CN108005744B - 超临界co2循环的机炉冷能回收与发电一体化供热方法 - Google Patents

超临界co2循环的机炉冷能回收与发电一体化供热方法 Download PDF

Info

Publication number
CN108005744B
CN108005744B CN201711432869.3A CN201711432869A CN108005744B CN 108005744 B CN108005744 B CN 108005744B CN 201711432869 A CN201711432869 A CN 201711432869A CN 108005744 B CN108005744 B CN 108005744B
Authority
CN
China
Prior art keywords
steam
flue
air preheater
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711432869.3A
Other languages
English (en)
Other versions
CN108005744A (zh
Inventor
许诚
张强
辛团团
高亚驰
徐钢
刘文毅
杨勇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201711432869.3A priority Critical patent/CN108005744B/zh
Publication of CN108005744A publication Critical patent/CN108005744A/zh
Application granted granted Critical
Publication of CN108005744B publication Critical patent/CN108005744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J13/00Fittings for chimneys or flues 
    • F23J13/06Mouths; Inlet holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Abstract

本发明公开了属于发电节能技术领域的一种超临界CO2循环的机炉冷能回收与发电一体化供热方法。供热系统包括分隔烟道燃煤锅炉、背压汽轮发电供热机组和超临界CO2循环发电系统。压缩机出口的CO2经蒸汽‑CO2换热器、CO2回热器及烟气‑CO2换热器后进入CO2透平做功;背压汽轮机的排汽部分进入蒸汽‑CO2换热器,其余用于供热,放热后的水与蒸汽‑CO2换热器出口水返回汽水系统;锅炉主烟道布置主空气预热器、低温省煤器,旁路烟道布置烟气‑CO2换热器,旁路烟道内布置低温空气预热器,空气经CO2‑空气预热器及炉内两级空气预热器后送入炉膛。系统梯级利用机炉冷能驱动CO2循环发电,同时提高电站能效及供热的综合性。

Description

超临界CO2循环的机炉冷能回收与发电一体化供热方法
技术领域
本发明属于发电节能技术领域,特别涉及一种超临界CO2循环的机炉冷能回收与发电一体化供热方法,具体说是集成了超临界CO2循环及燃煤供热机组的节能与灵活运行。
背景技术
全球变暖的气候问题日益严峻,CO2作为新一代的动力循环工质,在太阳能、地热能等多领域逐步引起人们的重视。随着对超临界CO2循环发电系统深入的研究,将超临界CO2循环发电系统与火力发电厂集成将成为一个有前景的研究方向。
电厂锅炉排烟能量品位较低,采用低温省煤器已经成为了火电厂节能领域的常规手段之一,但受低温省煤器利用烟气范围的限制,一般节能效果约在1~1.5g标准煤/kWh,节能效果有限。
背压汽轮机发电供热机组是热电联合生产(热电联产)运行的机组,热电联产使能源得到合理利用,是节约能源的一项重要措施。在众多的汽轮发电机组中,背压汽轮机由于消除了凝汽器的冷源损失,在热力循环效率方面是最高的,从而降低了发电煤耗、节约能源,故而得以广泛应用。然而,背压汽轮机对负荷变化的适应性差,机组发电量受制于热负荷变化,即受“以热定电”限制。当低热负荷时,汽轮机效率下降,从而使经济效益降低。
综上所述,若结合超临界CO2的工质特性及循环参数,将背压供热电站中的机炉冷能梯级利用,有望驱动超临界CO2高效发电的及提高燃煤电站发电效率。同时,通过利用背压机组冷能驱动循环,可灵活调整机组供热及发电,提高背压汽轮机组对热负荷变化的适应性,打破背压供热机组“以热定电”的限制,经济效益有望提高。
发明内容
本发明的目的是提供一种超临界CO2循环的机炉冷能回收与发电一体化供热方法;所述超临界CO2循环的机炉冷能回收与发电一体化供热方法的系统主要包括分隔烟道燃煤锅炉,背压汽轮发电供热机组,超临界CO2发电系统构成。在超临界CO2发电系统中,CO2压缩机1出口、蒸汽-CO2换热器2、CO2回热器3、烟气-CO2换热器4及CO2透平5依次连接;CO2透平5分别与第二发电机13及CO2回热器3连接;在背压汽轮发电供热机组中,蒸汽-CO2换热器2与回热单元11、锅炉内低温省煤器10、炉内换热设备15及背压汽轮机12依次连接成回路;其中蒸汽-CO2换热器2还与背压汽轮机12抽气连接;背压汽轮机12与第一发电机14连接;CO2-空气预热器6分别与CO2回热器3、CO2压缩机1、低温空气预热器7连接;主烟道内依次布置主空气预热器9与低温省煤器8、旁路烟道内布置烟气-CO2换热器4,主烟道与旁路烟道后布置低温空气预热器7,低温省煤器8的A口、B口与回热单元11的A口、B口对应连接;主空气预热器9与燃煤锅炉进气口连接;供热系统连接至回热单元11的A口和背压汽轮机12排汽口;其特征在于,在超临界CO2发电系统中,CO2压缩机1出口的CO2依次经过蒸汽-CO2换热器2、CO2回热器3及烟气-CO2换热器4加热,CO2被压缩加压至14~16MPa,并依次被蒸汽、CO2排气及旁路烟气加热至250~270℃后,后进入CO2透平5做功,并带动第二发电机13发电;CO2透平排气依次经过CO2回热器3及CO2-空气预热器6冷却后,进入CO2压缩机1完成循环;在背压汽轮发电供热机组中,在蒸汽-CO2换热器2与回热单元11、锅炉内低温省煤器10、炉内换热设备15及背压汽轮机12依次连接成回路中,背压汽轮机12排汽部分进入蒸汽-CO2换热器2加热CO2,其余排汽进入供热系统,给热用户供热;放热后的水与蒸汽-CO2换热器2出口凝结水汇合返回回热单元11;然后经锅炉内低温省煤器10及炉内换热设备15产生蒸汽,进入背压汽轮机12中做功,背压汽轮机12驱动第一发电机14发电;燃煤锅炉尾部设置主烟道及旁路烟道,主烟道内依次布置主空气预热器9与低温省煤器8、旁路烟道内布置烟气-CO2换热器4,主烟道与旁路烟道后布置低温空气预热器7,烟气被分隔烟道分为两股,主烟道烟气依次流过主空气预热器9、低温省煤器8,旁路烟道烟气流过烟气-CO2换热器4,两股烟气汇合后流过低温空气预热器7,并以95~105℃的温度排出;空气依次经过CO2-空气预热器6、低温空气预热器7及主空气预热器9预热,预热后进入炉内参与燃烧。
