CN102050521B - 同步硝化反硝化处理含氨污水方法 - Google Patents

同步硝化反硝化处理含氨污水方法 Download PDF

Info

Publication number
CN102050521B
CN102050521B CN200910188109A CN200910188109A CN102050521B CN 102050521 B CN102050521 B CN 102050521B CN 200910188109 A CN200910188109 A CN 200910188109A CN 200910188109 A CN200910188109 A CN 200910188109A CN 102050521 B CN102050521 B CN 102050521B
Authority
CN
China
Prior art keywords
sludge
concentration
ammonia nitrogen
aerobic
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910188109A
Other languages
English (en)
Other versions
CN102050521A (zh
Inventor
高会杰
黎元生
许谦
李志瑞
佟明友
唐似茵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN200910188109A priority Critical patent/CN102050521B/zh
Publication of CN102050521A publication Critical patent/CN102050521A/zh
Application granted granted Critical
Publication of CN102050521B publication Critical patent/CN102050521B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种同步硝化反硝化处理含氨污水方法,首先培养脱氮颗粒污泥,然后以该脱氮颗粒污泥采用同步硝化反硝化过程处理含氨污水。其中脱氮颗粒污泥的培养方法过程为:首先将接种污泥接入好氧反应器中,用高氨氮低COD废水进行好氧污泥的富集培养,然后分离筛选好氧反硝化菌并进行驯化培养,再将驯化培养好的好氧反硝化菌接种到硝化颗粒污泥中进行脱氮颗粒污泥培养即可获得脱氮颗粒污泥。本发明采用培养驯化好的同步硝化反硝化污泥处理催化剂含氨污水,具有污染物去除率高、能耗物耗低等特点,能够在同一反应器中完成硝化反硝化作用,实现了短程同步硝化反硝化工艺在实际污水处理中的应用。

