CN102122955A - 基于分数分频频率综合器的多标准i/q正交载波产生装置 - Google Patents

基于分数分频频率综合器的多标准i/q正交载波产生装置 Download PDF

Info

Publication number
CN102122955A
CN102122955A CN 201010577133 CN201010577133A CN102122955A CN 102122955 A CN102122955 A CN 102122955A CN 201010577133 CN201010577133 CN 201010577133 CN 201010577133 A CN201010577133 A CN 201010577133A CN 102122955 A CN102122955 A CN 102122955A
Authority
CN
China
Prior art keywords
frequency
output
input
signal
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010577133
Other languages
English (en)
Other versions
CN102122955B (zh
Inventor
楼文峰
吴南健
颜小舟
耿志卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2010105771337A priority Critical patent/CN102122955B/zh
Publication of CN102122955A publication Critical patent/CN102122955A/zh
Application granted granted Critical
Publication of CN102122955B publication Critical patent/CN102122955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明公开了一种基于分数分频频率综合器的多标准I/Q正交载波产生装置,该装置包括三阶差分环路滤波器(10)、预置模块(11)、全差分正交压控振荡器(12)、开关型缓冲器(13)、连续除2分频器模块(14)、多模分频器(15)、鉴频鉴相器/电荷泵(16)、非易失性存储器(17)和数字处理器(18)。利用本发明,通过合理的频率分配使得在0.7GHz到6GHz范围内频率能够连续覆盖,并且通过具有强大功能的数字处理器对频率进行预置实现了很快速的跳频。

Description

基于分数分频频率综合器的多标准I/Q正交载波产生装置
技术领域
本发明涉及基于通信的锁相环频率综合器技术领域,尤其涉及一种基于分数分频频率综合器的多标准I/Q正交载波产生装置,该装置是一个多标准I/Q正交载波产生装置,其基于分数分频的锁相环频率综合器,连续覆盖频率范围0.7GHz到6GHz,能够满足频率低于6GHz的所有通信标准。
背景技术
锁相环频率综合装置是一种高稳定度和高精度的频率合成装置,在无线电的各个领域如现代通信、雷达、电子对抗及现代化仪器仪表等方面均有广泛的应用。基于锁相环频率综合器的频率产生装置在各个通信收发机中应用甚为广泛。如今为了降低设计成本,提高集成度已考虑将多个不同的通信标准集成到单一芯片中,构建一个单一的可重构的收发机系统。另外这些系统一般都采用零中频或者低中频的收发系统,这是由于它们采用直接下变频技术消除了对镜像信号的敏感性,使得它们不需要额外的高Q值的滤波器进行镜像抑制。但是这些收发机的本征载波信号需要采用I/Q正交两路信号来提供,使其拥有更好镜像抑制效果。这使得一个多标准I/Q正交载波产生系统对于多模收发机系统是必须的。
近些年,由于多模系统的出现,已有一些人提出了多载波产生系统,然而这些方法基本上是基于几个重点频点进行研究,不是连续频率的覆盖,而且无法对工艺的偏差所造成频率偏移进行自动补偿,使其稳定性下降。此外各个频率点之间的切换速度也不够快,这将大大的影响通信系统信道之间的切换。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的主要目的在于提供一种基于分数分频频率综合器的多标准I/Q正交载波产生装置。
(二)技术方案
为达到上述目的,本发明提供了一种基于分数分频频率综合器的多标准I/Q正交载波产生装置,该I/Q正交载波产生装置包括:
三阶差分环路滤波器10,用于将鉴频鉴相器/电荷泵16输出电流Icp转化为电压来作为预置模块11的控制电压;
预置模块11,用于接收数字处理器18的预置信号,来实现目标频率的直接预置;
全差分正交压控振荡器12,用于产生适合于多标准通信协议的正交振荡信号,接收来自数字处理器18的频带选择信号P<Y:0>,同时结合预置模块11共同完成对目标频率的预置功能;
开关型缓冲器13,用于隔离全差分正交压控振荡器12与连续除2分频器模块14,并且将全差分正交压控振荡器12的输出信号进行缓冲,增强驱动能力;
连续除2分频器模块14,用于将全差分正交压控振荡器产生的信号进行除2分频,产生满足低频通信标准的多路I/Q本征信号;
多模分频器15,用于对开关型缓冲器13输出的信号进行分频处理;
鉴频鉴相器/电荷泵16,用于将晶振信号与多模分频器15的输出信号MMD_CLK进行相位以及频率的比较,将相位误差通过电荷泵转化电流;
非易失性存储器17,用于存储数字处理器18产生的控制信号Sw1<A:0>,Sw2<B:0>以及预置信号P<Y:0>,C<Z:0>;
数字处理器18,用于产生各个模块的控制信号和预置信号,并对多模分频器15的进行分频比的控制。
上述方案中,所述三阶差分环路滤波器10是一个可变带宽的环路滤波器,其内部的无源器件的值可通过数字控制加以修正来调节环路滤波器的频响应特性,从而实现整个系统的环路带宽的可调的输入端与鉴频鉴相器/电荷泵16的输出端相连;所述三阶差分环路滤波器10的输出端与预置模块11的输入端相连接,还与数字模块18的输出Sw2<B:0>相连接,用于动态的调节滤波器上的无源器件的值,从而调节三阶滤波器的频率响应特性,以至于自适应的调节锁相环频率综合器的环路带宽,使得多标准的频率综合器的环路更加稳定。
上述方案中,所述预置模块11的输入端分别与三阶差分环路滤波器的输出以及数字处理器18的输出C<Z:0>相连接,输出端与全差分正交压控振荡器12的输入端相连接。
上述方案中,所述全差分正交压控振荡器12是由三个工作于不同频率带的全差分正交压控振荡器构成,根据不同的通信标准,用于对来自数字处理器18的数字信号Sw1<A:0>进行选择;其输入端分别与数字信号18的输出端Sw1<A:0>和P<Y:0>以及预置模块11的输出端相连接,输出端与多模分频器15的输入端相连接。
上述方案中,所述开关型缓冲器13的输入端与所述全差分正交压控振荡器12的输出端相连接,输出端与连续除2分频器模块14相连接。
上述方案中,所述连续的除2分频器14的输入端与所述开关型缓冲器13的输出端相连接,输出端连接到收发机为其提供多路I/Q本征信号。
上述方案中,所述多模分频器15是一个分频比可扩展且可编程多模分频器,其输入端分别与开关型缓冲器13及数字处理器18的输出端SDM<X:0>相连接,输出端MMD_CLK分别与鉴频鉴相器/电荷泵16及数字处理器18的输入端相连接。
上述方案中,所述鉴频鉴相器/电荷泵16的输入端与多模分频器15输出端相连接,同时与外部的晶振相连接,输出端与三阶差分环路滤波器10相连接。
上述方案中,所述非易失性存储器17的输入端与数字处理器18的输出端连接,输出端与数字处理器18的输入端连接。
上述方案中,所述数字处理器18包括简化的∑Δ数字调制器180、频率采样模块181、频率比较模块182、线性插值计算模块183以及数字控制信号产生模块184,所述数字处理器18用于对全差分正交压控振荡器12的输出频率进行精确的采样保存,然后与所给定的目标频率进行比较,继而进行线性插值计算出目标频率相应的控制位,将控制位存入非易失性存储器17中,以有效补偿由工艺偏差导致的频率偏移;其输入端分别与数字输入、外部参考信号Fr、多模分频器15的输出端,以及非易失性存储器17的输出端相连接,输出端分别与三阶差分滤波器10的输入端、非易失性存储器17的输入端、多模分频器15的输入端以及全差分正交压控振荡器12的输入相连接。
(三)有益效果
从上述的技术方案可以看出,本发明具有以下有益效果:
1、利用本发明,通过合理的频率分配使得在0.7GHz到6GHz范围内频率能够连续覆盖,并且通过具有强大功能的数字处理器对频率进行预置实现了很快速的跳频。
2、利用本发明,整个系统采用差分结构,利用三个工作于不同频率带的全差分的压控振荡器产生正交的I/Q振荡信号,并利用连续的除2分频器合理的分配频率使得系统在整个0.7GHz到6.0GHz的频带范围内连续可调。
3、利用本发明,数字处理器18通过对正交压控振荡器输出信号进行采样、保存,并通过数字处理器18模块中的频率比较模块182和线性插值计算模块183对给定的目标频率进行对应的预置控制位计算,然后通过数字处理器18与非易失存储器17连接的WRITE方式存入到非易失存储器17模块中,同时也将控制相应正交压控振荡器的开关信号Sw1<A:0>存入到非易失存储器17中。根据非易失存储器17的特性,其保存的预置信号可以在掉电的情况下长时间保存,从而避免了整个系统每次上电都要重新进行一些数字处理过程。利用这些存储的预置信号,在进行信道选择时可以直接进行频率预置,从而大大减少跳频后的锁定时间。
附图说明
图1为本发明提供的基于分数分频频率综合器的多标准I/Q正交载波产生装置的方框图;
图2为本发明提供的全差分的正交压控振荡器12的电路图;
图3为本发明提供的数字处理器18的内部框架示意图。
图4为本发明提供的环路滤波器10的电路图;
图5为本发明提供的数字处理器18内部频率采样模块181在全差分正交压控振荡器12的输出频率进行A分频时的频率采样、保存示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图1所示,图1为本发明提供的基于分数分频频率综合器的多标准I/Q正交载波产生装置的方框图,该多标准I/Q正交载波产生装置包括:三阶差分环路滤波器10、预置模块11、全差分正交压控振荡器12、开关型缓冲器13、连续除2分频器模块14、多模分频器15、鉴频鉴相器/电荷泵16、非易失性存储器17和数字处理器18。
通过合理的频率分配使得全差分正交压控振荡器12中的1、2、3工作于不同的频率段,并通过来自数字处理器18的信号Sw1<A:0>进行选择;通过开关型缓冲器13,将自全差分正交压控振荡器12出来的正交信号进行缓冲处理增加其驱动能力;连续除2分频器14对通过开关型缓冲器13的正交信号进行除2分频以得到0.7GHz到6GHz连续覆盖的正交信号,满足频率低于6GHz以下的通信标准;多模分频15有两个作用,作用1是在整个系统环路断开的工作模式下接收来自数字处理器18的信号实现固定分频比,然后将正交信号通过多模分频器15进行固定的分频,分频后的信号MMD_CLK进入数字处理器进行采样处理。作用2就是整个系统环路开始工作时,接收数字处理器18中的∑Δ数字调制器180信号实现分数分频,此刻的分频比在每个MMD_CLK的时钟周期是处于变化状态,而不是固定不变的;鉴频鉴相器/电荷泵16中鉴频鉴相器用于环路中两信号相位/频率的比较,电荷泵将鉴频鉴相器输出的电压脉冲转化为电流脉冲;三阶差分环路滤波器10将鉴频鉴相器/电荷泵16出来的电流脉冲信号转换为控制预置模块11的差分电压。
该基于分数分频频率综合器的多标准I/Q正交载波产生装置具体工作情况如下:工作模式1,断开整个系统环路,使得在三阶差分环路滤波器10处断开,即图4环路滤波器10的电路图中的开关接收数字处理器18的数字开关信号使得电压VB和Vctrl相连,而环路滤波器的输出与Vctrl断开。此刻全差分的正交压控振荡器12的控制电压处于稳定状态。而全差分正交压控振荡器12的输出的正交信号通过开关型换缓冲器13输入到多模分频器15,此刻这个分频比可以扩展的可编程多模分频器工作处于固定分频比的模式,这是由来自数字处理器18的控制信号决定。将分频后的时钟信号MMD_CLK输入到数字处理器18中进行频率的采样、保存操作。图5显示全差分正交压控振荡器12输出频率进行固定A分频时的频率采样、保存示意图。它由Aus计数器1810,频率计数器1811以及存储器1812组成。工作时将外部参考频率Fr用A us计数器1810进行计数,计数时间长度为Aus。同时频率计数器1811对MMD_CLK时钟信号进行计数,一直计到A us计数器1810计满为止,然后A us计数器1810发出一个控制信号R让频率计数器1811停止计数,并将所计的数字存入存储器1812当中,这就计入了一个振荡频率点。接下来通过数字处理器18改变输出预置信号P<Y:0>和C<Z:0>使全差分正交压控振荡器12输出另一频率点,同样通过频率采样模块181进行下一个频点的采样、保存。直到频率采样结束后,数字处理器18根据不同目标频率进行频率比较以及线性插值计算得到控制预置模块11和全差分压控振荡器12的预置信号C<Z:0>和P<Y:0>,并将它们存入非易失性存储器17中。我们可以多次重复以上过程将小于6GHz的通信标准所要求的频率点一一存入存储非易失性存储器17中。在存完所要求的预置信号后,系统的工作模式1结束。接下来整个系统进行工作模式2:由数字处理器18给出控制信号将三阶差分环路滤波器接入整个环路当中,即断开VB电压,这时整个系统环路进行锁相环正常工作模式下。当进行信道选择时,数字处理器18直接读取非易失性存储器17中的相应的预置信号P和C以及选择全差分正交压控振荡器的开关信号Sw1<A:0>,并且(它们)分别置于全差分压控振荡器12和预置模块。这样使得目标频率和预置频率非常接近,整个环路系统只需很少的模拟调谐时间就可以锁定在目标频率。
基于图1所述分数分频频率综合器的多标准I/Q正交载波产生装置的方框图,图2给出了本发明提供的全差分正交压控振荡器12的电路图。该振荡器为全差分形式,采用了两组可变电容,分别用控制电压Vctrl-和Vctrl+来进行调节。利用数字处理器18给出的开关信号Sw1<A:0>进行不同振荡器之间的选择。数字处理器18同时给出控制信号P<Y:0>来选择不同MIM电容阵列来实现不同频带之间的切换。并且该振荡器用振荡信号周期地开关尾电流源来降低全差分振荡器数12输出信号的相位噪声。
基于图1所述分数分频频率综合器的多标准I/Q正交载波产生装置的方框图,图3是数字处理器18内部的框架图。外部数字输入通过数字控制信号产生模块184后来控制整个系统的每个模块;数字处理器18中∑Δ调制器180接收数字控制信号产生模块184给出的信号进行工作并输出SDM<X:0>来控制多模分频器15实现系统的分数分频;频率采样模块181与时钟信号MMD_CLK和Fr相连,进行振荡器的频率采样和保存;给定目标频率和保存的频率通过频率比较模块182进行比较;最后将比较后的结果在线性插值模块183中进行计算得到目标频率所对应的预置信号P和C。
基于图1所述分数分频频率综合器的多标准I/Q正交载波产生装置的方框图,图4为三阶环路滤波器10的电路图。该环路滤波器接收数字处理器18的开关控制信号Sw2<B:0>来开关选择差分滤波器中的无源器件,从而改变滤波器的频率响应以调节环路的带宽,使得整个系统的环路带宽可调从而避免环路的不稳定性。并且它的输出端有开关控制,这样能在不同工作模式下进行切换。
基于图3所述的数字处理器18内部框架图,图5为全差分正交压控振荡器输出频率进行固定A分频时的频率采样、保存示意图。Aus计数器1810对外部时钟信号Fr进行计数,计数时间长度为A us,这是由于MMD_CLK是正交压控振荡器进行A分频后的时钟。同时频率计数器1811对MMD_CLK时钟信号计数,在Aus计数器计满后给出R信号使得频率计数器停止计数,这时频率计数器1811内的计数值即为振荡器的频率,以13bit的二进制形式表示,单位为MHz。然后再把计得的13bit二进制存储到存储器1812中,供频率比较模块182使用。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,该I/Q正交载波产生装置包括:
三阶差分环路滤波器(10),用于将鉴频鉴相器/电荷泵(16)输出电流Icp转化为电压来作为预置模块(11)的控制电压;
预置模块(11),用于接收数字处理器(18)的预置信号,来实现目标频率的直接预置;
全差分正交压控振荡器(12),用于产生适合于多标准通信协议的正交振荡信号,接收来自数字处理器(18)的频带选择信号P<Y:0>,同时结合预置模块(11)共同完成对目标频率的预置功能;
开关型缓冲器(13),用于隔离全差分正交压控振荡器(12)与连续除2分频器模块(14),并且将全差分正交压控振荡器(12)的输出信号进行缓冲,增强驱动能力;
连续除2分频器模块(14),用于将全差分正交压控振荡器产生的信号进行除2分频,产生满足低频通信标准的多路I/Q本征信号;
多模分频器(15),用于对开关型缓冲器(13)输出的信号进行分频处理;
鉴频鉴相器/电荷泵(16),用于将晶振信号与多模分频器(15)的输出信号MMD_CLK进行相位以及频率的比较,将相位误差通过电荷泵转化电流;
非易失性存储器(17),用于存储数字处理器(18)产生的控制信号Sw1<A:0>,Sw2<B:0>以及预置信号P<Y:0>,C<Z:0>;
数字处理器(18),用于产生各个模块的控制信号和预置信号,并对多模分频器(15)的进行分频比的控制。
2.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述三阶差分环路滤波器(10)是一个可变带宽的环路滤波器,其内部的无源器件的值可通过数字控制加以修正来调节环路滤波器的频响应特性,从而实现整个系统的环路带宽的可调的输入端与鉴频鉴相器/电荷泵(16)的输出端相连;
所述三阶差分环路滤波器(10)的输出端与预置模块(11)的输入端相连接,还与数字模块(18)的输出Sw2<B:0>相连接,用于动态的调节滤波器上的无源器件的值,从而调节三阶滤波器的频率响应特性,以至于自适应的调节锁相环频率综合器的环路带宽,使得多标准的频率综合器的环路更加稳定。
3.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述预置模块(11)的输入端分别与三阶差分环路滤波器的输出以及数字处理器(18)的输出C<Z:0>相连接,输出端与全差分正交压控振荡器(12)的输入端相连接。
4.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述全差分正交压控振荡器(12)是由三个工作于不同频率带的全差分正交压控振荡器构成,根据不同的通信标准,用于对来自数字处理器(18)的数字信号Sw1<A:0>进行选择;其输入端分别与数字信号(18)的输出端Sw1<A:0>和P<Y:0>以及预置模块(11)的输出端相连接,输出端与多模分频器(15)的输入端相连接。
5.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述开关型缓冲器(13)的输入端与所述全差分正交压控振荡器(12)的输出端相连接,输出端与连续除2分频器模块(14)相连接。
6.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述连续的除2分频器(14)的输入端与所述开关型缓冲器(13)的输出端相连接,输出端连接到收发机为其提供多路I/Q本征信号。
7.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述多模分频器(15)是一个分频比可扩展且可编程多模分频器,其输入端分别与开关型缓冲器(13)及数字处理器(18)的输出端SDM<X:0>相连接,输出端MMD_CLK分别与鉴频鉴相器/电荷泵(16)及数字处理器(18)的输入端相连接。
8.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述鉴频鉴相器/电荷泵(16)的输入端与多模分频器(15)输出端相连接,同时与外部的晶振相连接,输出端与三阶差分环路滤波器(10)相连接。
9.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述非易失性存储器(17)的输入端与数字处理器(18)的输出端连接,输出端与数字处理器(18)的输入端连接。
10.根据权利要求1所述的基于分数分频频率综合器的多标准I/Q正交载波产生装置,其特征在于,所述数字处理器(18)包括简化的∑Δ数字调制器(180)、频率采样模块(181)、频率比较模块(182)、线性插值计算模块(183)以及数字控制信号产生模块(184),所述数字处理器(18)用于对全差分正交压控振荡器(12)的输出频率进行精确的采样保存,然后与所给定的目标频率进行比较,继而进行线性插值计算出目标频率相应的控制位,将控制位存入非易失性存储器(17)中,以有效补偿由工艺偏差导致的频率偏移;其输入端分别与数字输入、外部参考信号Fr、多模分频器(15)的输出端,以及非易失性存储器(17)的输出端相连接,输出端分别与三阶差分滤波器(10)的输入端、非易失性存储器(17)的输入端、多模分频器(15)的输入端以及全差分正交压控振荡器(12)的输入相连接。
CN2010105771337A 2010-12-07 2010-12-07 基于分数分频频率综合器的多标准i/q正交载波产生装置 Active CN102122955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105771337A CN102122955B (zh) 2010-12-07 2010-12-07 基于分数分频频率综合器的多标准i/q正交载波产生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105771337A CN102122955B (zh) 2010-12-07 2010-12-07 基于分数分频频率综合器的多标准i/q正交载波产生装置

Publications (2)

Publication Number Publication Date
CN102122955A true CN102122955A (zh) 2011-07-13
CN102122955B CN102122955B (zh) 2012-11-14

Family

ID=44251425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105771337A Active CN102122955B (zh) 2010-12-07 2010-12-07 基于分数分频频率综合器的多标准i/q正交载波产生装置

Country Status (1)

Country Link
CN (1) CN102122955B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187923A (zh) * 2011-12-28 2013-07-03 国民技术股份有限公司 电感电容型压控振荡器尾电流的控制方法及装置
CN104079315A (zh) * 2014-06-24 2014-10-01 中国科学院半导体研究所 多标准性能可重构式i/q正交载波发生器
CN104135276A (zh) * 2014-06-26 2014-11-05 中国科学院半导体研究所 一种无线射频发射装置
CN104218948A (zh) * 2014-09-01 2014-12-17 长沙景嘉微电子股份有限公司 一种实现宽范围调制深度补偿的频率调制系统
CN104242929A (zh) * 2014-09-01 2014-12-24 长沙景嘉微电子股份有限公司 一种带调制深度补偿的频率调制系统
CN104300976A (zh) * 2014-09-25 2015-01-21 长沙景嘉微电子股份有限公司 一种应用于多种码率通信、带调制深度补偿的频率调制系统
CN104579318A (zh) * 2013-10-21 2015-04-29 安凯(广州)微电子技术有限公司 一种多路时钟缓冲器
WO2015196349A1 (zh) * 2014-06-24 2015-12-30 中国科学院半导体研究所 多标准性能可重构式i/q正交载波发生器
CN103187923B (zh) * 2011-12-28 2016-12-14 国民技术股份有限公司 电感电容型压控振荡器尾电流的控制方法及装置
CN107147390A (zh) * 2017-04-24 2017-09-08 成都博芯联科科技有限公司 一种宽带快速频率综合装置
CN107534444A (zh) * 2015-04-30 2018-01-02 赛灵思公司 为锁相环生成可重构的小数分频频率
US10374588B2 (en) 2016-10-31 2019-08-06 Mediatek Inc. Quadrature clock generating mechanism of communication system transmitter
CN111699402A (zh) * 2019-04-24 2020-09-22 深圳市大疆创新科技有限公司 连续波雷达的中频模拟电路、连续波雷达和可移动平台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362698B1 (en) * 2000-09-29 2002-03-26 Intel Corporation Low impedance clamping buffer for an LC tank VCO
CN1996761A (zh) * 2006-01-05 2007-07-11 北京六合万通微电子技术有限公司 一种正交压控振荡器及锁相环频率综合器
CN101098142A (zh) * 2007-06-14 2008-01-02 复旦大学 多边带正交频分复用超宽带系统射频收发机的频率综合器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362698B1 (en) * 2000-09-29 2002-03-26 Intel Corporation Low impedance clamping buffer for an LC tank VCO
CN1996761A (zh) * 2006-01-05 2007-07-11 北京六合万通微电子技术有限公司 一种正交压控振荡器及锁相环频率综合器
CN101098142A (zh) * 2007-06-14 2008-01-02 复旦大学 多边带正交频分复用超宽带系统射频收发机的频率综合器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《IEEE JOURNAL OF SOLID-STATE CIRCUITS》 20090228 Ting Wu,Pavan Kumar,Kartikeya Mayaram,Un-Ku Moon Method for a constant loop bandwidth in LC-VCO PLL frequency synthesizers 全文 1-10 第44卷, 第2期 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187923B (zh) * 2011-12-28 2016-12-14 国民技术股份有限公司 电感电容型压控振荡器尾电流的控制方法及装置
CN103187923A (zh) * 2011-12-28 2013-07-03 国民技术股份有限公司 电感电容型压控振荡器尾电流的控制方法及装置
CN104579318B (zh) * 2013-10-21 2018-05-29 安凯(广州)微电子技术有限公司 一种多路时钟缓冲器
CN104579318A (zh) * 2013-10-21 2015-04-29 安凯(广州)微电子技术有限公司 一种多路时钟缓冲器
CN104079315A (zh) * 2014-06-24 2014-10-01 中国科学院半导体研究所 多标准性能可重构式i/q正交载波发生器
CN104079315B (zh) * 2014-06-24 2018-09-04 中国科学院半导体研究所 多标准性能可重构式i/q正交载波发生器
US9941892B2 (en) 2014-06-24 2018-04-10 Institute Of Semiconductors, Chinese Academy Of Sciences Multi-standard performance reconfigurable I/Q orthogonal carrier generator
WO2015196349A1 (zh) * 2014-06-24 2015-12-30 中国科学院半导体研究所 多标准性能可重构式i/q正交载波发生器
CN104135276B (zh) * 2014-06-26 2017-10-24 中国科学院半导体研究所 一种无线射频发射装置
CN104135276A (zh) * 2014-06-26 2014-11-05 中国科学院半导体研究所 一种无线射频发射装置
CN104242929A (zh) * 2014-09-01 2014-12-24 长沙景嘉微电子股份有限公司 一种带调制深度补偿的频率调制系统
CN104218948A (zh) * 2014-09-01 2014-12-17 长沙景嘉微电子股份有限公司 一种实现宽范围调制深度补偿的频率调制系统
CN104242929B (zh) * 2014-09-01 2018-09-25 长沙景嘉微电子股份有限公司 一种带调制深度补偿的频率调制系统
CN104300976A (zh) * 2014-09-25 2015-01-21 长沙景嘉微电子股份有限公司 一种应用于多种码率通信、带调制深度补偿的频率调制系统
CN104300976B (zh) * 2014-09-25 2018-05-04 长沙景嘉微电子股份有限公司 一种应用于多种码率通信、带调制深度补偿的频率调制系统
CN107534444A (zh) * 2015-04-30 2018-01-02 赛灵思公司 为锁相环生成可重构的小数分频频率
CN107534444B (zh) * 2015-04-30 2021-09-28 赛灵思公司 为锁相环生成可重构的小数分频频率
US10374588B2 (en) 2016-10-31 2019-08-06 Mediatek Inc. Quadrature clock generating mechanism of communication system transmitter
CN107147390A (zh) * 2017-04-24 2017-09-08 成都博芯联科科技有限公司 一种宽带快速频率综合装置
CN107147390B (zh) * 2017-04-24 2020-09-15 北京中科微知识产权服务有限公司 一种宽带快速频率综合装置
CN111699402A (zh) * 2019-04-24 2020-09-22 深圳市大疆创新科技有限公司 连续波雷达的中频模拟电路、连续波雷达和可移动平台

Also Published As

Publication number Publication date
CN102122955B (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
CN102122955B (zh) 基于分数分频频率综合器的多标准i/q正交载波产生装置
CN105577178B (zh) 一种宽带低相位噪声Sigma-Delta锁相环
CN101272142B (zh) 频率合成器
CN106209093B (zh) 一种全数字小数分频锁相环结构
KR101191575B1 (ko) 프로그램 가능 2점 주파수 합성기 아키텍처, 프로그램 가능 분수 n 분할기, 주파수 합성기 및 주파수 합성기 제어 방법
EP2140549B1 (en) Oscillator signal stabilization
US10680624B2 (en) Phase-locked loop with filtered quantization noise
CN201328110Y (zh) 锁相式频率跟踪装置
JP3082860B2 (ja) 音声/データ通信システム用分数分周合成器
EP1982410B1 (en) Oscillator gain equalization
CN104038215B (zh) 一种∑‑△分数频率综合器用自动频率校准电路
CN106341122A (zh) 具有多频段振荡器的锁相环以及校准其的方法
CN104796140A (zh) 数字锁相环dpll、控制dpll的方法和使用dpll的超低功率收发器
CN105827238B (zh) 校准双端口锁相环路的系统及方法
RU2668737C1 (ru) Делитель частоты, схема автоматической фазовой подстройки частоты, приёмопередатчик, радиостанция и способ частотного разделения
CN101753287A (zh) 全数字全集成的频率综合发生器及方法
JP2006080909A (ja) 位相同期ループ回路
CN104242930B (zh) 一种应用于无线收发系统的频率综合器
JP4903969B2 (ja) 回転周波数合成器
US20150263670A1 (en) Frequency Modulation Based on Two Path Modulation
CN101483435A (zh) 双环路频率综合器及双环路频率综合器的调谐方法
CN107947791A (zh) 一种基于集成锁相环芯片的快速频率切换微系统
CN201270504Y (zh) 频率合成器
Ueda et al. A digital PLL with two-step closed-locking for multi-mode/multi-band SAW-less transmitter
CN107846222A (zh) 一种数字模拟转换器增益自校准电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant