CN102117739B - 半导体装置的制造方法以及半导体装置 - Google Patents

半导体装置的制造方法以及半导体装置 Download PDF

Info

Publication number
CN102117739B
CN102117739B CN2011100215175A CN201110021517A CN102117739B CN 102117739 B CN102117739 B CN 102117739B CN 2011100215175 A CN2011100215175 A CN 2011100215175A CN 201110021517 A CN201110021517 A CN 201110021517A CN 102117739 B CN102117739 B CN 102117739B
Authority
CN
China
Prior art keywords
film
pzt
iro
face
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011100215175A
Other languages
English (en)
Other versions
CN102117739A (zh
Inventor
王文生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Memory Solution Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to CN2011100215175A priority Critical patent/CN102117739B/zh
Publication of CN102117739A publication Critical patent/CN102117739A/zh
Application granted granted Critical
Publication of CN102117739B publication Critical patent/CN102117739B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本发明形成具有取向性良好的铁电膜的铁电电容器。在使规定的结晶面优先取向的第一金属膜上形成非结晶或微结晶的金属氧化膜(步骤S1、S2),然后,使用MOCVD法形成铁电膜(步骤S3)。在形成该铁电膜时,使第一金属膜上的金属氧化膜还原以作为第二金属膜,在该第二金属膜上形成铁电膜。非结晶或微结晶的金属氧化膜在形成铁电膜时容易被均匀地还原,通过该还原可获得取向性良好的第二金属膜,能够在第二金属膜上形成取向性良好的铁电膜。在形成铁电膜后,在其上形成上部电极(步骤S4)。

Description

半导体装置的制造方法以及半导体装置
本申请是申请日为2007年6月14日、申请号为200780053264.1、发明名称为“半导体装置的制造方法以及半导体装置”的申请的分案申请。
技术领域
本发明涉及一种半导体装置的制造方法以及半导体装置,特别是,涉及一种具有铁电电容器的半导体装置的制造方法以及半导体装置。
背景技术
近年来,随着数字技术的发展,对大容量的数据进行高速处理或保存的倾向越来越高。因而,要求使用于电子设备的半导体装置的高集成化和高性能化。
对于半导体存储装置,为了实现例如DRAM(动态随机存取存储器,Dynamic Random Access Memory)的高集成化,开始研究使用铁电材料或高介电常数材料作为其电容绝缘膜以代替以往的氧化硅(SiO)膜、氮化硅(SiN)膜的技术。
以往,作为切断电源也不会丢失存储信息的非易失性存储装置,已知有闪存装置以及FeRAM(铁电随机存取存储器,Ferro-electric Random AccessMemory)。
闪存装置具有在绝缘栅型场效应晶体管(IGFET)的栅极绝缘膜中埋设有浮栅的结构,通过在其浮栅中蓄积电荷来存储信息。信息的写入/清除需要流通通过绝缘膜的通道电流,且需要较高的电压。
FeRAM使用铁电膜作为其电容绝缘膜,且具有以一对电极夹着其铁电膜的铁电电容器。铁电电容器根据电极间的外加电压产生极化,即使解除外加电压也具有自极化。若使外加电压的极性反转,则自极化的极性也将反转。检测该自极化,从而读取信息。与闪存装置相比,FeRAM是以低电压进行动作,因而能够省电且高速地写入,正在探讨采用了FeRAM的SOC(系统级芯片,System On Chip)在IC卡上的用途等。
作为在FeRAM中使用的的铁电膜,使用例如锆钛酸铅(PZT)、钽酸锶铋(SrBi2Ta2O9)等铋层状结构化合物。其形成采用溶胶-凝胶法、溅射法、MOCVD(金属有机化学气相淀积,Metal Organic Chemical Vapor Deposition)法等。在铁电膜的形成中使用溶胶-凝胶法的情况下以及使用溅射法的情况下,通常,首先在下部电极上形成非结晶或微结晶的铁电膜,然后通过热处理将结晶结构改变为钙钛矿结构或铋层状结构。当采用MOCVD法形成铁电膜时,由于在高温下形成,因此在其形成过程中得到钙钛矿结构、铋层状结构的结晶结构。
另外,作为铁电电容器的电极,必须使用难以氧化的材料或氧化后也能够保持导电性的材料,通常广泛使用铂(Pt)、铱(Ir)、氧化铱(IrOX)等铂族系金属或其氧化物。
另外,作为FeRAM的布线材料,通常与普通的半导体装置同样使用铝(Al)。
FeRAM也与其他半导体装置同样要求进一步的高集成化和高性能化,且今后必须减小单元的面积。FeRAM的结构大体上分为平面(planer)结构和堆叠结构的两种,但采用堆叠结构对减小单元面积较为有效。在堆叠结构的FeRAM中,在与晶体管的源极/漏极区域相连接的插件正上方,依次层叠阻挡金属、下部电极、铁电膜以及上部电极,由此形成铁电电容器。阻挡金属起到防止插件氧化的作用。近年来,很多情况下下部电极也兼有阻挡金属的功能,因此越来越无法将它们明确地区分开,但相当于阻挡金属和下部电极的部分中使用氮化钛(TiN)、氮化钛铝(TiAlN)、Ir、IrO2、Pt以及钌酸鍶(SrRuO3(SRO))等材料。
为了形成电特性好且产品成品率高的FeRAM,重要的是控制用于构成其铁电电容器的铁电膜的取向,以尽量使其均匀。并且,该铁电膜的取向对其基底的下部电极的取向影响很大。因此,通过控制下部电极的取向使其尽量均匀,能够提高形成于该下部电极上的铁电膜的取向性。
此外,以往提出了如下的两种方法,即,相当于下部电极和阻挡金属的部分使用例如IrO2(30nm)/Ir(30nm)/Ti(30nm)/TiN(50nm)层叠结构的方法(参照专利文献1);或者以降低铁电电容器的漏电流为目的,下部电极使用Pt/PtOx/IrOx/Ir层叠结构的方法(参照专利文献2)。
另外,还提出了如下的两种方法,即,在使用Ir和IrOx来形成下部电极时,通过溅射法以400℃~550℃温度形成Ir膜,以530℃~550℃温度形成IrOx的方法(参照专利文献3);或者使用以X射线衍射强度表示的IrO2/Ir为10以上的IrO2膜的方法(参照专利文献4)。进而,还提出了以溅射法连续形成IrO2/Ir层叠结构的方法(参照专利文献5);或者以提高PZT膜的取向性为目的,分别在以450℃以上的温度形成Ir膜且以300℃以上的温度形成IrO2膜后,进而以350℃以上的温度进行热处理的方法(参照专利文献6)。
另外,还提出了(1)在Ir膜上形成IrO2膜的方法;(2)在Ir膜上形成结晶IrO2膜,且在该IrO2膜上形成非结晶的IrO2+膜,从而在利用MOCVD法形成PZT膜时使该非结晶的IrO2膜还原后,使其再次氧化的方法;(3)在Ir膜上形成氧气添加Ir膜的方法;(4)在Ir膜上形成IrO2膜,且在该IrO2膜上形成Ir膜,从而在利用MOCVD法形成PZT膜时使氧气在该Ir膜上扩散的方法等(参照专利文献7~14)。
另外,还提出了如下的方法,即,在形成Ir膜后,进行热氧化,从而在其表层部形成结晶IrO2膜,在利用MOCVD法来形成PZT膜时使该IrO2膜形成为非结晶Ir膜的方法(参照专利文献15)。
另外,还提出了作为上部电极形成非结晶IrOx膜,或在上部电极上形成非结晶IrOx膜,从化学或机械的劣化保护PZT膜的方法(参照专利文献16)等。
专利文献1:JP特开2005-159165号公报
专利文献2:JP特开2003-197874号公报
专利文献3:JP特开2001-237392号公报
专利文献4:JP特开2002-151656号公报
专利文献5:JP特开2000-91270号公报
专利文献6:JP特开2003-68991号公报
专利文献7:JP特开2003-282844号公报
专利文献8:美国专利第6500678号说明书
专利文献9:美国专利第6528328号说明书
专利文献10:美国专利第6548343号说明书
专利文献11:美国专利第6596547号说明书
专利文献12:美国专利第6635497号说明书
专利文献13:美国专利第6686236号说明书
专利文献14:美国专利第6872669号说明书
专利文献15:JP特开2004-253627号公报
专利文献16:JP特开2002-261251号公报
发明内容
发明要解决的课题
例如,考虑由Ir膜构成下部电极,并在该Ir膜上采用MOCVD法形成PZT膜,以作为铁电膜的情况。
在采用MOCVD法形成PZT膜的情况下,通常以600℃以上的高温进行PZT膜的形成。此时,首先,将直至进行到控制了取向的Ir膜形成工序的晶片安置在腔室(chamber)中,在氩(Ar)气环境或氧气(O2)环境下,升温到目的温度,然后,将原料气体导入腔室中,在Ir膜上形成PZT膜。从其生产率和极化的观点来考虑,最好使PZT膜在(111)面上优先取向。因此,最好预先使其基底的Ir膜在(111)面上优先取向。
但是,在采用MOCVD法形成PZT膜时,若在氩气环境中进行升温,则在所形成的PZT膜上除了生成(111)面以外,还生成(100)面和(101)面,从而降低了(111)面的取向率,其结果,导致铁电电容器的电特性(转换电荷量)降低的问题。
另外,在采用MOCVD法形成PZT膜时,若在氧气环境中进行升温,也存在如下的一些问题点。即,首先作为第一个问题点,当在多个晶片上连续进行PZT膜的形成时,容易在多个晶片之间产生其(111)面(或(222)面)的取向率偏差的问题点。
在此,图40~图43是表示对形成于多个晶片上的各PZT膜的取向进行调查的结果的图,图40是表示晶片中心部的PZT(111)面的积分强度的图,图41是表示晶片周边部的PZT(111)面的积分强度的图,图42是表示晶片中心部的PZT(222)面的取向率的图,图43是表示晶片周边部的PZT(222)面的取向率的图。
另外,PZT(222)面的取向率是根据下式(1)来计算。
PZT(222)面的取向率(%)={PZT(222)面的积分强度}/{PZT(100)面的积分强度+PZT(101)面的积分强度+PZT(222)面的积分强度}×100...(1)
在该式(1)中,根据采用了X射线衍射装置的测定结果求出PZT(222)面(PZT(111)面)的积分强度、PZT(100)面以及PZT(101)面的积分强度。
在采用MOCVD法在多个晶片上连续形成PZT膜时,若在氧气环境下进行升温,则如图40以及图41所示,无论在晶片的中心部还是周边部,在多个晶片之间PZT(111)面的积分强度均存在较大的偏差。如图42以及图43所示,PZT(222)面的取向率不稳定且较低,特别是在晶片周边部极低。
并且,作为在采用MOCVD法形成PZT膜,并在氧气环境下进行升温时的第二问题点,容易使所形成的PZT膜的表面变得粗糙。特别是在晶片周边部容易产生非常大的表面粗糙,容易产生所谓的白浊。
发生这些问题的原因在于,在氧气(O2)环境中进行升温时,由于该氧气,下部电极的Ir膜发生氧化的缘故。从原理上讲,经氧化形成的IrOx膜可根据升温后接着导入的原料气体中的溶剂成分(例如四氢呋喃(THF)、乙酸丁酯等)再次还原为Ir。但是,在氧气环境的升温过程中,容易产生Ir膜的异常氧化,当通过该异常氧化而形成的IrOx被原料气体中的溶剂成分还原时,会使还原后的Ir膜的取向恶化,或者不能够使其完全还原,其结果,导致形成于其上的PZT膜的取向恶化。
以往,提出了在Ir膜上形成结晶IrOx膜的方法,但留下了如下的课题,即,在采用MOCVD法形成PZT膜的情况下,在该形成时难以使结晶IrOx膜均匀地还原,或者无法完全还原为Ir,使PZT(111)面的取向分布在晶片面内或晶片之间发生偏差,无法稳定地确保规定等级以上的取向率。
本发明是鉴于上述问题点而完成的,其目的在于,提供一种半导体装置的制造方法,根据该方法,能够稳定地形成具有高特性且可靠性优异的铁电电容器的半导体装置。另外,本发明的目的还在于提供具有该铁电电容器的半导体装置。
解决课题的方法
在本发明中,为了解决上述课题,提供一种半导体装置的制造方法,其是具有铁电电容器的半导体装置的制造方法,其特征在于,具有:形成与晶体管电连接的第一金属膜的工序;在所述第一金属膜上形成非结晶或微结晶的金属氧化膜的工序;还原所述金属氧化膜以作为第二金属膜,并且在所述第二金属膜上形成铁电膜的工序;以及在所述铁电膜上形成导电膜的工序。
根据该半导体装置的制造方法,在与晶体管电连接的第一金属膜上形成金属氧化膜,还原该金属氧化膜以作为第二金属膜,并且在该第二金属膜上形成铁电膜。并且,在铁电膜上形成导电膜,以构成铁电电容器。第一、第二金属膜作为下部电极来发挥作用。成为第二金属膜的金属氧化膜为非结晶或微结晶的金属氧化膜,容易被均匀地还原,在第一金属膜上能够形成取向性良好的第二金属膜,由此可在第二金属膜上形成取向性良好的铁电膜。
另外,在本发明中,为了解决所述课题,提供一种半导体装置,其是具有铁电电容器的半导体装置,其特征在于,具有:与晶体管电连接的第一金属膜;形成在所述第一金属膜上,且结晶粒径小于所述第一金属膜的结晶粒径的第二金属膜;形成在所述第二金属膜上的铁电膜;以及形成在所述铁电膜上的导电膜。
根据该半导体装置,以小于第一金属膜的结晶粒径形成第二金属膜,并在该第二金属膜上形成铁电膜,进而形成导电膜。由于在该第二金属膜上形成取向性良好的铁电膜,因此能够实现铁电电容器的性能和可靠性的提高。
发明的效果
在本发明中,在与晶体管电连接的第一金属膜上形成非结晶或微结晶的金属氧化膜,在由该金属氧化膜还原而形成的第二金属膜上形成铁电膜,并在该铁电膜上形成导电膜,从而构成半导体装置的铁电电容器。由此,能够稳定地形成具有取向性良好的铁电膜的铁电电容器。因此,能够实现具有铁电电容器的高性能并且高可靠性的半导体装置。
通过表示本发明优选实施方式的附图和相关的以下说明,能够进一步明确本发明的上述目的和其他目的、特征以及优点。
附图说明
图1是表示铁电电容器的形成流程之一实例的图。
图2是直至进行到下部电极基底形成后的主要部分剖面示意图。
图3是下部电极用金属膜形成工序的主要部分剖面示意图。
图4是下部电极用金属氧化膜形成工序的主要部分剖面示意图。
图5是铁电膜形成工序的主要部分剖面示意图。
图6是上部电极形成工序的主要部分剖面示意图。
图7是铁电电容器图案成形用硬掩模形成工序的主要部分剖面示意图。
图8是铁电电容器图案成形工序的主要部分剖面示意图。
图9是保护膜形成工序的主要部分剖面示意图。
图10是直至进行到布线层的形成后的主要部分剖面示意图。
图11是表示IrOx膜的形成温度与PZT(100)面的积分强度的关系的图。
图12是表示IrOx膜的形成温度与PZT(101)面的积分强度的关系的图。
图13是表示IrOx膜的形成温度与PZT(111)面的积分强度的关系的图。
图14是表示IrOx膜的形成温度与PZT(222)面的取向率的关系的图。
图15是表示IrOx膜的形成温度与PZT(111)面的摇摆曲线半峰宽的关系的图。
图16是表示IrOx膜的形成温度与PZT膜形成后的Ir(111)面的积分强度的关系的图。
图17是表示IrOx膜的膜厚与PZT(100)面的积分强度的关系的图。
图18是表示IrOx膜的膜厚与PZT(101)面的积分强度的关系的图。
图19是表示IrOx膜的膜厚与PZT(111)面的积分强度的关系的图。
图20是表示IrOx膜的膜厚与PZT(222)面的取向率的关系的图。
图21是表示IrOx膜形成时的氧气比率与PZT(100)面的积分强度的关系的图。
图22是表示IrOx膜形成时的氧气比率与PZT(101)面的积分强度的关系的图。
图23是表示IrOx膜形成时的氧气比率与PZT(111)面的积分强度的关系的图。
图24是表示IrOx膜形成时的氧气比率与PZT(222)面的取向率的关系的图。
图25是升温前后的IrOx膜的X射线衍射数据。
图26表示PZT膜的X射线衍射数据。
图27表示BF-STEM图像。
图28表示EDX光谱。
图29是表示多个晶片的PZT(111)面的积分强度的图。
图30是表示多个晶片的PZT(222)面的取向率的图。
图31是直至进行到第二实施方式的胶膜和W插件的形成后的主要部分剖面示意图。
图32是第二实施方式的基底导电膜形成工序的主要部分剖面示意图。
图33是第二实施方式的FeRAM的主要部分剖面示意图。
图34是表示转换电荷量的测定结果的图(之一)。
图35是表示转换电荷量的测定结果的图(之二)。
图36是表示转换电荷量的测定结果的图(之三)。
图37是表示漏电流密度的测定结果的图。
图38是第三实施方式的FeRAM的主要部分剖面示意图。
图39是第四实施方式的FeRAM的主要部分剖面示意图。
图40是表示晶片中心部的PZT(111)面的积分强度的图。
图41是表示晶片周边部的PZT(111)面的积分强度的图。
图42是表示晶片中心部的PZT(222)面的取向率的图。
图43是表示晶片周边部的PZT(222)面的取向率的图。
附图标记说明
1Si基板
2STI
3P阱
4a、4b栅极绝缘膜
5a、5b栅电极
6a第一源极/漏极延伸区域
6b第二源极/漏极延伸区域
9a、9b侧壁
10a第一源极/漏极区域
10b第二源极/漏极区域
12盖绝缘膜
13第一层间绝缘膜
14a、14b、18、46a、46b、70胶膜
15a、15b、19、47a、47b、71W插件
16、21抗氧化膜
17第二层间绝缘膜
20基底导电膜
30、31a、50a、50b Ir膜
31IrOx
32、51PZT膜
33上部电极
40硬掩模
40a第一掩模层
40b第二掩模层
41第一ALO膜
42第二ALO膜
43第三层间绝缘膜
44阻挡膜
45第四层间绝缘膜
48、72布线
48a、48c、72a、72c TiN/Ti层叠膜
48b、72b AlCu合金膜
50下部电极
60凹部
具体实施方式
以下,参照附图对本发明的实施方式进行详细说明。
图1是表示铁电电容器的形成流程之一实例的图。
铁电电容器包括:与形成于半导体基板上的晶体管电连接(例如形成在与晶体管相连接的插件(plug)上)的下部电极、形成在该下部电极上的铁电膜以及形成在该铁电膜上的上部电极。
在形成该铁电电容器时,在此,首先形成用于构成该下部电极的一部分(下层部)的金属膜(第一金属膜)(步骤S1)。以规定的结晶面优先取向的条件形成该第一金属膜。
作为第一金属膜,可以采用例如铱(Ir)、铑(Rh)、钯(Pd)、钌(Ru)等贵金属膜、或将该贵金属膜层叠两层以上而成的金属膜。或者,也可以采用包含Ir、Rh、Pd、Ru中的两种以上金属的合金膜、或将该合金膜层叠两层以上而成的金属膜。
在形成第一金属膜后,在该第一金属膜上同样地形成用于构成下部电极的一部分(上层部)的金属氧化膜(步骤S2)。
作为金属氧化膜,可以采用例如Ir、Rh、Pd、Ru等的贵金属氧化膜、或将该贵金属氧化膜层叠两层以上而成的金属氧化膜。或者,也可以采用包含Ir、Rh、Pd、Ru中的两种以上的合金氧化膜、或将该合金氧化膜层叠两层以上而成的金属氧化膜。
并且,在该步骤S2中,在第一金属膜上形成金属氧化膜时,以薄于其基底的第一金属膜规定膜厚的条件形成非结晶或微结晶(多结晶)的金属氧化膜。另外,在本发明中,将非结晶与结晶粒混在一起的不完全结晶状态称为微结晶。
在形成金属氧化膜后,采用MOCVD法形成铁电膜(步骤S3)。
作为铁电膜材料,除了PZT以外,还可以使用掺入了La的PZT(PLZT);掺入了微量的钙(Ca)、锶(Sr)、硅(Si)等的PZT系材料;SBT或钽酸铌酸锶铋(SrBi2(Ta、Nb)2O9(SBTN))等铋(Bi)层状结构化合物等。
在使用MOCVD法进行的铁电膜的形成中,将直至进行到下部电极的第一金属膜和金属氧化膜的形成的晶片安置于腔室中,在规定的环境下升温到规定的温度,然后,将铁电膜的原料气体导入该腔室。该原料气体中含有TFT、乙酸丁酯等铁电膜原料的溶剂成分。
升温后若将该原料气体导入腔室中,则由于该原料气体中的溶剂成分使下部电极上层部的金属氧化膜还原,其结果,最终能够得到在下部电极下层部的第一金属膜上还层叠其他金属膜(第二金属膜)的结构。另外,在之后或与此同时,在该第二金属膜上通过原料气体中的原料成分形成铁电膜。
在该铁电膜的形成过程中,由于金属氧化膜以非结晶或微结晶的状态形成,因而容易被原料气体中的溶剂成分均匀地还原。关于金属氧化膜的膜厚,事先设定为能够在该铁电膜的形成过程中完全被还原的膜厚。另外,通过该还原最终获得的第二金属膜的结晶粒径小于其下的第一金属膜的结晶粒径。
在所述步骤S1的第一金属膜形成阶段以及所述步骤S2的金属氧化膜形成阶段,预先适当地设定它们的形成条件,以能够获得例如规定结晶状态的第一金属膜以及规定膜厚的金属氧化膜。由此,在该步骤S3的铁电膜形成阶段中,通过还原能够获得取向性良好的第二金属膜。因此,形成于该第二金属膜上的铁电膜具有非常良好的取向性。进而,也能够提高晶片面内的取向分布以及晶片之间的再现性。
另外,在上述的采用MOCVD法形成铁电膜后,为了达到该铁电膜表面的平坦化,根据需要,还可以使用溅射法等形成其他的铁电膜。
在形成铁电膜后,在该铁电膜上形成作为上部电极的规定的导电膜(步骤S4)。
然后,对具有第一和第二金属膜的层叠结构的下部电极、铁电膜以及上部电极的层叠体进行图案成形、保护膜(氢或水分的阻挡膜(block layer))形成(步骤S5),以构成铁电电容器。
然后,依照常用方法,进行层间绝缘膜、插件以及布线等的形成来完成FeRAM即可。另外,通常,在适当的阶段对铁电电容器的铁电膜实施规定的热处理,以达到使在FeRAM的形成过程所受到的损伤复原等目的。
根据如图1所示的铁电电容器的形成流程,能够提高下部电极及该下部电极上的铁电膜的取向性。进而,能够提高晶片面内的取向分布,还能够抑制晶片之间的偏差。因此,能够获得转换电荷量高且可靠性高的铁电电容器。另外,由此能够实现具有高性能和高可靠性的FeRAM。
以下,具体说明利用上述原理的FeRAM的形成例。
首先,对第一实施方式进行说明。
图2~图10是FeRAM的各形成工序的说明图。以下,按顺序进行说明。
图2是直至进行到下部电极基底的形成后的主要部分剖面示意图。
首先,在n型或p型的Si基板1上,形成用于区划晶体管的活性区域的STI(浅沟槽隔离,Shallow Trench Isolation)2。另外,也可以采用LOCOS(区域硅氧化法,Local Oxidation of Silicon)法形成元件分离区域,以代替STI2。
接着,在Si基板1的活性区域中导入p型杂质来形成p阱3后,对其活性区域的表面进行热氧化。热氧化后,在其整个表面形成非结晶或多结晶的Si膜,并形成图案,从而形成栅极绝缘膜4a、4b以及栅电极5a、5b。
接着,以栅电极5a、5b作为掩模来进行n型杂质的离子注入,在各栅电极5a、5b两侧的Si基板1上形成第一、第二源极/漏极延伸区域6a、6b。然后,使用CVD法在整个面上形成SiO膜等绝缘膜后,对该SiO膜等进行蚀刻,从而在各栅电极5a、5b上形成侧壁9a、9b。并且,以栅电极5a、5b和侧壁9a、9b作为掩模进行n型杂质的离子注入,在栅电极5a、5b两侧的Si基板1上形成第一、第二源极/漏极区域10a、10b。
通过至此的工序,在Si基板1的活性区域上形成两个MOS(Metal OxideSemiconductor)晶体管。
接着,通过溅射法在整个面上形成钴(Co)等高熔点金属膜,并对该金属膜进行加热,使第一、第二源极/漏极区域10a、10b以及栅电极5a、5b的表面硅化。然后,通过等离子CVD法,在整个面上形成膜厚200nm的氮氧化硅(SiON)膜,以形成盖绝缘膜12,在该盖绝缘膜12上,通过使用了四乙氧基硅烷(TEOS)气体的等离子CVD法,形成膜厚1000nm的SiO膜(第一层间绝缘膜)13。并且,通过CMP(化学机械研磨,Chemical MechanicalPolishing)法,对该第一层间绝缘膜13的上表面进行研磨以使其平坦化。另外,在进行所述平坦化后,第一层间绝缘膜13的膜厚是从Si基板1的平坦面计算为700nm。
接着,采用光刻法进行第一层间绝缘膜13和盖绝缘膜12的图案成形,形成与第一、第二源极/漏极区域10a、10b相连通的例如直径为0.25μm的接触孔。并且,在整个面上形成膜厚30nm的Ti膜和膜厚20nm的TiN膜后,使用CVD法形成膜厚300nm的钨(W)膜,并采用CMP法除去多余的W膜、TiN膜以及Ti膜。由此,通过由Ti膜以及TiN膜构成的粘接膜(胶膜)14a、14b,在该接触孔内形成W插件15a、15b。
另外,在该CMP工序中,采用能够使W膜、TiN膜以及T膜的研磨速度比基底的第一层间绝缘膜13更快的研磨液(例如Cabot MicroelectronicsCorporation(美国嘉柏微電子材料股份有限公司)制的SSW2000)。并且,为了使第一层间绝缘膜13上不产生研磨残渣,将该CMP的研磨量设定为大于各膜总膜厚的量,以进行过度研磨。
接着,使用等离子CVD法在整个面上形成膜厚130nm的SiON膜(抗氧化膜)16,进而,采用以TEOS为原料的等离子CVD法,在该SiON膜16上形成膜厚300nm的SiO膜(第二层间绝缘膜)17。另外,抗氧化膜16除了SiON膜以外,还可以由SiN膜或氧化铝(ALO)膜来形成。然后,形成贯通了第二层间绝缘膜17和抗氧化膜16且与连接于第一源极/漏极区域10a上的W插件15a相连通的接触孔,并与胶膜14a、14b以及W插件15a、15b同样地,在上述接触孔中形成胶膜18以及W插件19。
接着,对形成胶膜18以及W插件19后的表面进行氨(NH3)等离子处理。通过该NH3等离子处理,使NH基与第二层间绝缘膜17表面的氧原子结合,即使在其上形成后述的Ti膜的情况下,其Ti原子也不会被氧原子捕获而容易在第二层间绝缘膜17表面上移动。其结果,能够在第二层间绝缘膜17上形成通过自组织化(self-organization)优选在(002)面取向的Ti膜。
另外,该NH3等离子处理可按如下方法实施,即,使用例如在距被处理晶片9mm的位置具有相对电极的平行平板型的等离子处理装置,在266Pa的压力下,以350sccm将氨气供给至使基板温度保持为400℃的腔室内,并对被处理晶片侧以100W的功率持续60秒供给13.56MHz的高频,且以55W的功率向相对电极持续60秒供给350kHz的高频。
在该NH3等离子处理后,使用例如将被处理晶片与靶之间的距离设定为60mm的溅射装置,在0.15Pa的氩气环境中,通过将基板温度设为20℃,且持续5秒施加2.6kW的溅射功率,从而形成膜厚20nm的Ti膜。如上所述,该Ti膜能够优先在(002)面取向而形成。
在经NH3等离子处理形成Ti膜后,在氮(N2)气环境中,进行650℃、60秒的RTA(快速热退火,Rapid Thermal Anneai)处理使其Ti膜氮化,由此形成TiN膜(基底导电膜)20,该TiN膜20起到能够提高形成于其上层上的膜的取向性的作用,且优选在(111)面上取向。并且,在该基底导电膜20上形成由TiAlN膜构成的抗氧化膜21。该TiAlN膜例如可按照以下方法形成,即,通过采用了由Ti与Al合金化的靶的反应性溅射,在40sccm氩气与10sccrn氮气的混合气体环境中,在253.3Pa的压力下,以基板温度400℃、1.0kW的溅射功率、100nm膜厚来形成。
通过至此为止的工序能够获得如图2所示的状态。
图3是下部电极用金属膜形成工序的主要部分剖面示意图。
在完成抗氧化膜21的形成后,如图3所示,在其上形成Ir膜30,以作为用于构成下部电极的下层部的金属膜。Ir膜30是例如在氩气环境中,在0.2Pa的压力下,将基板温度设定为450℃,并以0.3kW的溅射功率、60nm~100nm膜厚形成。
进而,为了提高所形成的Ir膜30的取向性,可以在非活性气体(例如氩气)环境中进行650℃~750℃、60秒的RTA处理。由此,获得使规定的结晶面例如Ir(111)面优先取向的Ir膜30。另外,除了使用Ir膜30以外,金属膜还可以使用Ru膜、Rh膜以及Pd膜等。
图4是下部电极用金属氧化膜形成工序的主要部分剖面示意图。
在形成Ir膜30后,如图4所示,在其上形成非结晶或微结晶的IrOx膜31,以作为用于构成下部电极的上层部的金属氧化膜。例如,可以在氩气与氧气的混合气体环境中,在0.11Pa的压力下,将基板温度设定为20℃~300℃,并以1kW的溅射功率、5nm~50nm的膜厚形成IrOx膜31。
另外,对IrOx膜31的形成条件(形成温度、膜厚、形成速度、氩气与氧气的混合气体环境中的氧气比率)详情则在后面叙述。
图5是铁电膜形成工序的主要部分剖面示意图。
在形成IrOx膜31后,形成PZT膜32以作为铁电膜。在此,首先通过MOCVD法形成第一PZT膜,然后在其上层形成第二PZT膜,由此构成PZT膜32。
第一PZT膜例如可以如下所述进行形成。
首先,使用双[二(三甲基乙酰甲酸)]铅(Pb-bis-dipivaloylmethane,Pb(DPM)2))作为Pb原料,使用四(二甲基庚二酸)锆[Zr(DMHD)4]作为Zr原料,使用二异丙氧基双[二(三甲基乙酰甲酸)]钛[Ti(O-iPr)2(DPM)2]作为Ti原料,将这些原料分别以0.3mol/L的浓度溶解于THF溶剂中,制备好Pb、Zr、Ti的各液体原料。接着,将这些各液体原料与流量0.474mL/分钟的THF溶剂一起,分别以0.326mL/分钟、0.200mL/分钟和0.200mL/分钟的流量向MOCVD装置的气化器供给,以使这些液体气化。由此,制备Pb、Zr、Ti的各原料气体。另外,将氧气导入至腔室中进行升温,升温后,将各原料气体导入至例如具有氩气与氧气的混合气体环境、压力665Pa且将基板温度保持为620℃的腔室中,作用620秒。由此,形成膜厚100nm的第一PZT膜。
在上述第一PZT膜的形成过程中,图4所示的IrOx膜31被Pb、Zr、Ti的各原料气体中所包含的THF溶剂成分最终还原为Ir膜31a。IrOx膜31为非结晶或微结晶体,为此,首先在氧气环境的升温中被均匀地氧化(结晶化),续而在原料气体导入后的还原环境中,均匀地还原为Ir膜31a,该Ir膜31a是根据其下的Ir膜30的取向性在规定的结晶面优先取向、且结晶粒径小的Ir膜31a。并且,在如此获得的Ir膜31a上,形成根据其取向性在规定的结晶面优先取向的第一PZT膜。另外,由非结晶或微结晶的IrOx膜31形成的Ir膜31a的平均结晶粒径约为20nm以下。
另外,形成结晶IrOx膜来代替上述非结晶或微结晶的IrOx膜31的情况下,在氧气环境的升温中容易发生异常氧化,之后,即使导入原料气体,IrOx膜也难以被包含于其中的溶剂成分均匀还原。因此,难以形成如Ir膜31a那样的结晶粒径小的均匀Ir膜。
通过使IrOx膜31形成为非结晶或微结晶,并形成结晶粒径小的均匀Ir膜31a,能够提高形成于其上的第一PZT膜的取向性,从而能够获得稳定的成品率。如此的取向整齐的下部电极与铁电膜之间的界面特别有利于低电压动作。另外,当如此形成第一PZT膜时,也能够获得不产生所谓的白蚀等、且洁净的第一PZT膜表面。
另外,对如此的通过非结晶或微结晶的IrOx膜31的形成而获得的第一PZT膜的特性,则在后面叙述。
在形成第一PZT膜后,例如,通过溅射法,在整个面上形成膜厚1nm~30nm的非结晶的第二PZT膜。通过形成第二PZT膜,可获得更平坦的PZT膜32。另外,该第二PZT膜也可以通过MOCVD法来形成,在该情况下,使用Pb(DPM)2作为Pb原料、使用Zr(DMHD)4作为Zr原料、使用Ti(O-iPr)2(DPM)2作为Ti原料,使用将它们分别溶解于THF溶剂中的溶液来制备原料气体。
如此地,通过形成第一、第二PZT膜,如图5所示,在Ir膜31a上形成PZT膜32。
图6是上部电极形成工序的主要部分剖面示意图。
在形成PZT膜32后,在其上形成上部电极33。该上部电极33例如可以如下所述地形成。
首先,采用溅射法,在PZT膜32上形成IrOx膜,该IrOx膜在刚形成时其结晶的膜厚为25nm。例如,在形成温度300℃、140sccm的氩气与60sccm的氧气的混合气体环境中,以1kW~2kW左右的溅射功率形成所述IrOx膜。
接着,通过RTA法,在725℃、2000sccm的氩气与20sccm的氧气的混合气体环境中,进行60秒的热处理。该热处理的目的在于,使PZT膜32完全结晶化,补偿PZT膜32中的氧气欠损,并且使形成上部电极用IrOx膜时的等离子损伤得以复原。
接着,形成膜厚50nm~150nm的IrOy膜。例如,在氩气环境中,在0.8Pa的压力下、以1.0kW的溅射功率进行45秒的堆积,能够形成膜厚125nm的IrOy膜。为了抑制异常生长,优选将形成温度设定为100℃以下而形成该IrOy膜。另外,为了抑制对氢的催化作用,避免PZT膜32被氢自由基还原,并提高铁电电容器的耐氢气性,优选将IrOy膜形成为与IrO2的化学计量组成相近的组成。
接着,采用溅射法,在IrOy膜上形成Ir膜,以作为氢阻挡膜兼导电性提高膜。例如,在氩气环境中,在1Pa的压力下、以1.0kW的溅射功率来形成膜厚50nm~100nm的Ir膜。
如此地,形成了Ir/IrOy/IrOx层叠结构的上部电极33。
另外,在形成上部电极33时,也可以使用Ir膜、Ru膜、Rh膜、铼(Re)膜、锇(Os)膜和Pd膜,以及它们的氧化膜、SRO膜等导电性氧化膜,或这些膜的层叠结构来代替IrOy膜、IrOx膜。另外,在上部电极33的最上层,也可以使用Ru膜,Rh膜以及Pd膜等代替Ir膜。
图7是铁电电容器图案成形用的硬掩模形成工序的主要部分剖面示意图,图8是铁电电容器图案成形工序的主要部分剖面示意图。
形成上部电极33后,进行晶片背面的清洗,然后形成由第一掩模层40a、第二掩模层40b构成的硬掩模40,以供铁电电容器的图案成形用。
例如,该硬掩模40是如下所述地形成。
首先,采用溅射法,在整个面形成TiN膜或TiAlN膜,以作为第一掩模层40a,并在该第一掩模层40a上,通过采用了TEOS气体的CVD法形成SiO膜,以作为第二掩模层40b。接着,对该第二掩模层40b进行岛状的图案成形,将所述经图案成形后的第二掩模层40b作为掩模来蚀刻第一掩模层40a。由此,形成了如图7所示的由第一掩模层40a、第二掩模层40b构成的硬掩模40。
如上所述地形成硬掩模40后,以溴化氢(HBr)、氧气、氩气与八氟环丁烷(C4F8)的混合气体作为蚀刻气体来进行等离子蚀刻,由此对未被硬掩模40覆盖的部分的上部电极33、PZT膜32以及Ir膜31a、30进行图案成形。
接着,通过干式蚀刻或湿式蚀刻来选择性地除去第二掩模层40b后,在残留有第一掩模层40a的状态下进行干式蚀刻,除去抗氧化膜21和基底导电膜20的同时,除去该第一掩模层40a。由此,获得如图8所示的铁电电容器结构。
图9是保护膜形成工序的主要部分剖面示意图。
在形成铁电电容器后,以覆盖该铁电电容器的方式形成第一ALO膜41,并作为保护膜。例如,采用溅射法,以膜厚20nm形成该第一ALO膜41。或采用MOCVD法来形成膜厚1nm~5nm的ALO膜41。
形成第一ALO膜41后,为了复原至此为止的工序中PZT膜32所受的损伤,进行复原退火。例如,在含有氧气的环境中,将炉内的晶片温度设定为550℃~700℃,优选设定为600℃,以此进行60分钟的该复原退火。
图10是直至进行到布线层形成后的主要部分剖面示意图。
在进行第一ALO膜41的形成以及复原退火后,例如,采用CVD法,在第一ALO膜41上形成膜厚38nm的第二ALO膜42。
接着,采用例如使用了TEOS气体、氧气与氦(He)气的混合气体的等离子CVD法,在整个面形成由膜厚1500nm的SiO膜构成的第三层间绝缘膜43。另外,也可以形成具有绝缘性的无机膜等以作为该第三层间绝缘膜43。在形成第三层间绝缘膜43后,采用CMP法进行其平坦化处理。
然后,在使用一氧化二氮(N2O)气体或氮气等生成的等离子环境中,进行热处理。该热处理的结果,除去了第三层间绝缘膜43中的水分,并且改变了第三层间绝缘膜43的膜质,从而水分难以浸入其内部。
接着,采用例如溅射法或CVD法,在整个面形成由膜厚20nm~100nm的ALO膜构成的阻挡膜44。由于该阻挡膜44形成于平坦化的第三层间绝缘膜43上,因此是以平坦的状态而形成的。
接着,采用例如使用了TEOS气体的等离子CVD法,在整个面形成由膜厚300nm~500nm的SiO膜构成的第四层间绝缘膜45。另外,也可以形成SiON膜或SiN膜等,以作为该第四层间绝缘膜45。在形成第四层间绝缘膜45后,采用CMP法,进行其平坦化处理。
接着,首先,形成与连接在第二源极/漏极区域10b上的W插件15b连通的接触孔后,通过胶膜46a来形成W插件47a。然后,形成与铁电电容器的上部电极33相连通的接触孔。在形成该接触孔后,在氧气环境中,进行450℃的热处理,以复原伴随该接触孔的形成在PZT膜32上产生的氧气缺损。热处理后,通过胶膜46b在该接触孔形成W插件47b。
另外,优选以单层TiN膜形成胶膜46a、46b,但也可以是通过溅射形成Ti膜,并在其上通过MOCVD法形成TiN膜的层叠结构。如此地,当由TiN膜或使用TiN膜形成胶膜46a、46b的情况下,为了从TiN膜中除去碳(C),优选进行使用了氮气和氢气的等离子处理。如上所述,由于在上部电极33上作为氢阻挡膜形成有Ir膜,因此,不会因该等离子处理而产生其下层的IrOx膜等还原的问题。
如此地,在完成胶膜46a、46b以及W插件47a、47b的形成后,分别在该W插件47a、47b上形成布线48。布线48可按照下述方法形成。即,例如通过溅射法,依次形成由膜厚60nm的Ti膜与膜厚30nm的TiN膜构成的TiN/Ti层叠膜48a、膜厚360nm的AlCu合金膜48b、以及由膜厚5nm的Ti膜与膜厚70nm的TiN膜构成的TiN/Ti层叠膜48c后,通过对其进行图案成形来形成布线48。由此,形成第一层的布线层。
以后,同样地形成第二层以后的布线层,由此完成FeRAM。
在此,详细说明通过如上所述的流程形成FeRAM时的下部电极用非结晶或微结晶的IrOx膜的形成条件,以及通过该IrOx膜的形成而获得的PZT膜(第一PZT膜)的特性。
首先,对IrOx膜的形成温度进行说明。
在此,采用溅射法,在构成铁电电容器的下部电极下层部的Ir膜上,在186sccm的氩气与14sccm的氧气的混合气体环境中(氧气比率为7%),以溅射功率0.5kW、形成速度1.6nm/秒以及形成时间19秒的条件,形成膜厚30nm的IrOx膜。此时,将其形成温度分别变更为室温(25℃)、50℃、100℃、200℃和300℃。并且,采用MOCVD法,在以各形成温度的条件获得的IrOx膜上形成PZT膜,使用X射线衍射装置来调查形成后的PZT膜及其下的Ir膜的结晶结构。另外,为了进行比较,在Ir膜上不形成IrOx膜而直接形成PZT膜,并使用X射线衍射装置调查其结晶结构。将这些结果示于图11~图16中。另外,PZT膜的形成是以形成上述第一PZT膜时(图5)的条件来进行。
图11是表示IrOx膜的形成温度与PZT(100)面的积分强度的关系的图,图12是表示IrOx膜的形成温度与PZT(101)面的积分强度的关系的图,图13是表示IrOx膜的形成温度与PZT(111)面的积分强度的关系的图,图14是表示IrOx膜的形成温度与PZT(222)面的取向率的关系的图,图15是表示IrOx膜的形成温度与PZT(111)面的摇摆曲线半峰宽(FWHM)的关系的图,图16是表示IrOx膜的形成温度与PZT膜形成后的Ir(111)面的积分强度的关系的图。
另外,在以下的说明中,所谓晶片的中心部是指俯视观察晶片时的其中心部。另外,所谓晶片的下部、上部、左部和右部分别是指,俯视观察规定朝向的晶片时相对于其中心部而言的下部、上部、左部和右部。在此,将相对于晶片中心部的槽口(notch)方向向下而设定晶片的下部、上部、左部和右部。
首先,根据图11可知,在形成温度分别为25℃、50℃和100℃的情况下,晶片的中心部、上部以及右部的各PZT(100)面的积分强度,分别小于未形成IrOx膜的情况下(W/OIrOx)以及形成温度分别为200℃、300℃的情况下的积分强度。同样,根据图12可知,在形成温度分别为25℃、50℃和100℃的情况下,晶片的中心部、上部以及右部的各PZT(101)面的积分强度,分别小于未形成IrOx膜的情况下以及形成温度为200℃、300℃的情况下的积分强度。根据图13可知,在形成温度分别为25℃、50℃、100℃和200℃的情况下,晶片的中心部、上部和右部的各PZT(111)面的积分强度相互之间大致相同,但上述积分强度均大于未形成IrOx膜的情况下以及形成温度为300℃的情况下的积分强度。
若使用图11~图13的结果并根据上述式(1)求出PZT(222)面的取向率时,则如图14所示,晶片的中心部、上部以及右部的各PZT(222)面的取向率在形成温度分别为25℃、50℃、100℃的情况下可获得高取向率,且分别大于未形成IrOx膜的情况下以及形成温度200℃、300℃的情况下的取向率。根据图15,若观察晶片的中心部以及右部的各PZT(111)面的摇摆曲线半峰宽,则可发现在未形成IrOx膜的情况下以及形成温度为300℃的情况下该摇摆曲线半峰宽值较大的倾向。
另外,根据图16可知具有如下的倾向,即,在未形成IrOx膜的情况下,PZT膜形成后的晶片的中心部、上部以及右部的各Ir(111)面的积分强度低于形成有IrOx膜的情况下(形成温度分别为25℃、50℃、100℃、200℃和300℃)的所述积分强度。
如此地,首先,与形成IrOx膜的情况相比,在未形成IrOx膜的情况下其Ir(111)面的积分强度较低(图16)。另外,在未形成IrOx膜的情况下,通过PZT(100)面以及PZT(101)面的生成而抑制PZT(111)面的生成(图11~图13),从而PZT(222)面的取向率变低(图14)。在未形成IrOx膜的情况下,特别是晶片右部的PZT(111)面的积分强度和PZT(222)面的取向率极其低于晶片的其他部分,晶片面内的取向分布非常差(图14)。另外,PZT(111)面的摇摆曲线半峰宽也变宽(图15)。
另一方面,在形成有IrOx膜的情况下,在其不同的形成温度下,PZT膜形成后的Ir膜的Ir(111)面的积分强度未出现明显的差异(图16),但形成在其上的PZT膜的取向性产生了较大的差异。其原因应考虑如下的理由。
即,首先,在IrOx膜的形成温度分别为200℃、300℃的情况下,所形成的IrOx膜被完全结晶化,并采用规定条件的MOCVD法,在该结晶IrOx膜上形成PZT膜。此时,首先在氧气环境的升温中该IrOx膜被氧化,但在结晶IrOx膜的情况下,其氧化容易变得不均匀。在达到规定的形成温度后导入原料气体,并由该原料气体中所包含的溶剂成分来还原所述氧化后的IrOx膜,但若IrOx膜的氧化不均匀,则该IrOx膜难以还原为均匀的Ir膜。其结果,在形成于该Ir膜上的PZT膜中容易生成PZT(100)面或PZT(101)面(图11~图13),从而降低了PZT(222)面的取向率(图14)。
另一方面,在IrOx膜的形成温度分别为25℃、50℃和100℃的情况下,以25℃形成的IrOx膜为非结晶,以50℃、100℃形成的IrOx膜为均匀的微结晶。非结晶或微结晶的IrOx膜在采用MOCVD法形成PZT膜时,首先在氧气环境的升温中均匀地氧化而结晶化,当达到规定的形成温度后导入原料气体时,由包含于该原料气体中的溶剂成分还原为结晶粒径小的均匀的Ir膜。其结果,在其上所形成的PZT膜中,能够抑制PZT(100)面及PZT(101)面的生成(图11~图13),提高了PZT(222)面的取向率,并且还使晶片面内的取向分布变良好(图14),PZT(111)面的摇摆变化也变得较为尖锐(图15)。
因此,IrOx膜的形成温度优选为25℃~100℃。但是,形成温度越接近25℃则温度越难以稳定化,进而,当对于多个晶片连续进行形成时温度容易升高,由此还可能会导致IrOx膜的部分结晶化。对于IrOx膜的形成温度,若考虑到其界限,更优选设定为作为25℃~100℃的中心值的60℃左右。
接着,对IrOx膜的膜厚进行说明。
在此,采用溅射法,在构成铁电电容器的下部电极下层部的Ir膜上,在186sccm的氩气与14sccm的氧气的混合气体环境中(氧气比率为7%),以0.5kW的溅射功率、60℃(25℃~100℃的中心值)的形成温度来形成IrOx膜。此时,以1.6nm/秒的形成速度,分别形成了膜厚15nm、25nm、35nm、40nm和50nm的IrOx膜。并且,采用MOCVD法,在以各膜厚形成的IrOx膜上形成PZT膜,使用X射线衍射装置来调查其结晶结构。将其结果示于图17~图20。另外,PZT膜的形成是以形成所述第一PZT膜时(图5)的条件进行。
图17是表示IrOx膜的膜厚与PZT(100)面的积分强度的关系的图,图18是表示IrOx膜的膜厚与PZT(101)面的积分强度的关系的图,图19是表示IrOx膜的膜厚与PZT(111)面的积分强度的关系的图,图20是表示IrOx膜的膜厚与PZT(222)面的取向率的关系的图。
根据图17以及图18可知,晶片的中心部、上部、右部和下部的各PZT(100)面以及各PZT(/01)面的积分强度分别在IrOx膜的膜厚为50nm时变大。另外,根据图19可知,晶片的中心部、上部、右部以及下部的各PZT(111)面的积分强度分别在IrOx膜的膜厚为50nm时变小。并且,根据图20可知,PZT(222)面的取向率也在IrOx膜的膜厚为50nm时变低。
在IrOx膜的膜厚为50nm的情况下,因为其较厚,在采用MOCVD法形成PZT膜时,难以被其原料气体中的溶剂成分完全还原。其结果,在下部电极上残留了IrOx膜,从而在其上形成的PZT膜中,容易生成PZT(100)面或PZT(101)面(图17~图19),PZT(222)面的取向率变低(图20)。因此,IrOx膜的膜厚优选小于50nm,更优选为40nm以下。
另一方面,在IrOx膜的膜厚为15nm的情况下,采用MOCVD法形成PZT膜时,首先在氧气环境的升温中该IrOx膜被氧化,但由于其较薄,推测其下的Ir膜也稍微被氧化。该Ir膜的氧化部分无法形成均匀的IrOx而成为异常氧化的IrOx的可能性很高。即使导入原料气体,并由包含在该原料气体中的溶剂成分来还原所述异常氧化的IrOx,也无法获得均匀的结晶粒子,容易生成PZT(100)面或PZT(101)面(图17~图19),PZT(222)面的取向率变低,且根据晶片上的位置,PZT(222)面的取向率会下降90%(图20)。
但是,若调整采用MOCVD法来形成PZT膜时的升温条件,也能够降低IrOx膜的氧化速度,防止其下Ir膜的氧化,从而提高PZT(222)面的取向率。如此地,根据升温条件,即使在IrOx膜的膜厚为10nm的情况下,也能够获得高的PZT(222)面的取向率。因此,能够将IrOx膜的膜厚设定为10nm以上。
如上所述,IrOx膜的膜厚优选为10nm~40nm。据此,可获得在Ir膜上层叠有结晶粒径小且膜厚10nm~40nm的Ir膜的下部电极。另外,当考虑到铁电电容器及具有该铁电电容器的FeRAM的特性、生产成本、生产效率等时,更优选IrOx膜的膜厚为25nm~30nm。
接着,对形成IrOx膜时的氧气比率以及形成速度进行说明。
在此,在构成铁电电容器的下部电极下层部的Ir膜上,采用溅射法,在氩气与氧气的混合气体环境中,以形成温度60℃、溅射功率0.5kW、形成速度1.6nm/秒、形成时间19秒的条件,形成膜厚30nm的IrOx膜。此时,将该氩气与氧气的混合气体环境中的氧气比率分别变更为5%(氩气190sccm、氧气10sccm)、7%(氩气186sccm、氧气14sccm)、10%(氩气180sccm、氧气20sccm)、20%(氩气160sccm、氧气40sccm),25%(氩气150sccm、氧气50sccm)、30%(氩气140sccm、氧气60sccm),35%(氩气130sccm、氧气70sccm)。并且,采用MOCVD法,在以各氧气比率条件获得的IrOx膜上形成PZT膜,使用X射线衍射装置调查其结晶结构。将其结果示于图21~图24中。另外,PZT膜的形成是以形成所述第一PZT膜时(图5)的条件进行。
图21是表示IrOx膜形成时的氧气比率与PZT(100)面的积分强度的关系的图,图22是表示IrOx膜形成时的氧气比率与PZT(101)面的积分强度的关系的图,图23是表示IrOx膜形成时的氧气比率与PZT(111)面的积分强度的关系的图,图24是表示IrOx膜形成时的氧气比率与PZT(222)面的取向率的关系的图。
根据图21~图24可知,IrOx膜形成时的氧气比率在5%~10%的范围时,晶片的中心部、上部、右部以及下部的各PZT(222)面的取向率为90%以上(图24)。其原因在于,当采用MOCVD法在以上述氧气比率形成的IrOx膜上形成PZT膜时,该IrOx膜被均匀地氧化,进而,其后能够被均匀地还原,由此能够抑制PZT(100)面以及PZT(101)面的生成(图21~图23)。
另一方面,若将IrOx膜形成时的氧气比率调整为更高,则会提高所形成的IrOx膜的氧化度。当采用MOCVD法在该IrOx膜上形成PZT膜时,该IrOx膜容易发生异常氧化,在其后的还原中难以获得均匀的Ir膜,无法有效地抑制PZT(100)面以及PZT(101)面的生成(图21~图23)。其结果,降低了晶片的中心部、上部、右部以及下部的各PZT(222)面的取向率(图24)。
因此,在氩气与氧气的混合气体环境中,以形成温度60℃、溅射功率0.5kW(形成速度1.6nm/秒)的条件形成IrOx膜的情况下,氧气比率优选为5%~10%。
另外,在变更IrOx膜形成时的溅射功率的条件时,注意氧气比率的最佳条件随之改变。例如,当溅射功率为0.5kW时,若IrOx膜形成时的氧气比率为5%,则其形成速度为1.5nm/秒。当溅射功率为1.0kW时,若IrOx膜形成时的氧气比率为10%,则其形成速度为3.0nm/秒。当溅射功率为2.0kW时,若IrOx膜形成时的氧气比率为18%,则其形成速度6.0nm/秒。以这些条件分别形成的IrOx膜的膜质都同等,其比电阻均为300Ω·cm。
因此,在考虑IrOx膜形成时的溅射功率(形成速度)的同时,需要实现氧气比率的最佳化。例如,当将IrOx膜的形成速度设定为1.0nm~2.5nm/秒时,则氧气比率的最佳范围为2%~15%。当将IrOx膜的形成速度设定为2.6nm~4.0nm/秒时,则氧气比率的最佳范围为4%~20%。当将IrOx膜的形成速度设定为4.1nm~7.0nm/秒时,则氧气比率的最佳范围为6%~30%。
在此,作为一实例,对在氧气比率7%的环境中以形成温度60℃、溅射功率0.5kW(形成速度1.6nm/秒)的条件形成的IrOx膜的取向性、采用MOCVD法形成PZT膜时的升温后的IrOx膜的取向性、以及所形成的PZT膜的取向性加以调查的结果进行说明。
图25表示升温前后的IrOx膜的X射线衍射数据,图26表示PZT膜的X射线衍射数据。
根据图25可知,在氧气比率7%的环境中以形成温度60℃、溅射功率0.5kW的条件形成IrOx膜的情况下(在进行相当于采用MOCVD法形成PZT膜时的升温的热处理之前),在其X射线衍射数据中未出现IrOx的峰值,刚刚形成后的IrOx膜不是结晶。对这样的IrOx膜进行了相当于采用MOCVD法形成PZT膜时的升温的热处理(氧气100%),其结果,在其热处理后的X射线衍射数据中出现了IrOx(110)面以及IrOx(101)面的峰值,确认通过该热处理使IrOx膜发生了结晶化。
在氧气比率7%的环境中,以形成温度60℃、溅射功率0.5kW的条件形成IrOx膜,并经过规定的升温过程直至进行到PZT膜的形成,此时,根据图26可知,在形成该PZT膜后的X射线衍射数据中未出现IrOx(110)面以及IrOx(101)面的峰值,IrOx(111)面的峰值变强,确认了在PZT膜的形成过程中IrOx膜被还原为在Ir<111)面优先取向的Ir膜。
进而,采用BF-STEM(Bright Field-Scanning Transmission ElectronMicroscopy,穿透式电子显微镜)以及EDX分析(Energy Dispersive X-raySpectroscopy)方法来调查所形成的PZT膜和下部电极的剖面。
图27表示BF-STEM图像,图28表示EDX光谱。
进行BF-STEM观察的结果,如图27所示,可确认下部电极50为粒径不同的柱状结晶的Ir膜50a、50b的双层结构,在这样的下部电极50上形成有PZT膜51。该上层部的Ir膜50b是原为IrOx膜并在形成PZT膜时被还原的部分,其下层部的Ir膜50a为形成于该IrOx膜下的部分。下部电极50的上层部的Ir膜50b的结晶粒径小于下层部的Ir膜50a的结晶粒径,其平均粒径为11nm。
图28是针对进行了上述BF-STEM观察的剖面内的PZT膜51中(A点)、PZT膜51/Ir膜50b界面附近(B点)以及Ir膜50b中(C点)的各点所获得的EDX光谱。可以确认,除了Si以外,在A点检测出了Pb、Zr、Ti和O,在B点检测出了Pb、Zr、Ti、Ir和O,在C点检测出了Ir。即,从A点的PZT膜51中未检测出Ir,仅从B点的PZT膜51/Ir膜50b的界面附近以及C点的Ir膜50b中检测出Ir,未发现Ir从Ir膜50b向PZT膜51内部(A点)的扩散。
根据图28可知,从C点的Ir膜50b仅检测出Ir(Si除外),可以说IrOx膜在形成PZT膜时完全被还原了。因此,若控制IrOx膜的形成条件,则在采用MOCVD法形成PZT膜时,能够将该IrOx膜被完全还原为结晶粒径小的Ir膜,由此能够大幅提高PZT膜的取向性。
进而,将调查晶片面内的取向分布和晶片间的偏差的结果示于图29以及图30中。
图29是表示多个晶片的PZT(111)面的积分强度的图,图30是表示多个晶片的PZT(222)面的取向率的图。
在此,对25个晶片连续形成Ir膜、IrOx膜以及PZT膜。此时,基于上述见解,在186sccm的氩气与14sccm的氧气的混合气体环境(氧气比率7%)中,以形成温度60℃、溅射功率0.5kW、形成速度1.6nm/秒的条件,形成膜厚30nm的IrOx膜。另外,PZT膜是以上述图5所示形成第一PZT膜时的条件形成。并且,使用X射线衍射装置调查各晶片的PZT膜的结晶结构。
根据图29可知,晶片的中心部以及右部的各PZT(111)面的积分强度在25个晶片相互之间的偏差非常小,在连续形成PZT膜的情况下也获得了良好的再现性。根据图30可知,晶片的中心部以及右部的各PZT(222)面的取向率的差异非常小,其值均为94%以上,另外,各晶片之间的PZT(222)面的取向率的差异也非常小。
如上所述,根据该第一实施方式的FeRAM的形成方法,可获得取向性良好且抑制了偏差的铁电电容器,能够稳定地形成高性能且高可靠性的FeRAM。
接着,对第二实施方式进行说明。另外,在该第二实施方式的说明中,对与上述第一实施方式中所述的构件相同的构件标注同一附图标记。
图31是第二实施方式的直至进行到胶膜以及W插件的形成后的主要部分剖面示意图。
在上述第一实施方式中,如图2所示,在胶膜18以及W插件19的形成阶段,首先在第二层间绝缘膜17形成接触孔,然后,在该第二层间绝缘膜17的整个面上形成Ti膜、TiN膜以及W膜,并采用CMP法对其进行研磨(过度研磨)以使第二层间绝缘膜17露出。然后形成了基底导电膜20和抗氧化膜21。
但是,在进行所述研磨时,如图31所示,有时在W插件19上会形成凹部60而使研磨后的表面不平坦。在形成了该凹部60的情况下,其深度为20nm~50nm左右,会对之后形成的下部电极、PZT膜的取向性造成较大的影响。因此,在该第二实施方式中,加厚了所述研磨后形成的基底导电膜20,由此埋入该凹部60。
在该情况下,首先,在进行用于形成胶膜18和W插件19的研磨后,对形成有凹部60的表面进行NH3等离子处理。该NH3等离子处理可采用与所述第一实施方式中所述的相同条件进行。
图32是第二实施方式的基底导电膜形成工序的主要部分剖面示意图。
NH3等离子处理后,例如,使用将被处理晶片与靶之间的距离设定为60mm的溅射装置,在0.15Pa的氩气环境中,基板温度为20℃的条件下,施加2.6kW的溅射功率35秒钟,由此在整个面形成沿(002)面优先取向的膜厚100nm的Ti膜。并且,在氮气环境中,进行650℃、60秒的RTA处理,由此形成由在(111)面优先取向的TiN膜构成的基底导电膜20。另外,在此基底导电膜20的膜厚为100nm左右,但根据凹部60的深度等,可以适当地将膜厚设定在100nm~300nm的范围。另外,在此基底导电膜20为TiN膜,但也可以由W膜、Poly-Si膜以及Cu膜等形成。
在刚刚形成基底导电膜20时,由于凹部60的存在,在基底导电膜20表面也形成有凹部,因而续基底导电膜20的形成,采用CMP法来研磨该基底导电膜20的表层部。由此,经过所述研磨后,可获得抑制了凹部60的影响而平坦的基底导电膜20表面。另外,基底导电膜20的研磨例如使用了Cabot Microelectronics Corporation制的SSW2000。另外,研磨后的基底导电膜20的膜厚为50nm~100nm,优选为50nm。
如此地,若对基底导电膜20的表层部进行研磨时,研磨后的基底导电膜20表面附近的结晶容易发生应变。该应变对此后形成的下部电极、PZT膜的取向性仍产生较大的影响。为此,例如对研磨后的基底导电膜20表面实施与上述同样的NH3等离子处理。由此,能够消除研磨后的基底导电膜20表面附近的结晶上产生的应变。
通过至此为止的工序,可形成如图32所示的状态。
图33是第二实施方式的FeRAM的主要部分剖面示意图。
如上所述地进行到研磨以及NH3等离子处理以后,实施如所述第一实施方式同样的流程。
即,首先,在该基底导电膜20上形成抗氧化膜21。然后,形成Ir膜30、IrOx膜31(还原为Ir膜31a)、PZT膜32和上部电极33,并进行它们的图案成形,进而,进行下层的抗氧化膜21以及基底导电膜20的图案成形。然后,形成第一ALO膜41、第二ALO膜42、第三层间绝缘膜43、阻挡膜44、第四层间绝缘膜45、胶膜46a、46b以及W插件47a、47b,形成布线48,从而形成第一层的布线层。由此,获得了图33所示的结构。
之后,同样地形成第二层以后的布线层,完成FeRAM。
在此,对使用该第二实施方式所述的方法而形成的FeRAM的电特性的调查结果进行说明。
在此,在Ir膜上以不同的条件形成IrOx膜(非结晶或微结晶)后,进行PZT膜以及上部电极的形成,从而形成了铁电电容器。另外,在Ir膜上未形成IrOx膜,而进行PZT膜以及上部电极的形成,从而形成了铁电电容器。在形成IrOx膜时,在氧气比率分别为5%、6%和7%的各环境中,以形成温度60℃、溅射功率0.5kW和形成速度1.6nm/秒的条件,形成膜厚30nm的IrOx膜。Ir膜、PZT膜和上部电极分别以所述第一实施方式的图3、图5和图6的工序中所例示的条件来形成。在形成各铁电电容器后,直至形成第五层的布线层,并测定该铁电电容器的电特性。将结果示于图34~图37中。
图34~图36是表示转换电荷量的测定结果的图,图37是表示漏电流密度的测定结果的图。
图34表示的是,对于以上述规定条件在Si基板上独立地形成50个平面尺寸50μm×50μm的铁电电容器的情况(离散型);以及对在Si基板上形成50个单元区域,而所述单元区域是以上述规定条件密集地形成5152个平面尺寸0.7μm×0.7μm的铁电电容器而成的情况(单元阵列型),测定外加电压1.8V时的转换电荷量的结果。
根据图34可知,与形成有IrOx膜的情况(氧气比率为5%、6%和7%)相比,在未形成IrOx膜的情况下(W/OIrOx),其离散型和单元阵列型的转换电荷量均较低。如上所述,在未形成IrOx膜的情况下,有助于极化反转的PZT(111)面的取向较弱,这样降低了铁电电容器的转换电荷量。另一方面,在形成有IrOx膜的情况下,进一步提高PZT(111)面的取向,从而使铁电电容器的转换电荷量变大。
另外,若比较IrOx膜形成时的氧气比率5%、6%和7%的条件,可确认铁电电容器的转换电荷量在氧气比率为6%和7%时,比氧气比率为5%时高一些的倾向。
另外,图35和图36表示改变外加电压而测定铁电电容器的转换电荷量的结果。图35是在离散型所获得的结果、图36是在单元阵列型所获得的结果。
由图35以及图36可知,不管是离散型还是单元阵列型,在达到其饱和电压之前,形成有IrOx膜(氧气比率5%、6%、7%)时的铁电电容器的转换电荷量均超过未形成IrOx膜(W/OIrOx)时的铁电电容器的转换电荷量。另外,与未形成IrOx膜的情况相比,在以氧气比率分别为5%、6%和7%的条件形成IrOx膜的情况下,低电压区域的梯度更大。若以规定条件形成IrOx膜来提高PZT膜的取向性,则铁电电容器的转换电荷量与外加电压的关系也变得良好,特别有利于低电压动作。
另外,图37表示单元阵列型的铁电电容器的外加电压与漏电流密度之间的关系。根据图37,可确认在形成有IrOx膜时(氧气比率5%、6%、7%)与未形成IrOx膜时(W/OIrOx)的铁电电容器的漏电流密度不存在有大的差异。未发现以规定条件形成IrOx膜对铁电电容器的漏电流密度的影响。
根据如上所述的第二实施方式的FeRAM的形成方法,能够获得平坦、取向性良好且抑制了偏差的铁电电容器,并能够稳定地形成高性能和高可靠性的FeRAM。
接着,对第三实施方式进行说明。另外,在该第三实施方式的说明中,对与所述第二实施方式的构件相同的构件标注相同的附图标记。
图38是第三实施方式的FeRAM的主要部分剖面摸式图。
在所述第二实施方式中,如图32所示,在对基底导电膜20进行研磨后,形成为第二层间绝缘膜17、胶膜18以及W插件19全部被基底导电膜20覆盖的状态。
与此相对,在该第三实施方式中,对基底导电膜20进行研磨直到使第二层间绝缘膜17露出,如图38所示,在该研磨后,形成为只有W插件19的凹部60被基底导电膜20埋入的状态。之后的工序可以按照与所述第二实施方式同样的流程来实施。
根据该第三实施方式的FeRAM的形成方法,也与所述第二实施方式同样能够获得平坦的、取向性良好且抑制了偏差的铁电电容器。
接着,对第四实施方式进行说明。另外,在该第四实施方式的说明中,对与上述第一实施方式中所述的构件相同的构件标注同一附图标记。
图39是第四实施方式的FeRAM的主要部分剖面示意图。
该第四实施方式的FeRAM是,通过基底导电膜20以及抗氧化膜21在胶膜14a和W插件15a上形成铁电电容器,在该铁电电容器上直接形成有布线72,这一点与所述第一实施方式的FeRAM不同。这样的FeRAM可如下所述地形成。
首先,与所述第一实施方式相同地直至形成第一层间绝缘膜13后,在其上形成与第一源极/漏极区域10a相连接的胶膜14a以及W插件15a。并且,在形成有胶膜14a和W插件15a的第一层间绝缘膜13上,形成基底导电膜20和抗氧化膜21。接着,形成Ir膜30、IrOx膜31(还原为Ir膜31a)、PZT膜32和上部电极33,并进行这些膜的图案成形,且进行下层抗氧化膜21和基底导电膜20的图案成形。然后,形成第一、第二ALO膜41、42以及第三层间绝缘膜43,进而,形成直通第二源极/漏极区域10b的接触孔,从而形成胶膜70以及W插件71。并且,形成直通铁电电容器的上部电极33的接触孔后,例如依次层叠TiN/Ti层叠膜72a、AlCu合金膜72b和TiN/Ti层叠膜72c,以形成布线72。
根据该第四实施方式的FeRAM的形成方法,也与所述第一实施方式同样地,能够形成高性能且高可靠性的FeRAM。
以上,对第一~第四实施方式进行了说明,但所述的铁电电容器的形成原理,除了适用于例示的采用堆叠结构的FeRAM以外,同样能够适用于采用平面结构的FeRAM中。
以上仅仅是阐明了本发明的原理。进而,对本领域技术人员来说还可以采用多种变形、变更的实施方式,本发明不只限定于如上所示、所说明的正确构成以及应用例,而所对应的所有变形例以及同等物视为归属于所附加的权利要求及其同等物表示的本发明的范围内。

Claims (1)

1.一种半导体装置的制造方法,其是具有铁电电容器的半导体装置的制造方法,其特征在于,包括:
形成下部电极的工序;在所述下部电极上形成铁电膜的工序;以及在所述铁电膜上形成上部电极的工序,
其中,所述形成下部电极的工序具有:
形成第一金属膜的工序;以及在所述第一金属膜上以10~100℃的温度形成非结晶或微结晶的金属氧化膜的工序,
所述形成铁电膜的工序具有还原所述金属氧化膜以形成结晶粒径小于所述第一金属膜的结晶粒径的第二金属膜且在所述第二金属膜上形成所述铁电膜的工序。
CN2011100215175A 2007-06-14 2007-06-14 半导体装置的制造方法以及半导体装置 Active CN102117739B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100215175A CN102117739B (zh) 2007-06-14 2007-06-14 半导体装置的制造方法以及半导体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100215175A CN102117739B (zh) 2007-06-14 2007-06-14 半导体装置的制造方法以及半导体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2007800532641A Division CN101681883B (zh) 2007-06-14 2007-06-14 半导体装置的制造方法以及半导体装置

Publications (2)

Publication Number Publication Date
CN102117739A CN102117739A (zh) 2011-07-06
CN102117739B true CN102117739B (zh) 2012-11-14

Family

ID=44216435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100215175A Active CN102117739B (zh) 2007-06-14 2007-06-14 半导体装置的制造方法以及半导体装置

Country Status (1)

Country Link
CN (1) CN102117739B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293510A (en) * 1990-04-24 1994-03-08 Ramtron International Corporation Semiconductor device with ferroelectric and method of manufacturing the same
CN1674286A (zh) * 2004-03-26 2005-09-28 精工爱普生株式会社 铁电存储器元件及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293510A (en) * 1990-04-24 1994-03-08 Ramtron International Corporation Semiconductor device with ferroelectric and method of manufacturing the same
CN1674286A (zh) * 2004-03-26 2005-09-28 精工爱普生株式会社 铁电存储器元件及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2002-110935A 2002.04.12

Also Published As

Publication number Publication date
CN102117739A (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
CN101681883B (zh) 半导体装置的制造方法以及半导体装置
JP5211558B2 (ja) 半導体装置の製造方法
CN101627470B (zh) 半导体器件及其制造方法
JP4884104B2 (ja) キャパシタを含む半導体装置及びその製造方法
CN101641782B (zh) 半导体器件及其制造方法
US8629487B2 (en) Semiconductor device and method of manufacturing same
JP5211560B2 (ja) 半導体装置の製造方法および半導体装置
CN102117739B (zh) 半导体装置的制造方法以及半导体装置
CN102136478B (zh) 半导体装置的制造方法以及半导体装置
US6455328B2 (en) Method of manufacture of a capacitor with a dielectric on the basis of strontium-bismuth-tantalum
JP2009105223A (ja) 半導体装置及びその製造方法
JP5277657B2 (ja) 半導体装置及びその製造方法
JP4971740B2 (ja) 半導体装置の製造方法
JP5326256B2 (ja) 半導体装置の製造方法
JP5007723B2 (ja) キャパシタを含む半導体装置及びその製造方法
JP5200581B2 (ja) 半導体装置及びその製造方法
JP5104850B2 (ja) 半導体装置の製造方法
JP2007149952A (ja) 強誘電体キャパシタの形成方法および半導体装置の製造方法
JP2010171456A (ja) 強誘電体キャパシタ及びその製造方法、並びに半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200807

Address after: Kanagawa Prefecture, Japan

Patentee after: Fujitsu semiconductor storage solutions Co., Ltd

Address before: Yokohama City, Kanagawa Prefecture, Japan

Patentee before: Fujitsu Semiconductor Ltd.

TR01 Transfer of patent right