Description

同步硝化反硝化处理含氨污水方法
技术领域
本发明属于污水处理技术领域,具体地说涉及一种同步硝化反硝化颗粒污泥处理催化剂生产等过程排放的含氨污水的生化处理方法。 
背景技术
含氨废水是对环境有重要影响的一类废水,如某些催化剂生产外排废水中含有大量的氨氮,同时具有外排水量高、氨氮浓度差别大等特点。一般采取的处理措施为污污分流-分治的策略,即污水中超高浓度(2000~20000mg/L)的氨氮可以采用汽提方法回收氨,氨氮含量低于15mg/L这部分废水可以回用或者直接排放。对于15~1000mg/L的中等浓度含氨废水处理采用汽提方法将显著增大催化剂的生产成本,传统生物法作为常规废水处理的终端技术,在处理高氨氮、低碳源废水时,由于碳源不能满足反硝化的要求,因此总氮去除率不高。目前这部分中等浓度氨氮污水的治理已成为催化裂化催化剂生产企业环保的首要问题。 
CN1359863A公开了一种物理化学-生化综合治理催化裂化催化剂生产氨氮污水的方法,该方法是将高、低含量氨氮污水先经物理化学方法预处理,混合后再生化法处理;氨氮>1000mg/L的污水采取逆向汽提;氨氮<300mg/L的污水与生活污水混合加甲醇后进入厌氧反硝化和好氧硝化处理工序,该方法的生物处理过程采用传统脱氮工序,不适宜处理氨氮含量高、COD(化学需氧量,一般表示有机化合物的含量)含量低的污水。 
传统生物脱氮技术多根据硝化菌和反硝化菌生长条件的不同,将硝化和反硝 化过程安排在两个不同的反应器内进行,或者在同一反应器内顺次进行(SBR),所以系统复杂,能耗较大,并且管理不便。近几年的研究工作证明硝化反应和反硝化反应可以在同一反应器内同时进行,称为同步硝化反硝化过程(SND)。这一新型脱氮工艺不仅克服了传统生物脱氮过程存在的一些问题,而且在降低能耗和物耗等方面具有突出的优势,特别是以亚硝酸盐氮进行的SND工艺具有更明显的优点。例如在硝化阶段可减少供氧量,从而减少了曝气量、降低25%的能耗;在反硝化阶段节省40%有机碳源,降低了运行费用;亚硝态氮(NO2 --N)的反硝化速率通常比硝态氮(NO3 --N)的反硝化速率高63%;反应器总容积可减少30~40%左右;反硝化过程产生的碱可部分中和硝化过程产生的酸,减少化学试剂消耗等,符合目前大力提倡的节能减排要求,已经成为污水处理领域的研究热点。 
同步硝化反硝化形成机理已经形成了三种理论解释,即宏观环境解释、微观环境理论和生物学解释,它们已经在大量不同的研究中得到证实并被普遍接受。宏观环境的SND工艺主要采用悬浮活性污泥法,由于污泥絮体中微缺氧区的形成往往会出现不稳定现象,导致SND处理效果会出现波动。从微生物理论来看,尽管某些具有脱氮功能的好氧反硝化菌被分离纯化,但是单一的菌体直接应用易随水流失,必须采取固定化或者生物膜法,然而这些工艺过程均比较复杂而且运行效果不稳定。微观环境的SND工艺主要是利用颗粒污泥进行生物脱氮,颗粒污泥是大量细菌聚集生长形成的具有良好沉降性能的颗粒状微生物聚集体,是反应器实现高效运行的关键和前提。利用颗粒污泥进行生物脱氮的优势在于:颗粒污泥具有的良好活性以及沉降性能,可维持生物反应器内较高的生物相浓度,从而提高生物脱氮的效率;与利用载体固定微生物方法比较,颗粒污泥天然的生物层分布确保了最佳的生物反应效率,保证了高效的生物脱氮。因此培养高效、高活性且性能稳定的脱氮颗粒污泥,可以增加反应器内的生物量,提高SND运行稳定性和处理效能,真正实现SND工艺应用于实际工程。特别是当条件控制不好污水处理系统受到冲击时,需要补加一定量高效颗 粒污泥来稳定SND的处理效率。 
中国专利CN1884134A公开了一种两段式同步硝化反硝化处理氨氮废水方法。该方法是筛选出对环境有较强适应能力的异养硝化细菌和好氧反硝化细菌,构建同步硝化反硝化污泥体系处理含氨废水。该方法采用分别驯化然后在合并驯化的方法,过程复杂,驯化时间长,所用的细菌驯化培养液中采用琥珀酸钠作为碳源,是一种价格较高的碳源,应用于实际工程进行颗粒污泥的大规模培养势必带来成本的增加,目前还不适于大规模工业使用。 
发明内容
针对现有技术的不足,本发明提供了一种同步硝化反硝化处理含氨污水方法,通过培养性能优良的脱氮颗粒污泥,使含氨污水的同步硝化反硝化过程真正适用于工业规模使用。 
本发明同步硝化反硝化处理含氨污水方法包括两部分,首先培养脱氮颗粒污泥,然后以该脱氮颗粒污泥采用同步硝化反硝化过程处理含氨污水。 
其中脱氮颗粒污泥的培养方法包括以下内容: 
(1)将接种污泥接入好氧反应器中,用高氨氮低COD(化学需氧量)废水进行好氧污泥的富集培养,以获得能耐受高氨氮的脱氮菌群; 
(2)从步骤(1)富集菌群中分离筛选好氧反硝化菌; 
(3)将步骤(2)中筛选的好氧反硝化菌进行驯化培养; 
(4)将步骤(3)获得的好氧反硝化菌接种到步骤(1)的好氧污泥中进行脱氮颗粒污泥培养;当氨氮和总氮去除率达50%以上时即可获得驯化好的脱氮颗粒污泥。 
将上述培养的同步硝化反硝化脱氮颗粒污泥按照投加后MLSS(污泥浓度)为800-4000mg/L投加到曝气反应器中处理含氨污水,处理条件为:温度18-40℃,最适温度25-35℃;溶解氧0.1~7mg/L,pH7-10,C/N≥1∶1(C/N按COD浓度和氨氮浓度比值计,浓度单位mg/L),C/N优选为1∶1~5∶1。在上述条件下,可 以保证较高的氨氮转化率和总氮去除率,处理后使催化剂污水中的氨氮和总氮指标能够符合达标排放要求。含氨污水为一切适合生物法处理的低COD、高氨氮污水,氨氮浓度一般为100~2000mg/L的污水,如催化剂生产过程排放的含氨污水、尿素生产过程排放的含氨污水等,采用批次进水或者连续进水方式,最好采取连续进水方式进行处理。在含氨污水处理过程中,遇到处理效果出现波动时,可以随时补充驯化好的脱氮颗粒污泥,保持稳定的污水处理效果。 
本发明方法中,脱氮颗粒污泥培养过程步骤(1)富集脱氮污泥可以为本领域现有任何方法,优选逐渐提高基质氨氮浓度的方式进行富集。培养过程培养液氨氮初始浓度为100~600mg/L,最终氨氮浓度为700~2000mg/L,优选1000~1500mg/L,培养液COD值100~1000mg/L。当反应液氨氮浓度降低至150mg/L以下时,提高基质氨氮浓度同时补加碳源保证培养液COD浓度不低于100mg/L,每次提高氨氮浓度50~400mg/L。接种污泥可以选取本领域常用的具有硝化作用的活性污泥,优选取自炼油和催化剂污水处理厂的活性污泥。所述富集培养条件为:温度20~40℃;pH 6.0~9.0,优选6.5~8.0;DO(溶解氧)大于2mg·L-1,优选2~10mg·L-1。 
本发明方法中,脱氮颗粒污泥培养过程步骤(2)采用平板稀释法或平板划线法对富集活性污泥内的菌群进行分离纯化,培养基可以是本领域常用的培养基。具体操作:取一定量的泥水混合物稀释不同的倍数后接种于含有亚硝酸盐氮的固体培养基平板中,25~35℃恒温静置培养,培养液中除了含有硝酸盐外,还含有Fe2+、Mg2+、K+、Ca2+等金属离子以及磷酸根离子等,选取单菌落稀释不同的倍数后接种于同样的固体平板进行分离,重复上述操作直到获得纯化菌株。 
本发明方法中,脱氮颗粒污泥培养过程步骤(3)将纯化的好氧反硝化菌株接种到含有亚硝氮的液体培养基中,然后在不同总氮浓度条件下进行脱氮能力驯化。具体方法:采取逐渐提高氮源和碳源的方式进行梯度驯化,从固体平板 上用接菌环挑取部分菌落接入装有一定量培养液的反应器中培养,初始氮源浓度(以NO2 --N计)为50~200mg/L,初始碳源浓度(以COD计)为500~1000mg/L,定期检测培养液中氮源和碳源浓度,控制生长驯化过程中反应系统的碳源和氮源的质量比(按COD浓度和氨氮浓度计)为1∶1~10∶1,如果碳源不足补加碳源,如果碳源过剩则补加氮源,直到总氮和COD浓度分别低于15mg/L和60mg/L时终止反应。培养条件为:温度为20~35℃;pH为6.5~9.8,优选7.0~8.5;DO(溶解氧)为0.5~5mg·L-1,优选为1~3mg·L-1。 
本发明方法中,脱氮颗粒污泥培养过程步骤(4)采取逐渐提高基质浓度的方式培养颗粒污泥,硝化颗粒污泥按照接种后反应器内污泥浓度(MLSS)为500~3000mg/L来投加,好氧反硝化菌按照体积比为3~25%的接种量进行接种。具体过程:将步骤(1)获得的好氧污泥和(3)获得的好氧反硝化菌悬液按照适宜的接种量接入含有氨氮的液体培养液中进行驯化,碳源可以是任何微生物能够利用的有机碳源。培养过程中采取菌体转接、批次换水或者批次补料的方式,并逐渐提高氮源和碳源浓度,最终达到欲处理废水中氮和碳的浓度。如果欲处理废水氨氮浓度较低,可以直接用欲处理废水进行脱氮能力驯化。驯化过程中,培养液初始氨氮浓度为100~300mg/L,最终氨氮浓度为400~1500mg/L,优选500~1000mg/L,保证碳氮比为1∶1~10∶1。当反应液氨氮浓度降低至100mg/L以下时,提高基质氨氮浓度同时补加碳源保证培养液COD浓度不低于100mg/L,每次提高氨氮浓度50~200mg/L。驯化温度为20~35℃;pH为6.5~10.0,优选7.5~8.5;DO为0.5~5mg·L-1,优选为1~3mg·L-1。 
本发明方法中,脱氮颗粒污泥培养过程中所需的氨氮可以是一切能够作为微生物氮源的化合物,如(NH4)2SO4,尿素等,这里首选(NH4)2SO4作为氮源;所需的亚硝态氮可以是一切亚硝酸盐,如NaNO2、KNO2等;所需的COD可通过加入葡萄糖、甲醇或琥珀酸钠,以及其它一些含碳有机化合物或者COD浓度较高的污水等。 
本发明方法中,脱氮颗粒污泥培养过程中均使用生长促进剂,包含Fe2+、 Mg2+、K+、Ca2+这四种金属阳离子,可采用常用物质进行配置,四种金属阳离子的摩尔配置比例为1∶(4-8)∶(5-15)∶(1-5);其中Fe2+是以FeSO4·7H2O或者FeCl2的形式加入;Mg2+是以MgSO4·7H2O或者MgCl2的形式加入;K+是以KH2PO4和/或K2HPO4的形式加入;Ca2+是采用CaCO3或者CaCl2的形式加入。 
本发明方法采用高氨氮废水对接种污泥进行脱氮污泥的驯化,从驯化的好氧污泥中筛选好氧反硝化菌,再将该菌株驯化培养后与硝化颗粒污泥混合制备脱氮颗粒污泥,处理含氨污水时,能够实现同步硝化反硝化脱氮,可以节省碳源和碱度。本发明获得的脱氮颗粒污泥中,负责硝化脱氨氮的细菌主要是自养硝化菌,负责反硝化脱氮的细菌是好氧反硝化菌。本发明采用培养驯化好的颗粒污泥处理催化剂含氨污水,能够在同一反应器中完成硝化反硝化作用,对于C/N为2-3左右的污水处理过程中不需补加碳源,对于pH大于8.5的污水处理过程中不需调节pH,具有污染物去除率高、能耗、物耗低、运行成本低等特点,实现了短程硝化反硝化工艺在实际污水处理中的应用。 
具体实施方式
本发明颗粒污泥具有较强的耐受性和适应性,能够在同一反应器中、在相同pH和DO浓度条件下完成硝化反硝化脱氮过程;可以实现SND工艺在工业污水处理中的应用。 
实施例1 
(1)好氧污泥的富集培养:从某炼油污水处理厂好氧曝气池内取活性污泥,接入好氧反应器中,使得接种污泥后反应器内的MLSS为5000mg/L,采用逐渐提高基质氨氮浓度的方式进行富集,污水的初始氨氮浓度为100mg/L、COD浓度为400mg/L,培养过程中当氨氮浓度低于10mg/L时,补加氮源,使氨氮浓度比上一次氨氮浓度提高100mg/L,直至氨氮浓度提高到1000mg/L,在补充氨氮的同时补充COD维持COD浓度为400mg/L左右。富集过程中:温度为25℃; pH 7.5,DO(溶解氧)2.5mg·L-1左右。 
(2)反硝化菌的筛选纯化:取步骤(1)中得到的一定量的泥水混合物稀释不同的倍数后涂布于牛肉膏蛋白胨固体培养基平板中培养,培养液中亚硝酸盐氮浓度为150mg/L,还含有少量的Fe2+、Mg2+、K+、Ca2+等金属离子以及磷酸根离子等,30℃恒温静置培养,以甲醇为碳源,按照碳氮质量比2∶1配置。培养1-2天后,选取单菌落再稀释不同的倍数后涂布于同样的固体平板进行分离,重复上述操作直到获得纯化菌株。 
(3)反硝化菌的驯化培养:从固体平板上用接菌环挑取部分菌落接入装有一定量培养液的反应器中培养,培养液中初始氮源浓度为150mg/L,以甲醇作为碳源,初始碳源浓度(以COD计)为400mg/L,驯化过程中当总氮浓度低于15mg/L时,补加氮源,同时补充碳源控制碳源与氮源质量比为3∶1左右,使总氮浓度比上一次提高100mg/L,直到提高到600mg/L。培养条件为:温度为30℃;pH 8.0,DO(溶解氧)1.5mg·L-1左右。 
(4)颗粒污泥培养:将步骤(1)获得的好氧污泥和步骤(3)获得的反硝化菌菌悬液分别按照MLSS为1500mg/L和体积比为5%的接种量接入含有150mL培养液的500mL摇瓶中,以纱布封口置溶解氧浓度控制为3.0mg/L的空气振动器中进行培养。初始培养液中总氮浓度为100mg/L。以甲醇作为碳源,初始碳源浓度(以COD计)为400mg/L,当氨氮和总氮去除率达到90%以上时,停止反应,自然沉降后弃上清液,然后补加同样体积的浓度提高100mg/L的新鲜培养液继续培养,重复操作直到培养液中氨氮浓度提高到600mg/L。培养过程中,碳氮质量比为3∶1,温度为28℃;pH为8.0,培养一定时间后即可获得总氮去除率达到80%以上的脱氮颗粒污泥。 
实施例2 
(1)好氧污泥的富集培养:从某催化剂污水处理厂好氧曝气池内取一定量的活性污泥,接入好氧反应器中,使得接种污泥后反应器内的MLSS为 3000mg/L,采用逐渐提高基质氨氮浓度的方式进行富集,污水的初始氨氮浓度为200mg/L、COD浓度为600mg/L,培养过程中当氨氮浓度低于50mg/L时,补加氨氮浓度比上一次提高150mg/L,直到提高到1500mg/L,在补充氨氮的同时补充COD维持COD浓度为600mg/L左右。富集过程中:温度为30℃,pH7.8,DO(溶解氧)3mg·L-1左右。 
(2)反硝化菌的筛选纯化:取步骤(1)中得到的一定量的泥水混合物稀释不同的倍数后涂布于牛肉膏蛋白胨固体培养基平板中培养,培养液中亚硝酸盐氮浓度为200mg/L,还含有少量的Fe2+、Mg2+、K+、Ca2+等金属离子以及磷酸根离子等,28℃恒温静置培养,以甲醇为碳源,按照碳氮质量比3∶1配置。培养1-2天后,选取单菌落再稀释不同的倍数后涂布于同样的固体平板进行分离,重复上述操作直到获得纯化菌株。 
(3)反硝化菌的驯化培养:从固体平板上用接菌环挑取部分菌落接入装有一定量培养液的反应器中培养,培养液中初始氮源浓度为200mg/L,以甲醇作为碳源,初始碳源浓度(以COD计)为500mg/L,驯化过程中当总氮浓度低于15mg/L时,补加氮源,同时补充碳源控制碳源与氮源质量比为4∶1左右,使总氮浓度比上一次提高100mg/L,直到提高到800mg/L。培养条件为:温度为30℃;pH 8.0,DO(溶解氧)2.5mg·L-1左右。 
(4)颗粒污泥培养:将步骤(1)获得的好氧污泥和步骤(3)获得的反硝化菌菌悬液分别按照MLSS为1800mg/L和体积比为15%的接种量接入含有500mL培养液的1000mL摇瓶中,以纱布封口置溶解氧浓度控制为3.0mg/L的空气振动器中进行培养。初始培养液中总氮浓度为150mg/L。以COD浓度较高的污水作为碳源,按照初始碳源浓度(以COD计)为600mg/L确定污水的体积,当氨氮和总氮去除率达到90%以上时补加氮源,补加氨氮浓度比上一次提高150mg/L,直到提高到900mg/L。培养过程中,碳氮质量比为4∶1,温度为30℃;pH为8.2,培养一定时间后即可获得总氮去除率达到70%以上的脱氮颗粒污泥。 
实施例3 
采用实施例1获得的脱氮污泥按照MLSS为800mg/L投加到曝气反应器中,处理催化裂化催化剂生产过程中产生的含氨污水,该水中主要污染物浓度:COD平均为100mg/L,NH3-N平均为350mg/L,pH为7.3。先采取批次进水方式,既一次性将待处理污水打入反应器,运行6批次后,污泥浓度增加到1500mg/L,在24h内氨氮和总氮去除率均达到90%以上;在此基础上打开进水泵采取连续进水的方式进行处理,水力停留时间为24h,3天后系统运行稳定,氨氮去除率达95%,总氮去除率达90%以上。处理过程中以甲醇作为补充碳源,保证碳氮质量比为3∶1左右,以NaHCO3调节pH。处理条件为:温度为28℃;pH为8.0,DO(溶解氧)为0.4mg·L-1左右。 
实施例4 
采用实施例2获得的脱氮污泥按照MLSS为1200mg/L投加到曝气反应器中,处理催化裂化催化剂生产过程中产生的含氨污水,该水中主要污染物浓度:COD平均为200mg/L,NH3-N平均为200mg/L,pH为8.5。直接采取连续进水的方式进行处理,水力停留时间为24h,5天后系统进入稳定运行,出水氨氮低于10mg/L,氨氮和总氮去除率均达95%以上。处理过程中以甲醇作为补充碳源,保证碳氮质量比为3∶1左右,温度为室温25℃;pH自动检测,不用进行调节;DO(溶解氧)为0.1-5.6mg·L-1。 
实施例5 
采用实施例2获得的脱氮污泥按照MLSS为2500投加到曝气反应器中,处理催化剂生产过程中产生的COD浓度为200mg/L,NH3-N为1000mg/L的污水,引入一股生活污水共同处理,系统运行初期两种水混合后主要污染物浓度:COD平均为1000mg/L,NH3-N为500mg/L,pH为9.0。采取连续进水的方式在28-32℃条件下进行处理,处理过程中保证充足的溶解氧,当碳源不足时调整生活污水 的流量以保证完成反硝化过程。DO变化幅度为0.2-5.0;水力停留时间为24h,一周后系统进入稳定运行期,出水氨氮低于25mg/L,氨氮和总氮去除率分别达到95%和90%以上。 
实施例6 
采用实施例2获得的脱氮污泥按照MLSS为1800mg/L投加到曝气反应器中,处理尿素生产过程中产生的含氨污水,该水中主要污染物浓度:COD平均为600mg/L,NH3-N平均为500mg/L,pH为9.31。直接采取连续进水的方式进行处理,水力停留时间为24h,系统稳定运行后出水氨氮低于10mg/L,氨氮和总氮去除率均达95%以上,COD去除率达90%以上。处理过程中引入一股生活污水作为COD的补充,保证碳氮质量比为3∶1左右,温度为室温28℃;pH自动检测,不用进行调节;DO(溶解氧)为0.1-5.6mg·L-1。 

Claims (13)

1.一种同步硝化反硝化处理含氨污水方法,其特征在于包括两部分,首先培养脱氮颗粒污泥,然后以该脱氮颗粒污泥采用同步硝化反硝化过程处理含氨污水;
所述的脱氮颗粒污泥的培养方法包括以下内容:
(1)将接种污泥接入好氧反应器中,用高氨氮低COD废水进行好氧污泥的富集培养,以获得能耐受高氨氮的脱氮菌群;
(2)从步骤(1)富集菌群中分离筛选好氧反硝化菌;
(3)将步骤(2)中筛选的好氧反硝化菌进行驯化培养;
(4)将步骤(3)获得的好氧反硝化菌接种到步骤(1)的好氧污泥中进行脱氮颗粒污泥培养;当氨氮和总氮去除率达50%以上时即可获得驯化好的脱氮颗粒污泥;
将上述培养的同步硝化反硝化脱氮颗粒污泥按照投加后污泥浓度为800-4000mg/L投加到曝气反应器中处理含氨污水,处理条件为:温度18-40℃,溶解氧0.1~7mg/L,pH7-10,按COD浓度和氨氮浓度比值计的C/N≥1∶1。
2.按照权利要求1所述的方法,其特征在于:含氨污水的氨氮浓度为100~2000mg/L。
3.按照权利要求1或2所述的方法,其特征在于:含氨污水处理过程中,采用批次进水或者连续进水方式。
4.按照权利要求3所述的方法,其特征在于:在含氨污水处理过程中,遇到处理效果出现波动时,补充驯化好的脱氮颗粒污泥,保持稳定的污水处理效果。
5.按照权利要求1所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(1)富集脱氮污泥采用逐渐提高基质氨氮浓度的方式进行富集,培养过程培养液氨氮初始浓度为100~600mg/L,最终氨氮浓度为700~2000mg/L,培养液COD值100~1000mg/L;当培养液氨氮浓度降低至150mg/L以下时,提高基质氨氮浓度同时补加碳源保证培养液COD浓度不低于100mg/L,每次提高氨氮浓度50~400mg/L。
6.按照权利要求1或5所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(1)中接种污泥选取炼油或催化剂污水处理厂的活性污泥,富集培养条件为:温度20~40℃,pH 6.0~9.0,溶解氧大于2mg·L-1
7.按照权利要求6所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(1)富集培养条件为:pH 6.5~8.0;溶解氧为2~10mg·L-1
8.按照权利要求1所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(2)采用平板稀释法或平板划线法对富集活性污泥内的菌群进行分离纯化。
9.按照权利要求1所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(3)中好氧反硝化菌驯化培养过程为:将纯化的好氧反硝化菌株接种到含有亚硝氮的液体培养基中,然后采取逐渐提高氮源和碳源的方式进行梯度驯化。
10.按照权利要求1或9所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(3)中好氧反硝化菌驯化培养过程为:从固体平板上用接菌环挑取部分菌落接入装有培养液的反应器中培养,以NO2 --N计初始氮源浓度为50~200mg/L,以COD计初始碳源浓度为500~1000mg/L,控制生长驯化过程中反应系统的碳源和氮源的质量比为1∶1~10∶1,直到总氮和COD浓度分别低于15mg/L和60mg/L时终止反应。
11.按照权利要求10所述的方法,其特征在于:好氧反硝化菌培养条件为:温度为20~35℃,pH为6.5~9.8,溶解氧为0.5~5mg·L-1
12.按照权利要求1所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(4)采取逐渐提高基质浓度的方式培养颗粒污泥,硝化颗粒污泥按照接种后反应器内污泥浓度为500~3000mg/L来投加,好氧反硝化菌按照反应器体积3%~25%的接种量进行接种;过程包括:将步骤(1)获得的好氧污泥和(3)获得的好氧反硝化菌悬液接入含有氨氮的液体培养液中进行驯化,培养过程中采取菌体转接、批次换水或者批次补料的方式,并逐渐提高氮源和碳源浓度,最终达到欲处理废水中氮和碳的浓度。
13.按照权利要求1或12所述的方法,其特征在于:脱氮颗粒污泥的培养方法步骤(4)培养颗粒污泥的过程为,培养液初始氨氮浓度为100~300mg/L,最终氨氮浓度为400~1500mg/L,维持碳氮质量比为1∶1~10∶1;当反应液氨氮浓度降低至100mg/L以下时,提高基质氨氮浓度同时补加碳源保证培养液COD浓度不低于100mg/L,每次提高氨氮浓度50~200mg/L;驯化温度为20~35℃,pH为6.5~10.0,溶解氧为0.5~5mg·L-1
CN200910188109A 2009-10-27 2009-10-27 同步硝化反硝化处理含氨污水方法 Active CN102050521B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910188109A CN102050521B (zh) 2009-10-27 2009-10-27 同步硝化反硝化处理含氨污水方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910188109A CN102050521B (zh) 2009-10-27 2009-10-27 同步硝化反硝化处理含氨污水方法