本发明的有益效果为:
1.烟气经主空气预热器后具有较高的温度,用低温省煤器可以加热温度更高的给水,节省更高能级的抽汽,背压汽轮机出功增加,效率提高。
2.背压汽轮发电供热机组低热负荷时,少量蒸汽用于供热,其余蒸汽可灵活用于加热CO2,提高了背压汽轮机对热负荷变化的适应性,经济效益得到提高。
3.空气经过CO2-空气预热器、低温空气预热器与主空气预热器,分级预热,空气的预热过程损减少。
附图说明
图1为集成超临界CO2循环的机炉冷能回收与发电供热一体化系统。
图中:1-CO2压缩机;2-蒸汽-CO2换热器;3-CO2回热器;4-烟气-CO2换热器;5-CO2透平;6-CO2-空气预热器;7-低温空气预热器;8-低温省煤器;9-主空气预热器;10-锅炉内低温省煤器;11-给水回热单元;12-背压汽轮机;13-第二发电机;14-第一发电机;15-锅炉内换热设备。
具体实施方式
本发明提供了一种超临界CO2循环的机炉冷能回收与发电一体化供热方法,下面结合附图和具体实施方式对本发明工作原理做进一步说明。
图1为集成超临界CO2循环的机炉冷能回收与发电供热一体化系统。主要包括分隔烟道燃煤锅炉,背压汽轮发电供热机组,超临界CO2发电系统构成。在超临界CO2发电系统中,CO2压缩机1出口、蒸汽-CO2换热器2、CO2回热器3、烟气-CO2换热器4及CO2透平5依次连接;CO2透平5分别与第二发电机13及CO2回热器3连接;在背压汽轮发电供热机组中,蒸汽-CO2换热器2与回热单元11、锅炉内低温省煤器10、炉内换热设备15及背压汽轮机12依次连接成回路;其中蒸汽-CO2换热器2还与背压汽轮机12抽气连接;背压汽轮机12与第一发电机14连接;CO2-空气预热器6分别与CO2回热器3、CO2压缩机1、低温空气预热器7连接;主烟道内依次布置主空气预热器9与低温省煤器8、旁路烟道内布置烟气-CO2换热器4,主烟道与旁路烟道后布置低温空气预热器7,低温省煤器8的A口、B口与回热单元11的A口、B口对应连接;主空气预热器9与燃煤锅炉进气口连接;供热系统连接至回热单元11的A口和背压汽轮机12排气口。
所述超临界CO2循环的机炉冷能回收与发电一体化供热方法,其工作过程为:在超临界CO2发电系统中,CO2压缩机1出口的CO2依次经过蒸汽-CO2换热器2、CO2回热器3及烟气-CO2换热器4加热,CO2被压缩加压至14~16MPa,并依次被蒸汽、CO2排气及旁路烟气加热至250~270℃后,然后进入CO2透平5做功,并带动第二发电机13发电;CO2透平排气依次经过CO2回热器3及CO2-空气预热器6冷却后,进入CO2压缩机1完成循环;在背压汽轮发电供热机组中,在蒸汽-CO2换热器2与回热单元11、锅炉内低温省煤器10、炉内换热设备15及背压汽轮机12依次连接成回路中,背压汽轮机12排汽部分进入蒸汽-CO2换热器2加热CO2,其余排汽进入供热系统,给热用户供热;放热后的水与蒸汽-CO2换热器2出口凝结水汇合返回回热单元11;然后经锅炉内低温省煤器10及炉内换热设备15产生蒸汽,进入背压汽轮机12中做功,背压汽轮机12驱动第一发电机14发电;低温省煤器8抽取温度较低的给水,被烟气加热后,给水温度升高,然后返回给水回热单元11,以节省抽汽,提升汽轮机发电机组效率;燃煤锅炉尾部设置主烟道及旁路烟道,主烟道内依次布置主空气预热器9与低温省煤器8、旁路烟道内布置烟气-CO2换热器4,主烟道与旁路烟道后布置低温空气预热器7,烟气被分隔烟道分为两股,主烟道烟气依次流过主空气预热器9、低温省煤器8,旁路烟道烟气流过烟气-CO2换热器4,两股烟气汇合后流过低温空气预热器7,并以95~105℃的温度排出;空气依次经过CO2-空气预热器6、低温空气预热器7及主空气预热器9预热,预热后进入炉内参与燃烧。

Claims (1)

1.一种超临界CO2循环的机炉冷能回收与发电一体化供热方法,所述超临界CO2循环的机炉冷能回收与发电一体化供热方法的系统主要包括分隔烟道燃煤锅炉,背压汽轮发电供热机组,超临界CO2发电系统构成;在超临界CO2发电系统中,CO2压缩机(1)出口、蒸汽-CO2换热器(2)、CO2回热器(3)、烟气-CO2换热器(4)及CO2透平(5)依次连接;CO2透平(5)分别与第二发电机(13)及CO2回热器(3)连接;在背压汽轮发电供热机组中,蒸汽-CO2换热器(2)与回热单元(11)、锅炉内低温省煤器(10)、炉内换热设备(15)及背压汽轮机(12)依次连接成回路;其中蒸汽-CO2换热器(2)还与背压汽轮机(12)抽气连接;背压汽轮机(12)与第一发电机(14)连接;CO2-空气预热器(6)分别与CO2回热器(3)、CO2压缩机(1)、低温空气预热器(7)连接;主烟道内依次布置主空气预热器(9)与低温省煤器(8)、旁路烟道内布置烟气-CO2换热器(4),主烟道与旁路烟道后布置低温空气预热器(7),低温省煤器(8)的A口、B口与回热单元(11)的A口、B口对应连接;主空气预热器(9)与燃煤锅炉进气口连接;供热系统连接至回热单元(11)的A口和背压汽轮机(12)排汽口;其特征在于,在超临界CO2发电系统中,CO2压缩机(1)出口的CO2依次经过蒸汽-CO2换热器(2)、CO2回热器(3)及烟气-CO2换热器(4)加热,CO2被压缩加压至14~16MPa,并依次被蒸汽、CO2排气及旁路烟气加热至250~270℃后,后进入CO2透平(5)做功,并带动第二发电机(13)发电;CO2透平排气依次经过CO2回热器(3)及CO2-空气预热器(6)冷却后,进入CO2压缩机(1)完成循环;在背压汽轮发电供热机组中,在蒸汽-CO2换热器(2)与回热单元(11)、锅炉内低温省煤器(10)、炉内换热设备(15)及背压汽轮机(12)依次连接成回路中,背压汽轮机(12)排汽部分进入蒸汽-CO2换热器(2)加热CO2,其余排汽进入供热系统,给热用户供热;放热后的水与蒸汽-CO2换热器(2)出口凝结水汇合返回回热单元(11);然后经锅炉内低温省煤器(10)及炉内换热设备(15)产生蒸汽,进入背压汽轮机(12)中做功,背压汽轮机(12)驱动第一发电机(14)发电;燃煤锅炉尾部设置主烟道及旁路烟道,主烟道内依次布置主空气预热器(9)与低温省煤器(8)、旁路烟道内布置烟气-CO2换热器(4),主烟道与旁路烟道后布置低温空气预热器(7),烟气被分隔烟道分为两股,主烟道烟气依次流过主空气预热器(9)、低温省煤器(8),旁路烟道烟气流过烟气-CO2换热器(4),两股烟气汇合后流过低温空气预热器(7),并以95~105℃的温度排出;空气依次经过CO2-空气预热器(6)、低温空气预热器(7)及主空气预热器(9)预热,预热后进入炉内参与燃烧。
CN201711432869.3A 2017-12-26 2017-12-26 超临界co2循环的机炉冷能回收与发电一体化供热方法 Active CN108005744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711432869.3A CN108005744B (zh) 2017-12-26 2017-12-26 超临界co2循环的机炉冷能回收与发电一体化供热方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711432869.3A CN108005744B (zh) 2017-12-26 2017-12-26 超临界co2循环的机炉冷能回收与发电一体化供热方法

Publications (2)

Publication Number Publication Date
CN108005744A CN108005744A (zh) 2018-05-08
CN108005744B true CN108005744B (zh) 2023-08-29

Family

ID=62061516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711432869.3A Active CN108005744B (zh) 2017-12-26 2017-12-26 超临界co2循环的机炉冷能回收与发电一体化供热方法

Country Status (1)

Country Link
CN (1) CN108005744B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702206C1 (ru) * 2018-06-13 2019-10-04 Михаил Аркадьевич Верткин Котлотурбинная диоксид-углеродная энергоустановка
CN111219218B (zh) * 2020-03-11 2024-06-18 西安热工研究院有限公司 一种带余热回收的煤基超临界二氧化碳发电系统及方法
RU2740614C1 (ru) * 2020-07-13 2021-01-15 Акционерное общество "Атомное и энергетическое машиностроение" (АО "Атомэнергомаш") Утилизационная углекислотная энергоустановка для установки комбинированного цикла
RU2754377C1 (ru) * 2021-02-25 2021-09-01 Михаил Аркадьевич Верткин Утилизационная углекислотная энергоустановка
CN113864019B (zh) * 2021-09-26 2024-02-13 西安热工研究院有限公司 一种空气-超临界rc318联合循环热电联产系统和方法
CN115263476B (zh) * 2022-08-03 2023-08-18 西安热工研究院有限公司 一种超临界二氧化碳串联式双透平发电系统的控制方法
CN115490252A (zh) * 2022-09-29 2022-12-20 东方希望晋中铝业有限公司 一种氧化铝厂铝电联动开车方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225228A (ja) * 2011-04-19 2012-11-15 Institute Of Applied Energy 超臨界圧co2ガスタービン複合発電システム
KR101567712B1 (ko) * 2014-07-14 2015-11-09 두산중공업 주식회사 초임계 이산화탄소 사이클을 이용한 하이브리드 발전 시스템 및 하이브리드 발전방법
WO2016167445A1 (ko) * 2015-04-16 2016-10-20 두산중공업 주식회사 초임계 이산화탄소 사이클을 이용한 하이브리드 발전 시스템
CN106247305A (zh) * 2016-09-14 2016-12-21 西安热工研究院有限公司 一种双超临界二氧化碳布雷顿联合循环火力发电系统
CN205897088U (zh) * 2016-08-10 2017-01-18 西安热工研究院有限公司 一种超临界二氧化碳布雷顿循环燃煤发电机组
CN107091128A (zh) * 2017-04-19 2017-08-25 华北电力大学 超临界水与超临界co2联合双循环燃煤火力发电系统
CN206530370U (zh) * 2017-01-22 2017-09-29 华北电力大学 采用超临界二氧化碳的布雷顿循环系统
CN207740056U (zh) * 2017-12-26 2018-08-17 华北电力大学 一种co2循环的机炉冷能回收与发电供热一体化系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225228A (ja) * 2011-04-19 2012-11-15 Institute Of Applied Energy 超臨界圧co2ガスタービン複合発電システム
KR101567712B1 (ko) * 2014-07-14 2015-11-09 두산중공업 주식회사 초임계 이산화탄소 사이클을 이용한 하이브리드 발전 시스템 및 하이브리드 발전방법
WO2016167445A1 (ko) * 2015-04-16 2016-10-20 두산중공업 주식회사 초임계 이산화탄소 사이클을 이용한 하이브리드 발전 시스템
CN205897088U (zh) * 2016-08-10 2017-01-18 西安热工研究院有限公司 一种超临界二氧化碳布雷顿循环燃煤发电机组
CN106247305A (zh) * 2016-09-14 2016-12-21 西安热工研究院有限公司 一种双超临界二氧化碳布雷顿联合循环火力发电系统
CN206530370U (zh) * 2017-01-22 2017-09-29 华北电力大学 采用超临界二氧化碳的布雷顿循环系统
CN107091128A (zh) * 2017-04-19 2017-08-25 华北电力大学 超临界水与超临界co2联合双循环燃煤火力发电系统
CN207740056U (zh) * 2017-12-26 2018-08-17 华北电力大学 一种co2循环的机炉冷能回收与发电供热一体化系统

Also Published As

Publication number Publication date
CN108005744A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CN108005744B (zh) 超临界co2循环的机炉冷能回收与发电一体化供热方法
CN109555569B (zh) 超临界二氧化碳循环冷端余热回收发电系统及运行方法
CN107989667B (zh) 集成超临界co₂循环的燃煤二次再热汽轮发电机组
Yu et al. A brief review study of various thermodynamic cycles for high temperature power generation systems
CN111121389A (zh) 一种深度耦合燃煤机组液化空气储能发电系统
KR20130086397A (ko) 발전 시스템에서 흡수식 히트펌프를 이용한 발전 효율 향상
CN108798808B (zh) 一种用于高温烟气余热回收的co2循环热电联产系统
CN107941028A (zh) 具有有机朗肯循环的烧结冷却废气余热发电系统
CN112483207A (zh) 超临界二氧化碳循环和双效吸收式动力循环联合发电系统
CN104457297B (zh) 一种烧结余热回收方法及系统
CN214741510U (zh) 超临界二氧化碳循环冷端余热辅助加热凝结水系统
CN106194299B (zh) 一种碳捕集与超临界co2布雷顿循环耦合的发电系统
CN113864017B (zh) 一种利用lng冷能和地热能的卡琳娜-有机朗肯联合循环发电系统
CN215566144U (zh) 一种联合循环发电系统
CN207730035U (zh) 具有有机朗肯循环的烧结冷却废气余热发电系统
CN110925041B (zh) 一种联合循环高效燃煤发电系统
CN105042666B (zh) 背压式小汽机驱动引风机的宽负荷供热节能系统
CN102278205A (zh) 可用于分布式的空气及燃料湿化燃气轮机联合循环方法
CN109296413B (zh) 一种利用深层海水冷却的旁路二次再热发电装置及方法
CN204404812U (zh) 一种烧结余热回收系统
Guo et al. Supercritical CO2 Rankine cycle using low and medium temperature heat sources
CN113899006B (zh) 一种利用低加疏水驱动热泵回收循环水余热的供热系统
CN109356724B (zh) 烟气余热供热与进气冷却、燃气加热耦合方法
Fu et al. Photothermal-assisted scheme design and thermodynamic analysis of advanced adiabatic compressed air energy storage system
CN215486194U (zh) 一种与火电厂耦合的压缩空气储能系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant