CN102115662A - 替代二氟一氯甲烷用新型环保制冷剂组成物 - Google Patents

替代二氟一氯甲烷用新型环保制冷剂组成物 Download PDF

Info

Publication number
CN102115662A
CN102115662A CN2010101221253A CN201010122125A CN102115662A CN 102115662 A CN102115662 A CN 102115662A CN 2010101221253 A CN2010101221253 A CN 2010101221253A CN 201010122125 A CN201010122125 A CN 201010122125A CN 102115662 A CN102115662 A CN 102115662A
Authority
CN
China
Prior art keywords
refrigeration agent
refrigerant
hfc
constituent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010101221253A
Other languages
English (en)
Other versions
CN102115662B (zh
Inventor
尹明和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEILONGJIANG TAIKE CHEMICAL INDUSTRY Co Ltd
PUYANG CITY ZHONGWEI FINE CHEMICAL CO Ltd
Original Assignee
HEILONGJIANG TAIKE CHEMICAL INDUSTRY Co Ltd
PUYANG CITY ZHONGWEI FINE CHEMICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEILONGJIANG TAIKE CHEMICAL INDUSTRY Co Ltd, PUYANG CITY ZHONGWEI FINE CHEMICAL CO Ltd filed Critical HEILONGJIANG TAIKE CHEMICAL INDUSTRY Co Ltd
Priority to CN 201010122125 priority Critical patent/CN102115662B/zh
Publication of CN102115662A publication Critical patent/CN102115662A/zh
Application granted granted Critical
Publication of CN102115662B publication Critical patent/CN102115662B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种替代二氟一氯甲烷(R-22)用新型环保制冷剂,制冷剂组成物由碳氢系的丙烷(R-290)70~99kg、丙烯(R-1270)1~30kg,为了做近共沸再加0.5~1kg的添加剂-六甲基硅油组成,成为臭氧层破坏指数(ODP)为0,其全球变暖潜能值(GWP)为3的近共沸混合制冷剂。

Description

替代二氟一氯甲烷用新型环保制冷剂组成物
技术领域:本发明涉及一种替代二氟一氯甲烷(R-22)用新型环保制冷剂组成物。
背景技术
制冷剂(Refrigerant)是指冷冻循环系统的启动流体,从低温物体夺热到高温的物体之总称,主要使用价格低廉,化学上稳定,效率好的氯氟碳(Chloro fluorocarbon,以下称‘CFC’)和氟氯烃(Hydrochloro fluoro carbon,以下称‘HCFC’)及氟碳(Hydro fluorocarbon以下称‘HFC’)。
但是CFC和HCFC引起的平流层内臭氧层破坏成为了全球环境问题,因此平流层内破坏臭氧层的CFC和HCFC的生产和使用受到了1987年通过的蒙特利尔议定书的限制。所以全世界大部分国家都想使用臭氧层破坏指数(ODP)为0.0的替代制冷剂。
而且京都议定书(Kyoto Protocol)还将地球臭氧层破坏指数为0的HFC也规定到了全球变暖物质(GWP=1,430)限制项目中。不管什么物质, 要成为原有制冷剂的替代品,首先必须具备与原有制冷剂类似的性能系数(Coefficient of performance,C.O.P),发挥与原有制冷剂类似的冷冻效果,并要具备与原有制冷剂类似的蒸气压,从而提供类似的容积(Volumetric capacity,VC)。但若以单纯物质替代原有制冷剂,由于其容积不同,因此需要更换压缩机或大大改造原有凝缩器或蒸发器,并且很难获取与原有制冷剂类似的性能系数。
能够解决此问题之一就是利用混合制冷剂。混合制冷剂的特性是帮助配合使性能系数(COP)类似于原有制冷剂的同时,具备与原有制冷剂类似的容积(VC)而不需要大大改造压缩器。若具备此条件,厂家不需要耗损压缩器更换费用及附加费用。
混合制冷剂在等压状态发生蒸发或凝缩时,蒸发温度或凝缩温度像纯制冷剂保持一定共沸混合制冷剂(Azeotropes),还有发生蒸发就蒸发温度会上升而发生凝缩就凝缩温度会降低的非共沸混合制冷剂(Non Azeotropic Refrigerant Mixtures,NARMs)。这样非共沸混合制冷剂的特性指‘温度滑翔现象’(Gliding Temperature Phenomenon),蒸发开始点和结束点之间的温差叫‘温度滑翔差’(GlidingTemperature Difference,GTD),上述GTD根据组成混合制冷剂的纯物质的种类和组成,其GTD值变化较大。
因此最近非共沸(NonAzeotropicRefrigerantMixtures)混合制冷剂中开发GTD未满3℃的近共沸混合制冷剂(NearAzeotropicRefrigerant Mixtures)后,作为制冷剂使用的试图较频繁,过去几年作为CFC和HFC及HCFC的替代物提出了很多种类的混合制冷剂。但是几种物质包含了蒙特利尔议定书禁止使用的HCFC为组成成分,因此长期观点来看不适合替代物质。
迄今美国杜邦公司开发了不破坏臭氧层(ODP=0),变暖指数较低的(GWP=1,300)HFC用于汽车及冰箱,但是这也不能成为长期替代物质,还被京都协定书列为限制对象。最近美国杜邦开发了叫HFO-1234yf的产品以高价推广,此产品也是可燃性产品,但可用做汽车或冰箱用制冷剂。
并且由京都协定书禁止使用的HFC组成,长期观点来看是不适合的替代物。还有美国一家公司(AllaidSignal Inc.)公司等开发销售叫R-410A的二元混合制冷剂(50重量%二氟甲烷R32/50重量%R125),但这制冷剂存在着其蒸气压比原有HCFC高出60%而必须改造压缩器而且系统的压力高,导致用于凝缩器的材质强度也需要提高的问题。
分析近期韩国其它公司发明的替代R-22用新型混合组成物的专利中,对地球温暖化的影响(GWP)和温度差(GTD)的特性如下:
韩国国内(以下相同)登记专利公报注册号码第10-0405189号上,二氟甲烷(CH2F2,以下’HFC-32’),1,1,1,2-四氟乙烷(CH2FCF3,以下’HFC-134a’)及1,1,1,2,3,3,3-七氟丙烷(CF3CHFCF3,以下’HFC-227ea’)的混合物上混合异丁烷(CH(CH3)2CH3,以下’R-600a’),1,1,1,2,3,3-六氟丙烷(CHF2CHFCF3,以下’HFC-236ea’)及丁烷(C4H10,以下’R-600’)中选择的一个成分或HFC-32,1,1-二氟乙烷(CH3CHF2,以下’HFC-152a’)及HFC-227ea的混合物上混合R-600a,HFC-236ea及R-600中选择一个成分后的四元混合制冷剂组成物,作为迄今使用的二氟一氯甲烷(CHClF2:以下’HCFC-22’)的替代制冷剂使用,没有破坏臭氧层,记载着可以使用为家庭用冰箱及汽车空调等的制冷剂物质的混合制冷剂组成物。
在同公报注册号码第10-305080号上公开了含有以二氟甲烷(CH3F2,HFC-32)为第1成分,以1,1,1-三氟乙烷(CH3CF3,HFC-143a)为第2成分,由环丙烷(C3H6,RC-270),1,1,1,2,3,3,3-七氟丙烷(CF3CHFCF3,HFC-227ea),1,1,1,2,2-五氟丙烷(CH3CF2CF3,HFC-245cb),1,1,1,2,3,3-六氟丙烷(CHF2CHFCF3,HFC-236ea),丁烷(C4H10,R-600),四氟乙基二氟甲基醚(CHF2OCHF2,HFE-134)及五氟甲乙醚(CF3CF2OCH3,HFE-245)组成群中选择的一个成分为第3成分的 HCFC-22的制冷剂混合物,
在同公报注册号码第10-400345号上记载了由二氟甲烷(CH2F2,以下HFC-32)和1,1,1-三氟乙烷(CH3CF3,以下HFC-143a)和1,1-二氟乙烷(CH3CHF2,以下HFC-152a)和1,1,1,2,3,3,3-七氟丙烷(CF3CHFCF3,以下HFC-227ea),异丁烷(CH(CH3)2CH3,R-600a),1,1,1,2,3,3-六氟丙烷(CHF2CHFCF3,以下HFC-236ea)及丁烷(C4H10,以下R-600)组成群中选择的一个化合物的制冷剂组成物,
在同公报注册号码第10-305905号上记载了含有以二氟甲烷(CH 3F 2,HFC-32)为第1成分,作为第2成分及第3成分含有全氟丙烷(C 3 F8,PFC-218)和1,1-二氟乙烷(CH 3 CHF 2,HFC-152a)或环丙烷(C 3H 6,RC-270)和1,1,1,2,2-五氟丙烷(CH 3 CF 2 CF 3,HFC-245cb)或丁烷(C 4 H 10,R-600)和四氟乙基二氟甲基醚(CHF 2 OCHF 2,HFE-134)的HCFC-22替代用制冷剂的组成物,
在同公报注册号码第10-0333503号上公开了含有的第1成分为二氟甲烷(CH 3 F 2,HFC-32),第2成分为1,1,1-三氟乙烷(CH 3 CF 3,HFC-143a),由环丙烷(C 3 H 6,RC-270),1,1,1,2,3,3,3-七氟丙烷(CF 3 CHFCF 3,HFC-227ea),1,1,1,2,2-五氟丙烷(CH 3 CF 2 CF 3,HFC-245cb),1,1,1,2,3,3-六氟丙烷(CHF 2 CHFCF 3,HFC-236ea),丁 烷(C 4 H 10,R-600),四氟乙基二氟甲基醚(CHF 2 OCHF 2,HFE-134)及五氟甲乙醚(CF 3 CF 2 OCH 3,HFE-245)组成群中选择的一个成分为第3成分的HCFC-22的制冷剂混合物,
在同公报注册号码第10-0682828号上记载了作为R-22替代制冷剂,由二氟甲烷(CH2 F2,以下’HFC-32’),1,1,1,2-四氟乙烷(CH2FCF3,以下’HFC-134a’),三氟碘甲烷(CF3I,以下″13I1)组成的二氟一氯甲烷替代(三元)共沸性混合制冷剂的组成物,
在同公报注册号码第10-0492172号上记载了关于选择组合丙烯,1,1,1,2-四氟乙烷,1,1-二氟乙烷,二甲醚及异丁烷后组成的混合制冷剂及使用此制冷剂的冷冻系统。根据本发明的良好例子的混合制冷剂公开了含有R-1270(丙烯)30及70重量部,R-134a(1,1,1,2-四氟乙烷)1及69重量部,R-152a(1,1-二氟乙烷)1及69重量部的制冷剂混合物,
国内登记专利公报公开号码第10-2005-0057852号上公开了二氟甲烷(CH2F2,以下HFC-32)和|1,1,1-三氟乙烷(CH3CF3,以下HFC-143a)和环丙烷(C3H6,以下RC-270)或丙烷(C3H8,以下R-290)中选择的一个化合物组成的制冷剂的组成物质。
但是上述专利中的混合制冷剂组成物因蒸发器内的温度差(GTD) 有5~7度以上,会降低冷却效果,并且各温暖化指数‘HFC-32’为675,‘HFC-134a’为1,430,’HFC-227ea’为3,320,’HFC-236ea’为9,810,’HFC-152a’为124的物质和温暖化指数最低的,指数为3的R-600或R-600a中的任何一种物质混合,也无法制成符合全世界达成协议的GWP为150以下的制冷剂。因此,此类专利的制冷剂也属于受限对象。
韩国国内(以下相同)公报注册号码第10-0492169号上公开了由冷冻/空调用混合制冷剂的R-1270(丙烯)1及99重量部,R-290(丙烷)98重量部以下,R134a(1,1,1,2-四氟乙烷)1及70重量部组成的混合制冷剂,
在同公报注册号码第10-0540286号上记述了使用了由R-134a(1,1,1,2-四氟乙烷)1及78重量%,RE-170(二甲醚)1及78重量%,R-600a(异丁烷)21及98重量%组成的混合制冷剂的冷冻系统,
在同公报注册号码第10-0571358号上记载了由甲烷系制冷剂成分的二氟甲烷(CH2F2,以下R-32) 
Figure GSA00000055185100071
丙烷(CH3CH2CH3,以下R-290),丙烯(CH3CH=CH2,以下R-1270)混合组成,其组成比是以甲烷系制冷剂成分的二氟甲烷(CH2F2)5~40重量%和丙烷(CH3CH2CH3)35~70重量%及丙烯(CH3CH=CH2)25~60重量%对全部100重量%进行混合组成 为特点而成为低温用替代混合制冷剂。
在同公报注册号码第10-0305079上公开了可以替代HCFC-22使用的制冷剂混合物的组成上,包含以二氟甲烷(CH2F2,HFC-32)的40及96重量%为第1成分,其第2成分和第3成分是由环丙烷(C3F6,RC-270)和1,1,1,2,2-五氟丙烷(CH3CF2CF2,HFC-245cb)及丁烷(C4 H10,R-600)和四氟乙基二氟甲基醚(CHF2OCHF2,HFE-134)组成群中选择后,各以1及40重量%及4及40重量%包含的氟化合物为制冷剂的混合物的内容。
在同公报注册号码第10-0540284号上记载了关于选择组合丙烷,1,1,1,2-四氟乙烷,二甲醚(以下DME)及异丁烷后组成的混合制冷剂及利用此制冷剂的冷冻系统。根据本发明的良好例子的混合制冷剂公开了含有R-290(丙烷)30及98重量%,R-134a(1,1,1,2-四氟乙烷),1及70重量%,RE-170(二甲醚)1及70重量%的制冷剂混合物,
在同公报注册号码第10-540280号上记载了关于选择组合丙烯,1,1,1,2-四氟乙烷,1,1-二氟乙烷,二甲醚及异丁烷后组成的混合制冷剂及利用此制冷剂的冷冻系统。根据本发明的良好例子的混合制冷剂记载了由R-1270(丙烯)30及70重量%,R134A(1,1,1,2-四氟乙烷)1及69重量%,R-152a(1,1-二氟乙烷)1及69重量%组成的制冷剂组 成物。
此类发明专利中的制冷剂地球温暖化指数比较低,但温度差(GTD)为5~7度,蒸发器上结冰,大大降低冷却效果。并且要提供类似的容积(Volumetric capacity,VC),但因是非共沸制冷剂,必然要更换压缩机或大大改造原有凝缩器或蒸发器,何况很难获取与原有制冷剂类似的性能系数,所以存在不可避免地要修改系统的问题。
发明内容:
本发明的目的是提供一种全球变暖指数值(GWP)更低的、节能效果好的,用来替代二氟一氯甲烷(R-22)的新型环保制冷剂。
本发明的技术方案:混合制冷剂的组成成分为:70-99kg碳氢系的丙烷(R-290),1-30kg丙烯(R-1270),0.5-1kg的添加剂六甲基硅油。
为达到上诉目的,本发明混合各组成成分,做到了近共沸物质,其臭氧层破坏指数(ODP)为0,全球变暖潜能值(GWP)为3的近共沸混合制冷剂(Near Azeotropic Refrigerant Mixtures)。
根据上述组成的本发明的混合制冷剂组成物及使用这组成物的冷冻系统。
1)由于组成混合制冷剂物质的臭氧层破坏指数为0.0,发生制冷剂遗 漏或废弃制冷剂组成物时,防止全球臭氧层破坏的效果较明显.
2)可以降低为比原有R-22(1,810),R-407C(1,800),R-134a(1,430)的全球变暖潜能值更低的(GWP)3。
3)根据本发明的混合制冷剂组成物是近共沸的混合制冷剂,随着相变化不会发生组成上的变化,所以使用纯制冷剂一样可以稳定使用冷冻系统。
4)遗漏制冷剂组成物时的组成分离现象也不会发生冷冻效果的变动,若遗漏时,只需填充可以使用。
5)使用本发明的混合制冷剂组成物可以改善冷冻/空调的热效率,还具有与原有润滑油PAG油之间的互换性。
6)使用本发明的制冷剂组成物提高冷冻效果5~10%以上,其节能效果很好。
本发明的‘制冷剂组成物’意味着两种以上的不同制冷剂的组合,还包括制冷剂组成物以外的添加剂附加情况。
由于一般制冷剂组成物的制冷剂之间的沸点(Boiling Point)不同,不会混合导致互相分离而发生温度斜坡,开发该温度斜坡为最低1℃以内的近共沸性混合制冷剂组成物是非常困难。
在本发明,为了解决温度斜坡的问题,本发明人通过选择组合的 混合制冷剂上添加六甲基硅油从而能够获取最小化上述温度斜坡的近共沸性混合制冷剂组成物。
由于本发明的混合制冷剂组成物是臭氧层破坏指数(ODP)为0.0,蒸发时温度斜坡为1℃以内的近共沸性混合制冷剂组成物,像原有纯制冷剂可以使用。还具有接近R-22或R-407C的性能系数(COP)和容积(VC)的值,所以不需要更换冷冻系统的任何零件,可以替代既有使用的R-22或R-407C等制冷剂。
为了根据本发明开发近共沸性替代混合制冷剂组成物,本发明人使用了负责冷冻/空调性能的美国标准研究所(National Institute ofStandards and Technology)开发的CYCLE-D程序。通过程序,以组成冷冻/空调的因素为例,解释了热交换器及压缩器等的热力学及热传递,最终使用了所有组合。决定程序的准确度的重要因素之一就是制冷剂组成物的物性值。在本程序利用了在美国,日本做标准的加纳汉斯大林-大(人名:Carnahan-Starling-De Santis;CSD)制冷剂状态方程式,对多种制冷剂计算了生成气泡的泡点(Bubble Point)和气体凝缩后生成的露点(Dew Point)后,做了近共沸性三元制冷剂组成物的温度斜坡线图。CSD制冷剂状态方程式在美围标准研究所(NationalInstitute of Standards and Technology)开发,其准确性及适用性 已验证的全世界冷冻/空调相关的企业,研究所,大学广泛使用的程序。为了做混合制冷剂组成物的开发及实行,尽量使用实际数据为输入数据。
本发明人判断替代制冷剂组成物的臭氧层破坏指数(ODP)必须0.0且全球变暖潜能值(GWP)要尽量较低,所以利用上述程序,为了做近共沸的混合制冷剂组成物在丙烷(R-290)和丙烯(R-1270)组成的混合制冷剂附加了添加剂六甲基硅油后,开发了混合制冷剂组成物。
即,不用担心破坏臭氧层,温度斜坡(TG)为1℃以内,其全球变暖潜能值(GWP)为3的近共沸性混合制冷剂组成物。
在下面参考附加的图1,详细说明随着本发明的良好实施例的近共沸混合制冷剂组成物。但,如下实施例只举例本发明,本发明的内容不是被实施例限定。
附图说明
图1本发明使用的普通冷冻/空调机示意流程图
图2通过本发明的REFPROP8.0程序获取的二元混合制冷剂组成物的温度斜坡线图
图3近共沸混合制冷剂的压力-焓(P-h)线图
图4R-22压力-焓(P-h)线图
图5R-433B压力-焓(P-h)线图
图6R-433C压力-焓(P-h)线图
图7表示″R-433B″第1最佳条件制冷剂的液体及气体组成分离实验
图8表示″R-433C″第2最佳条件制冷剂的液体及气体组成分离实验
图9表示“R-433B”第1最佳条件制冷剂的最佳组成在填充60%时,在-18.28℃发生漏液的组成分离实验结果。
图10表示以“R-433C”第2最佳条件制冷剂的最佳组成填充60%时,在-18.28℃发生漏液的组成分离实验结果。
图11表示以“R-433B”第1最佳条件制冷剂最佳组成填充15%时,在-18.28℃发生漏液的组成分离实验结果。
图12以“R-433C”第2最佳条件制冷剂最佳组成填充15%时,在-18.28℃发生漏液的组成分离实验结果。
图13R-22、R-407C和″R-433B″及″R-433C″替代制冷剂的冷冻性能比较表。
图14在蒸发器内制冷剂温度为7摄氏度,凝缩器内制冷剂温度为45摄氏度的试验条件下,添加剂性能及温度差(GTD)实验结果。
图15本发明中制冷剂组成物的全球温暖化指数(GWP)。
图16本发明中制冷剂组成物的最低可燃下线(LFL)。
具体实施方式:
实施例1
本实施例为第1最佳条件:
混合丙烷(R-290)95kg,丙烯(R-1270)4.9kg后,为了做近共沸混合制冷剂组成物,以添加剂附加了六甲基硅油0.1kg制作了制冷剂组成物。
实施例2
本实施例为第2最佳条件:
混合丙烷(R-290)75kg,丙烯(R-1270)24.9kg后,为了做近共沸混合制冷剂组成物,以添加剂附加了六甲基硅油0.1kg制作了制冷剂组成物。
实验例1(理论及实际温度斜坡试验)
图2表示通过本发明的REFPROP8.0程序,未加入添加剂获取的二元混合制冷剂组成物的温度斜坡线图。但为了组成本发明的目的之近共沸制冷剂组成物,附加添加剂后在如图1的试验装置中试验,得知如图3的结果,其温度斜坡成最小化。
实验例2(组成分离实验)
为了确认本发明的制冷剂组成物是近共沸,进行了组成分离实验。
本发明最佳填充组成为:
1)(R-290)95kg/(R-1270)4.9kg/(添加剂)0.1kg(以下″R-433B″)
2)(R-290)75kg/(R-1270)24.9kg/(添加剂)0.1kg(以下″R-433C″)
为进行上述最佳条件组成的分离试验,利用色谱仪(Gas Chromatograph)分析,得到了如图7、图8显示的结果,得知在液体和气体中也以相同的组成比例混合。
为了更加明确组成分离实验,UL2182标准要求在几种温度条件下,针对容器内填充60%液体制冷剂和填充15%时,通过组成分离解释,决定最坏的条件。因此本发明的制冷剂组成物在如下2种温度条件下进行了组成分离解释。
填充60%时:-18.28℃,25.0℃,54.4℃
填充15%时:-18.28℃,25.0℃,60.0℃
为进行上述最佳条件组成在填充60%和填充15%时的分离试验,利用色谱仪(Gas Chromato graph)分析,填充60%时的各结果如图9、图10表示,填充15%时的各结果如图11、图12表示,得知不管是填充60%还是15%,在液体和气体中混合的组成比例是相同的。
实验例3(性能试验)
图13比较了本发明制冷剂的″R-433B″及″R-433C″理论性能及与 R-22,R-134a之间的性能比较。
R-22,R-407C制冷剂广泛使用于家庭冰箱及汽车空调,但是目前被限制使用而进行替代制冷剂的开发。制冷剂对全球环境的影响不仅要考虑制冷剂本身的影响还要考虑启动系统而使用的电力时发生的二氧化碳的影响,此时使用总等价变暖指数(TEWI:total equivalentwarming impact)表示。按照此指数家庭空调被制冷剂的直接影响为4%,间接影响为96%,选择制冷剂的环节上空调效率是非常重要。
但是在氟利昂系列中比R-22优秀性能的纯制冷剂还没开发。
如下热力学性能比较上,蒸发器温度设为0℃,凝缩器的温度设为40℃,设为蒸发器出口和凝缩器出口上没有过热温度及过冷温度,压缩器出入口设为等熵过程。
备注:REF.APL.Con.:Means Low Back Pressure Conditions
凝缩器温度:40.0℃
蒸发器温度:-30.0℃
Sub cooled液体温度:30.0℃
Superheated气体温度:30.0℃
Figure GSA00000055185100161
美围标准研究所PEFPROP 8.0(Based on NIST,PEFPROP 8.0&NewDeveloped Refrigerant Program)特地通过(株)TechnoChem添加的新 版本进行了理论计算。
*COP:性能系数(Coefficient of performance,总冷冻效果/压缩器上施加的事情)
*全球变暖潜能值(GWP):3
在图4(R-22),图5(″R-433B″),图6(″R-433C″)表示各制冷剂的压力-焓线图。
通过图13得知,HFC系列制冷剂的原有R-22和R-407C其性能系数(COP)低于″″R-133B″及″R-433C″″,只有″″R-433B″及″R-433C″″的效率高于R-22及R-407C10%。
以TEWI(全部等价变暖指数)为准,性能比制冷剂本身的影响更重要,因此作为替代制冷剂″″R-433B″及″R-433C″″最适合。而且两个制冷剂组成物的压力比或压缩器吐出温度也非常接近。所以″″R-433B″及″R-433C″″没有臭氧层破坏指数(ODP),其GWP非常低的3,长期来看使用于R-22,R-407C的替代制冷剂也没问题。
实验例4(在蒸发器内制冷剂温度为7摄氏度,凝缩器内制冷剂温度为45摄氏度的试验条件下,添加剂性能及温度差(GTD)的实验结果。)
如图14,以不同的组成成分下加入添加剂实验,结果图中实施例1、2显示了最高性能系数(COP)12.9%和13.3%,特别是尽管是混合制冷剂,没有添加剂时如比较例1、2显示,其温度差(GTD)达到5.0~5.3摄氏度,但如实施例1、2结果显示,加入添加剂时蒸发器温度差只有0.1度,表明是近共沸制冷剂。因此得知,添加剂是制成近共沸制冷剂中不可缺少的。
实验例5(本发明中制冷剂组成物的全球温暖化指数(GWP))
如图15,根据不同组成成分显示了全球变暖潜能指,碳氢系列制冷剂的全球变暖潜能指都很低。实验条件:蒸发器制冷剂温度:7℃,凝
缩器制冷剂温度:45℃。
※COPr:冷冻性能系数(Coefficient of performance)
QE:蒸发器(冷切)容量(Evaporator capacity)
Tdis:压缩机吐出温度(Compressor discharge temperature)
COPrdiff:与R-22相比的冷冻性能系数差
QEdiff:与R-22相比的蒸发器(冷切)容量差
Tdisdiff:与R-22相比的压缩机吐出温度差
GTD:与R-22相比的蒸发器入、出口温度差(Glide TemperatureDifference)
实验例6(本发明中制冷剂组成物的最低爆发可燃下线(LFL))
如图16,不同组成成分下做可燃性试验(实验规格:ASTM-E-6812008),在加入添加剂的组成成分中,可燃性确保了平均50%以上的安全性。

Claims (1)

1.替代二氟一氯甲烷(R-22)用新型环保制冷剂组成物,其特征是:混合制冷剂的组成成分为:70-99kg碳氢系的丙烷(R-290),1-30kg丙烯(R-1270),0.5-1kg的添加剂六甲基硅油。
CN 201010122125 2010-03-11 2010-03-11 替代二氟一氯甲烷用新型环保制冷剂组成物 Expired - Fee Related CN102115662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010122125 CN102115662B (zh) 2010-03-11 2010-03-11 替代二氟一氯甲烷用新型环保制冷剂组成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010122125 CN102115662B (zh) 2010-03-11 2010-03-11 替代二氟一氯甲烷用新型环保制冷剂组成物

Publications (2)

Publication Number Publication Date
CN102115662A true CN102115662A (zh) 2011-07-06
CN102115662B CN102115662B (zh) 2013-07-17

Family

ID=44214588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010122125 Expired - Fee Related CN102115662B (zh) 2010-03-11 2010-03-11 替代二氟一氯甲烷用新型环保制冷剂组成物

Country Status (1)

Country Link
CN (1) CN102115662B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925248A (zh) * 2016-04-29 2016-09-07 成都蓉阳科技有限公司 一种用于替代二氟一氯甲烷的环保混合制冷剂
CN107746702A (zh) * 2017-10-31 2018-03-02 湖北瑞能华辉能源管理有限公司 一种替代r22的制冷剂及其制备方法和应用
CN110845997A (zh) * 2019-10-16 2020-02-28 珠海格力电器股份有限公司 一种热传递介质及适用于冷却器的组合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146122A1 (en) * 2008-04-04 2009-12-03 Dow Global Technologies Inc. Refrigerant composition
CN101649190A (zh) * 2009-09-03 2010-02-17 宁波博浪热能设备有限公司 一种替代r22的制冷剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146122A1 (en) * 2008-04-04 2009-12-03 Dow Global Technologies Inc. Refrigerant composition
CN101649190A (zh) * 2009-09-03 2010-02-17 宁波博浪热能设备有限公司 一种替代r22的制冷剂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925248A (zh) * 2016-04-29 2016-09-07 成都蓉阳科技有限公司 一种用于替代二氟一氯甲烷的环保混合制冷剂
CN107746702A (zh) * 2017-10-31 2018-03-02 湖北瑞能华辉能源管理有限公司 一种替代r22的制冷剂及其制备方法和应用
CN110845997A (zh) * 2019-10-16 2020-02-28 珠海格力电器股份有限公司 一种热传递介质及适用于冷却器的组合物

Also Published As

Publication number Publication date
CN102115662B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
EP2035524B1 (en) Refrigerant
AU2013244830B2 (en) Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene
US20190153282A1 (en) Low gwp heat transfer compositions
CN101796155A (zh) 含有二氟甲烷的组合物
KR100976448B1 (ko) 냉매 조성물
TW201439297A (zh) 低全球暖化潛勢(gwp)之熱傳導組合物
KR20150133769A (ko) 냉동을 위한 조성물 및 방법
KR20140050052A (ko) 디플루오로메탄, 플루오르화 에탄 및 1,3,3,3-테트라플루오로프로펜을 함유하는 저 gwp 열전달 조성물
CN101984013B (zh) 替代1,1,1,2-四氟乙烷用环保制冷剂组成物
WO2007099351A1 (en) Refrigerant composition
CN105189691A (zh) 用于有效加热和/或冷却并具有低气候变化影响的系统
AU2019378901A1 (en) Compositions
KR100976449B1 (ko) 냉매 조성물
CN102115662B (zh) 替代二氟一氯甲烷用新型环保制冷剂组成物
KR101139377B1 (ko) R-22 대체용 환경 친화적인 냉매조성물
KR100969257B1 (ko) 냉매 조성물
US20220154056A1 (en) Composition of fluoroolefin and fluoroalkane
US20130186115A1 (en) Low gwp heat transfer compositions
WO2002020689A1 (en) The composition of refrigerant mixtures for low back pressure condition
KR100682828B1 (ko) 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물
KR100696806B1 (ko) 프레온 대체를 위한 비가연성 혼합냉매 조성물
KR100969256B1 (ko) 냉매 조성물
KR100969258B1 (ko) 냉매조성물
WO2014031336A1 (en) Low gwp heat transfer compositions
KR100957043B1 (ko) 냉매 조성물

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130717

Termination date: 20210311