 塔式太阳能循环热力发电系统
Yuan et al. Multi-mode analysis and comparison of four different carbon dioxide-based combined cooling and power cycles for the distributed energy system
CN101936274A (zh) 太阳能回热再热中冷燃气轮机循环的热力发电系统
CN112483207A (zh) 超临界二氧化碳循环和双效吸收式动力循环联合发电系统
CN102162397A (zh) 压水堆核动力燃汽轮机循环发电系统
CN114135398A (zh) 一种分布式能源环境下的燃气轮机联合循环发电系统及方法
CN201943904U (zh) 太阳能回热再热中冷燃气轮机循环的热力发电系统
CN106499601B (zh) 带有蓄热的闭式氦气轮机塔式太阳能热发电系统
CN201991617U (zh) 压水堆核动力燃气轮机循环发电系统
CN112983585A (zh) 一种热泵太阳能汽轮发电机组热电联产循环系统
CN108425711B (zh) 用于燃气轮机余热回收的三透平同轴布置超临界二氧化碳循环发电系统
CN108425710B (zh) 烟气分级利用双透平超临界二氧化碳循环发电系统
CN108252757B (zh) 一种采用超临界二氧化碳的多级压缩循环发电方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110824