CN102095746A - Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof - Google Patents

Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof Download PDF

Info

Publication number
CN102095746A
CN102095746A CN2010105898408A CN201010589840A CN102095746A CN 102095746 A CN102095746 A CN 102095746A CN 2010105898408 A CN2010105898408 A CN 2010105898408A CN 201010589840 A CN201010589840 A CN 201010589840A CN 102095746 A CN102095746 A CN 102095746A
Authority
CN
China
Prior art keywords
coil
strip shaped
oblique strip
photoresist
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105898408A
Other languages
Chinese (zh)
Other versions
CN102095746B (en
Inventor
吴卫平
陆荣生
易红
倪中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN 201010589840 priority Critical patent/CN102095746B/en
Publication of CN102095746A publication Critical patent/CN102095746A/en
Application granted granted Critical
Publication of CN102095746B publication Critical patent/CN102095746B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and a manufacturing method thereof. The micro solenoid radio frequency coil comprises a bottom slanted-bar coil, left and right rows of bottom coils, cylindrical coils, a microfluid passage and a top slanted-bar coil, wherein the bottom slanted-bar coil and the left and right rows of bottom coils are positioned on an insulating substrate; the cylindrical coils are arranged on the top parts of the bottom coils; the mocrofluid passage is positioned between the left and right rows of bottom coils; the top slanted-bar coil is positioned above the microfluid passage; both ends of the bottom slanted-bar coil are respectively connected with the left and right rows of bottom coils in a staggered mode; both ends of the top slanted-bar coil are respectively connected with the cylindrical coils arranged on the top parts of the bottom coils in a staggered mode; and the inclination directions of the bottom slanted-bar coil and the top slanted-bar coil are opposite to each other. In the invention, the micro solenoid radio frequency coil is manufactured by a photoresist photoetching technology and a copper electroplating coil technology; the defect that a micro-scale solenoid radio frequency coil is difficult to wind is overcome; and the micro solenoid radio frequency coil has the advantages of high uniformity of a radio frequency magnetic field and the like and can be used for nuclear magnetic resonance detection of rare and precious samples.

Description

The miniature solenoid radio-frequency coil and the manufacture method thereof that are used for the microfluid magnetic resonance detection
Technical field
The present invention relates to a kind of radio-frequency coil that is used for the microfluid magnetic resonance detection, particularly uniform radio frequency miniature coils of solenoid type Distribution of Magnetic Field and manufacture method thereof.
Background technology
The nuclear magnetic resonance spectrum detection technique has non-destructive to sample, thereby is widely used in chemistry, biomedicine and material science.NMR RF coil can use the transmitting-receiving separate type or possess the coil of transceiver simultaneously, emission function is to be used for launch pulse sequence to encourage the magnetization vector of sample, and receiving function is to be used for receiving the free induction decay signal that excites spin and produce.Signal is carried out Fourier transform can obtain nuclear magnetic resonance spectrum figure, always obtain the one-tenth grading information of sample.According to different applications, general radio-frequency coil has solenoid coil, planar coil, saddle coil, birdcage coil, butterfly shaped coils and phase array coil etc.(Hoult, D.I.and R.E.Richards, SIGNAL-TO-NOISE RATIO OF NUCLEARMAGNETIC-RESONANCE EXPERIMENT.Journal of Magnetic Resonance, 1976.24 (1): p.71-85.) discussed in the document and compare the other types coil, solenoid has advantages such as high sensitivity, Distribution of Magnetic Field be even, so the nuclear magnetic resonance spectrum detection technique of conventional commercial usefulness is that the employing aperture is the probe of 5mm now, promptly on glass capillary, adopts and twine lead formation solenoid coil.Its sample detection limit is approximately 5 * 109mol, far is worse than other detection techniques such as Infrared spectroscopy, mass spectrophotometry etc.(Peck, T.L., R.L.Magin, and P.C.Lauterbur, DESIGN AND ANALYSIS OF MICROCOILS FOR NMRMICROSCOPY.Journal of Magnetic Resonance Series B, 1995.108 (2): p.114-124.) in the document during the about 100um of theoretical and experimental verification coil diameter, unit volume sample signal to noise ratio (S/N ratio) (S/N) is inversely proportional to coil diameter; During less than 100um, be inversely proportional to the square root of coil diameter, so occur the utilization miniature coils in a lot of document to improve sensitivity.But the winding method is difficult for realizing under microscale, thereby is difficult for making miniature solenoid coil.(Massin, C., et al., Planar microcoil-based microfluidic NMR probes.Journal ofMagnetic Resonance, 2003.164 (2): p.242-255.) document causes that numerous scholars pay close attention to, and tells about in the document based on the micro-example solution in the nmr probe detection microchannel of little planar spiral winding.Proposing the earliest little planar coil is applied to the nuclear magnetic resonance spectrum detection technique is document (Peck, T.L., et al., NMRMICROSPECTROSCOPY USING 100-MU-M PLANAR RF-COILS FABRICATEDON GALLIUM-ARSENIDE SUBSTRATES.Ieee Transactions on Biomedical Engineering, 1994.41 (7): p.706-709.).Sensitivity is low though plane micro coil has, the radio-frequency (RF) magnetic field lack of homogeneity, and below micron-scale, it can carry out the robotization mass production by little manufacturing photoetching technique of modern times; In addition, plane micro coil microfluid system easy and based on chip combines, so that operation microfluid and the integrated performance of increase.With Massin, the Ehrmann of the same research group of C., K. proposes utilization MEMS fabrication techniques solenoid coil and Helmholtz coils at 2006-2007, and applies it to the nuclear magnetic resoance spectrum detection of mammalian cell.
Domestic researcher such as Wang Ming, Li Xiaonan etc. number are in 200610164809.3,200710179309.1,200910081526.6 etc. in Chinese patent application, and document " receiving the design of the little detection of upgrading biological sample nuclear magnetic resonance. ", " based on the high Q value nuclear magnetic resonance plane micro coil of MEMS " with the high s/n ratio plane micro coil wait in design and manufacturing nuclear magnetic resonance miniature planar helical RF coil.What Chinese patent 200910091597.4 " a kind of nuclear magnetic resonance radio-frequency micro-coil and preparation method thereof " then related to is Helmholtz's type (saddle type) nuclear magnetic resonance radio-frequency micro-coil, but produce onesize radio-frequency (RF) magnetic field, the resistance of Helmholtz's type (saddle type) nuclear magnetic resonance radio-frequency micro-coil is bigger than miniature solenoid radio-frequency coil, thereby signal to noise ratio (S/N ratio) will be less relatively.
Summary of the invention
What the present invention will solve is that existing conventional microfluid detection is difficult for being fit to use micro-example to detect; Miniature planar spiral winding radio-frequency (RF) magnetic field is inhomogeneous and sensitivity is low; Miniature solenoid coil is difficult for using conventional winding manufactured; And producing onesize radio-frequency (RF) magnetic field, the resistance of Helmholtz's type (saddle type) coil has reduced problems such as signal to noise ratio (S/N ratio) greatly.
For solving the problems of the technologies described above, the invention provides a kind of miniature solenoid radio-frequency coil, being used for the nuclear magnetic resonance microfluid detects, this radio-frequency coil comprise the bottom oblique strip shaped coil that is positioned on the dielectric substrate, about two row's bottom coil, be arranged on the cylindrical solenoid at bottom coil top, about the microchannels of two rows between the bottom coil, and the top layer oblique strip shaped coil that is positioned at the microchannel top; The two ends of bottom oblique strip shaped coil respectively with about two row's bottom coil dislocation be connected, the two ends of top layer oblique strip shaped coil link to each other with the cylindrical solenoid dislocation that is arranged on the bottom coil top respectively, and the vergence direction of bottom oblique strip shaped coil and top layer oblique strip shaped coil is opposite.
Do signal to noise ratio (S/N ratio) of the present invention for carrying, above-mentioned bottom oblique strip shaped coil, bottom coil, cylindrical solenoid and top layer oblique strip shaped coil all adopt the Low ESR metal material to make, since copper not only the conductance height and cheap, corrosion stability is good, easily combine with integrated circuit, so coil method preferably copper.
Above-mentioned microchannel adopts glass capillary, and its cross sectional shape is preferably square, is used to place sample.
Because traditional silicon substrate mechanical property is more crisp and cost is expensive, therefore the dielectric substrate of stating of the present invention selects for use pyroceram or other stable on heating polymeric material that insulate to make, the insulation lining substrate that adopts previous materials to make has bio-compatibility, cost is low, and the capacitance to substrate that produces between the coil (substrate capacitance) is less, thereby and to the less power consumption penalty that reduces of the influence of the conduction current in the coil.
Above-mentioned bottom coil is identical with the every row's of cylindrical solenoid quantity, is n, and bottom oblique strip shaped coil is identical with the quantity of top layer oblique strip shaped coil, is n-1, and n is the natural number greater than 1.
Manufacture method of the present invention is mainly electroplated Coil technique based on photoresist photoetching technique and copper, specifically comprises the steps:
1, precipitation one deck photoresist on dielectric substrate;
2, settled photoresist is carried out the ultraviolet lithography irradiation, two row's grooves are filled the Low ESR metal material with plating mode again about formation in groove, two row's bottom coil about formation;
3, to about the photoresists of two rows in the middle of the bottom coil carry out photoetching, form the oblique strip shaped groove, in groove, fills the Low ESR metal material with plating mode then, formation bottom oblique strip shaped coil;
4, do not precipitate one deck photoresist again on the photoresist of photoetching in the bottom coil of having plated and bottom coil both sides;
5, the photoresist to step 4 precipitation carries out the ultraviolet lithography irradiation, forms cylindrical groove, fills the Low ESR metal material with plating mode in groove again, forms two organ timbering shape coils;
6, the photoresist between the two organ timbering line coils is carried out the ultraviolet lithography irradiation, form the oblique strip shaped groove, in groove, fill the Low ESR metal material with plating mode then, form top layer oblique strip shaped coil;
7, from a side photoresist that is positioned at bottom oblique strip shaped coil and top layer oblique strip shaped coil is carried out the ultraviolet lithography irradiation, form the through hole of a center line, again microchannel is placed aforementioned through-hole, promptly make finished product perpendicular to cylindrical solenoid.
The present invention can also adopt the following steps manufacturing:
1, precipitation one deck photoresist on dielectric substrate;
2, settled photoresist is carried out the ultraviolet lithography irradiation, two row's grooves are filled the Low ESR metal material with plating mode again about formation in groove, two row's bottom coil about formation;
3, to about the photoresists of two rows in the middle of the bottom coil carry out photoetching, forms six oblique strip shaped grooves, in groove, fill the Low ESR metal material with plating mode then, formation bottom oblique strip shaped coil;
4, do not precipitate one deck photoresist again on the photoresist of photoetching in the bottom coil of having plated and bottom coil both sides;
5, the photoresist to step 4 precipitation carries out the ultraviolet lithography irradiation, forms cylindrical groove, fills the Low ESR metal material with plating mode in groove again, forms two organ timbering shape coils;
6, microchannel is placed between the two organ timbering shape coils, the precipitation photoresist is parallel with the top of post line coil to its top on microchannel then, again photoresist is carried out the ultraviolet lithography irradiation, form the oblique strip shaped groove, in groove, fill the Low ESR metal material with plating mode then, form top layer oblique strip shaped coil, promptly make finished product.
Microchannel should adopt heat-resisting capillary glass material when adopting this method.
Because the SU-8 photoresist is compared with the other types photoresist, can make the MEMS microstructure (promptly referring to coil among the present invention) of high-aspect-ratio; Have good mechanical performance and thermal stability; Non-conductive, when electroplating, can directly insulate.Therefore all preferred SU-8 photoresist of photoresist that is adopted in two kinds of methods
The present invention can carry out the robotization mass production with photoetching and electroplating technology in little manufacturing of modern times, can produce uniform radio-frequency (RF) magnetic field, and its coil section size is particularly suitable for the detection of rare and valuable sample tens to the hundreds of micron dimension.
Description of drawings
Describe the present invention below in conjunction with accompanying drawing and instantiation, but not as a limitation of the invention.
Fig. 1 is a structural representation of the present invention.
Fig. 2 a is the synoptic diagram of method for making step 1 of the present invention.
Fig. 2 b and Fig. 2 c are the synoptic diagram of method for making step 2 of the present invention.
Fig. 2 d is the synoptic diagram of method for making step 3 of the present invention.
Fig. 2 e is the synoptic diagram of method for making step 4 of the present invention.
Fig. 2 f and Fig. 2 g are the synoptic diagram of method for making step 5 of the present invention.
Fig. 2 h and Fig. 2 i are the synoptic diagram of method for making step 6 of the present invention and 7.
Embodiment
Referring to Fig. 1, the dielectric substrate of present embodiment (1) is a rectangle thin plate, adopt the pyroceram material, the microchannel (4) that is used to place sample is square glass capillary, about two row bottom coil (7) every rows have 7, corresponding setting also is 7 the every row of cylindrical solenoid (3) at bottom coil (7) top, the bottom oblique strip shaped coil (2) that connects two row's bottom coil (7) is 6 with the top layer oblique strip shaped coil (5) that is connected two organ timbering shape coils (3), and wherein the vergence direction of bottom oblique strip shaped coil (2) and top layer oblique strip shaped coil (5) is opposite.The material of above-mentioned coil adopts copper, and the back number of turn of formation that is connected to each other is six solenoid coil.
Referring to Fig. 2 a--2i, the manufacture method of present embodiment is as follows:
1, the SU-8 photoresist (6) with 20 micron thickness is deposited to dielectric substrate (1) upward (referring to Figure 42 a);
2, settled photoresist is carried out the ultraviolet lithography irradiation, totally seven pairs groove (referring to Fig. 2 b) about formation, fill the Low ESR metal material with plating mode in groove again, form 20 microns high left and right sides bottom coil (7), totally seven to (in Fig. 2 c);
3, to about photoresists in the middle of two rows bottom coil (7) carry out photoetching, form six oblique strip shaped grooves, in groove, fill the Low ESR metal material with plating mode then, form six bottom oblique strip shaped coils (2) (referring to Fig. 2 d) of 20 microns high;
4, do not precipitate the SU-8 photoresist (referring to Fig. 2 e) of one deck 80 micron thickness on the photoresist of photoetching again in the bottom coil of having plated (7), oblique strip shaped coil (2) and bottom coil (7) both sides;
5, the photoresist to step 4 precipitation carries out the ultraviolet lithography irradiation, form 80 microns dark cylindrical groove referring to (Fig. 2 f), fill the Low ESR metal material with plating mode in groove again, form two row's 80 microns high cylindrical solenoids (3), totally seven to (referring to Fig. 2 g);
6, the SU-8 photoresist between the two organ timbering line coils (3) is carried out the ultraviolet lithography irradiation, form six oblique strip shaped grooves (referring to Fig. 2 h), in groove, fill the Low ESR metal material with plating mode then, form six top layer oblique strip shaped coils (5) (referring to Fig. 2 i);
Seven pairs of left and right sides bottom coil in the step (2), six oblique strip shaped coils in the step (3), seven pairs of cylindrical solenoids about step (5), and six top layer oblique strip shaped coils in the step (6) are around the solenoid coil that forms one six circle;
7, referring to Fig. 2 i, from positive (or back side) direction six circle solenoids are carried out the ultraviolet lithography irradiation around the photoresist that the photoresist that surrounds is positioned at bottom oblique strip shaped coil (2) and top layer oblique strip shaped coil (5), form the square hole of a center line perpendicular to cylindrical solenoid (3), again square glass capillary is inserted in the square through hole, form microchannel (4), promptly make finished product.
Principle of work of the present invention is:
Sample in the microchannel (4) is placed main field, and sample shows magnetization vector just by magnetic polarization on the macroscopic view; Apply electric current for again miniature solenoid radio-frequency coil, generation is perpendicular to main field and uniformity coefficient radio-frequency (RF) magnetic field preferably, radio-frequency (RF) magnetic field makes the atomic nucleus in the sample produce consistent flip angle uniformly, be that atomic nucleus in the sample carries out synchronous precession, precession synchronously makes sample show Mxy on macroscopic view, Mxy produces induction electromotive force in miniature solenoid radio-frequency coil, obtain free induction decay signal after record a period of time, again free induction decay signal is carried out Fourier transform, obtain nuclear magnetic resonance spectrum figure.

Claims (8)

1. miniature solenoid radio-frequency coil that is used for the microfluid magnetic resonance detection, it is characterized in that comprising the bottom oblique strip shaped coil (2) that is positioned on the dielectric substrate (1), about two row's bottom coil (7), be arranged on the cylindrical solenoid (3) at bottom coil (7) top, microchannel (4) about being positioned between two row's bottom coil (7), and the top layer oblique strip shaped coil (5) that is positioned at microchannel (4) top; The two ends of bottom oblique strip shaped coil (2) respectively with about two row bottom coil (7) dislocation be connected, the two ends of top layer oblique strip shaped coil (5) link to each other with cylindrical solenoid (3) dislocation that is arranged on bottom coil (7) top respectively, and the vergence direction of bottom oblique strip shaped coil (2) and top layer oblique strip shaped coil (5) is opposite.
2. the miniature solenoid radio-frequency coil that is used for the microfluid magnetic resonance detection according to claim 1, it is characterized in that described bottom oblique strip shaped coil (2), bottom coil (7), cylindrical solenoid (3) and top layer oblique strip shaped coil (5) all adopt the Low ESR metal material to make.
3. the miniature solenoid radio-frequency coil that is used for the microfluid magnetic resonance detection according to claim 1 is characterized in that described microchannel (4) is a glass capillary.
4. the miniature solenoid radio-frequency coil that is used for the microfluid magnetic resonance detection according to claim 1 is characterized in that described dielectric substrate (1) is made of pyroceram or other stable on heating polymeric materials that insulate.
5. as any described miniature solenoid radio-frequency coil that is used for the microfluid magnetic resonance detection of claim 1 to 4, it is characterized in that every row's bottom coil (7) is identical with the quantity of cylindrical solenoid (3), be n, bottom oblique strip shaped coil (2) is identical with the quantity of top layer oblique strip shaped coil (5), be n-1, aforementioned n is the natural number greater than 1.
6. the miniature solenoid radio-frequency coil that is used for the microfluid magnetic resonance detection as claimed in claim 5, the quantity that it is characterized in that every row's bottom coil (7) and cylindrical solenoid (3) is 7, the quantity of bottom oblique strip shaped coil (2) and top layer oblique strip shaped coil (5) is 6, constitutes a number of turn jointly and be six solenoid coil.
7. any described manufacture method that is used for the miniature solenoid radio-frequency coil of microfluid magnetic resonance detection of claim 1 to 6 is characterized in that comprising the steps:
(1) goes up precipitation one deck photoresist (6) in dielectric substrate (1);
(2) settled photoresist is carried out the ultraviolet lithography irradiation, two row's grooves are filled the Low ESR metal material with plating mode again about formation in groove, two row's bottom coil (7) about formation;
(3) to about photoresists in the middle of two rows bottom coil (7) carry out photoetching, forms six oblique strip shaped grooves, in groove, fill the Low ESR metal material with plating mode then, formation bottom oblique strip shaped coil (2);
(4) do not precipitate one deck photoresist again on the photoresist of photoetching in the bottom coil of having plated (7) and bottom coil (7) both sides;
(5) photoresist to step (4) precipitation carries out the ultraviolet lithography irradiation, forms cylindrical groove, fills the Low ESR metal material with plating mode in groove again, forms two organ timbering shape coils (3);
(6) photoresist between the two organ timbering line coils (3) is carried out the ultraviolet lithography irradiation, form the oblique strip shaped groove, in groove, fill the Low ESR metal material with plating mode then, form top layer oblique strip shaped coil (5);
(7) from a side photoresist that is positioned at bottom oblique strip shaped coil (2) and top layer oblique strip shaped coil (5) is carried out the ultraviolet lithography irradiation, form the through hole of a center line perpendicular to cylindrical solenoid (3), again microchannel (4) is placed aforementioned through-hole, promptly make finished product.
8. any described manufacture method that is used for the miniature solenoid radio-frequency coil of microfluid magnetic resonance detection of claim 1 to 6 is characterized in that comprising the steps:
(1) goes up precipitation one deck photoresist (6) in dielectric substrate (1);
(2) settled photoresist is carried out the ultraviolet lithography irradiation, two row's grooves are filled the Low ESR metal material with plating mode again about formation in groove, two row's bottom coil (7) about formation;
(3) to about photoresists in the middle of two rows bottom coil (7) carry out photoetching, form the oblique strip shaped groove, in groove, fills the Low ESR metal material with plating mode then, formation bottom oblique strip shaped coil (2);
(4) do not precipitate one deck photoresist again on the photoresist of photoetching in the bottom coil of having plated (7) and bottom coil (7) both sides;
(5) photoresist to step (4) precipitation carries out the ultraviolet lithography irradiation, forms cylindrical groove, fills the Low ESR metal material with plating mode in groove again, forms two organ timbering shape coils (3);
(6) microchannel (4) is placed between the two organ timbering shape coils (3), it is parallel with the top of post line coil (3) to its top to go up the precipitation photoresist at microchannel (4) then, again photoresist is carried out the ultraviolet lithography irradiation, form the oblique strip shaped groove, in groove, fill the Low ESR metal material with plating mode then, form top layer oblique strip shaped coil (5), promptly make finished product.
CN 201010589840 2010-12-15 2010-12-15 Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof Expired - Fee Related CN102095746B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010589840 CN102095746B (en) 2010-12-15 2010-12-15 Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010589840 CN102095746B (en) 2010-12-15 2010-12-15 Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN102095746A true CN102095746A (en) 2011-06-15
CN102095746B CN102095746B (en) 2013-09-18

Family

ID=44128928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010589840 Expired - Fee Related CN102095746B (en) 2010-12-15 2010-12-15 Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102095746B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674997A (en) * 2013-12-06 2014-03-26 东南大学 Low-field nuclear magnetic resonance probe based on solenoid coils of printed circuit board
CN104199392A (en) * 2014-07-28 2014-12-10 盐城工学院 Gallium solenoid micro-coil with circular cross section based on bonding of capillary tube and double-faced adhesive tape and preparation method of micro-coil
CN107607894A (en) * 2017-11-06 2018-01-19 厦门大学 It is applicable miniature malcoils and its preparation associated with HPLC NMR

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751847B1 (en) * 1999-11-04 2004-06-22 Fsu Research Foundation, Inc. Laser-assisted fabrication of NMR resonators
JP2007128952A (en) * 2005-11-01 2007-05-24 Hst Kk Coil body of three-dimensional structure and method of manufacturing same, magnetic sensor and method of manufacturing same
CN101460860A (en) * 2006-05-03 2009-06-17 普拉德研究及开发股份有限公司 Downhole micro magnetic resonance analyzer
CN201993326U (en) * 2010-12-15 2011-09-28 东南大学 Minitype solenoid radio-frequency coil used for microfluid nuclear magnetic resonance detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751847B1 (en) * 1999-11-04 2004-06-22 Fsu Research Foundation, Inc. Laser-assisted fabrication of NMR resonators
JP2007128952A (en) * 2005-11-01 2007-05-24 Hst Kk Coil body of three-dimensional structure and method of manufacturing same, magnetic sensor and method of manufacturing same
CN101460860A (en) * 2006-05-03 2009-06-17 普拉德研究及开发股份有限公司 Downhole micro magnetic resonance analyzer
CN201993326U (en) * 2010-12-15 2011-09-28 东南大学 Minitype solenoid radio-frequency coil used for microfluid nuclear magnetic resonance detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪红志等: "台式核磁共振成像仪高灵敏微型射频线圈的研制", 《中国医疗器械杂志》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674997A (en) * 2013-12-06 2014-03-26 东南大学 Low-field nuclear magnetic resonance probe based on solenoid coils of printed circuit board
CN103674997B (en) * 2013-12-06 2015-12-02 东南大学 Based on the low-field nuclear magnetic resonance probe of printed circuit board (PCB) solenoid coil
CN104199392A (en) * 2014-07-28 2014-12-10 盐城工学院 Gallium solenoid micro-coil with circular cross section based on bonding of capillary tube and double-faced adhesive tape and preparation method of micro-coil
CN107607894A (en) * 2017-11-06 2018-01-19 厦门大学 It is applicable miniature malcoils and its preparation associated with HPLC NMR
CN107607894B (en) * 2017-11-06 2019-06-04 厦门大学 It is applicable in miniature malcoils and its preparation associated with HPLC-NMR

Also Published As

Publication number Publication date
CN102095746B (en) 2013-09-18

Similar Documents

Publication Publication Date Title
Massin et al. High-Q factor RF planar microcoils for micro-scale NMR spectroscopy
Massin et al. Planar microcoil-based microfluidic NMR probes
Badilita et al. Microscale nuclear magnetic resonance: a tool for soft matter research
Zabow et al. Micro-engineered local field control for high-sensitivity multispectral MRI
Ehrmann et al. Microfabricated solenoids and Helmholtz coils for NMR spectroscopy of mammalian cells
Spengler et al. Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance
Webb Radiofrequency microcoils for magnetic resonance imaging and spectroscopy
Krojanski et al. Microslot NMR probe for metabolomics studies
EP1918730A1 (en) Flow-through microfluidic nuclear magnetic resonance(=NMR)-chip
Meier et al. Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance
CN102095746B (en) Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof
CN101650412B (en) Nuclear magnetic resonance radio-frequency micro-coil and manufacturing method thereof
CN103645451A (en) Low field nuclear magnetic resonance probe based on printed circuit board helmholtz coil
CN1971259B (en) A plane NMR micro-coils micro detector
CN201993326U (en) Minitype solenoid radio-frequency coil used for microfluid nuclear magnetic resonance detection
JP2003130937A (en) Nuclear magnetic resonance analyzer for solution
CN101187698B (en) Nuclear magnetic resonance spectrum detection plane micro coil and its manufacture method
Ehrmann et al. Sample patterning on NMR surface microcoils
You et al. Ultrasensitive and fast detection of pathogens using Europium-containing polystyrene nanospheres in a homemade portable NMR diagnostic system
US20180292476A1 (en) Nuclear magnetic resonance microprobe detectors and method for detection of low-volume samples
CN102500437B (en) Integrated structure of planar micro radio-frequency coil and microfluidic channel
CN104076057B (en) Based on probe that gallium solenoid miniature coils is integrated with glass micro passage and preparation method thereof
CN202283468U (en) Planar miniature radio-frequency coil and micro-flow passage integrating structure
CN203432927U (en) Low-field nuclear magnetic resonance probe based on PCB (printed circuit board) planar coil
Leidich et al. Silicon cylinder spiral coil for nuclear magnetic resonance spectroscopy of nanoliter samples

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130918

Termination date: 20151215

CF01 Termination of patent right due to non-payment of annual fee