Publications (2)

Publication Number Publication Date
CN102050521A CN102050521A (zh) 2011-05-11
CN102050521B true CN102050521B (zh) 2012-09-12

Family

ID=43955387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910188109A Active CN102050521B (zh) 2009-10-27 2009-10-27 同步硝化反硝化处理含氨污水方法

Country Status (1)

Country Link
CN (1) CN102050521B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374524B (zh) * 2012-04-29 2014-08-20 中国石油化工股份有限公司 一种耐盐微生物菌剂及其制备方法
CN103373764B (zh) * 2012-04-29 2014-10-15 中国石油化工股份有限公司 一种含氨废水短程硝化反硝化的快速启动方法
CN103374525B (zh) * 2012-04-29 2014-08-20 中国石油化工股份有限公司 一种废水处理微生物菌剂及其制备方法
CN102976584B (zh) * 2012-12-31 2013-08-28 长沙奥邦环保实业有限公司 污水污泥自热高温好氧处理装置
CN105645582B (zh) * 2014-12-05 2019-01-25 中国石油化工股份有限公司 一种废水处理系统短程硝化反硝化的快速启动方法
CN104724828B (zh) * 2015-03-31 2017-05-03 成都信息工程学院 一种对低碳氮比生活污水同步硝化反硝化耦合除磷方法
CN107311306B (zh) * 2016-04-26 2020-10-16 中国石油化工股份有限公司 一种短程硝化反硝化处理含氨污水的方法
CN108117158B (zh) * 2016-11-29 2020-09-11 中国石油化工股份有限公司 一种脱氮颗粒污泥的快速培养方法
CN108070543A (zh) * 2017-12-22 2018-05-25 浙江省环境保护科学设计研究院 一种适用于低c/n比废水处理的脱氮菌制剂的制备和应用
CN108862576B (zh) * 2018-06-01 2022-07-15 浙江海洋大学 一种短程硝化反硝化一体化工艺启动及运行性能强化方法
CN108892240A (zh) * 2018-07-20 2018-11-27 清华大学 一种底物流加-间歇式运行的短程反硝化细菌富集方法
CN109231697A (zh) * 2018-10-25 2019-01-18 华南理工大学 一种稳定实现低浓度氨氮废水亚硝化的方法
CN111006991B (zh) * 2018-10-30 2021-06-25 江南大学 一种确定污水处理好氧反硝化菌最适保存温度的方法
CN111454859A (zh) * 2020-04-07 2020-07-28 山东海景天环保科技股份公司 一种低温好氧反硝化细菌的培育方法
CN111533261B (zh) * 2020-05-11 2022-07-15 重庆大学 一种同步硝化反硝化启动方法
CN112210514B (zh) * 2020-10-15 2022-04-22 广东中微环保生物科技有限公司 一种同步培养复合硝化菌和好氧反硝化菌的方法及装置
CN112142205A (zh) * 2020-10-22 2020-12-29 杭州晓凯科技有限公司 一种畜禽养殖场污水处理ags生化工艺
CN113735263B (zh) * 2021-08-27 2023-03-14 清华大学 基于同步硝化反硝化细菌的废水脱氮工艺及装置
CN114988588B (zh) * 2022-05-31 2023-09-19 江西调水人生态环境工程有限公司 一种微生物驯化进行污水脱氮的方法
CN115010259B (zh) * 2022-08-04 2022-10-21 江苏海峡环保科技发展有限公司 一种智慧环保监测数据处理方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562466A1 (de) * 1992-03-18 1993-09-29 Branko Pospischil Verfahren zur simultanen biologischen Stickstoffelimination und entsprechende Biomassen
CN101306870A (zh) * 2008-07-07 2008-11-19 中国科学院成都生物研究所 一种异养硝化好氧颗粒污泥及其培养方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562466A1 (de) * 1992-03-18 1993-09-29 Branko Pospischil Verfahren zur simultanen biologischen Stickstoffelimination und entsprechende Biomassen
CN101306870A (zh) * 2008-07-07 2008-11-19 中国科学院成都生物研究所 一种异养硝化好氧颗粒污泥及其培养方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王景峰.A/OSBR中同步硝化反硝化除磷颗粒污泥的富集.《中国给水排水》.2006,第22卷(第17期),全文. *

Also Published As

Publication number Publication date
CN102050521A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
CN102050521B (zh) 同步硝化反硝化处理含氨污水方法
CN102040281B (zh) 一种脱氮颗粒污泥的培养方法
CN102041291B (zh) 一种反硝化菌的筛选方法
CN101898828B (zh) 一种短程反硝化颗粒污泥的培养方法
CN103373762B (zh) 一种含盐污水的生物脱氮方法
CN102464405B (zh) 一种污水短程同步硝化反硝化脱氮的方法
CN101723512B (zh) 一种含氨废水高效生化处理方法
CN102190371B (zh) 一种厌氧氨氧化颗粒污泥的培育方法
WO2009018686A1 (fr) Méthode d'élimination de la contamination par le c et le n utilisant des bactéries hétérotropes d'oxydation de l'ammoniac
CN105621611B (zh) 一种含氨废水短程硝化反硝化的快速启动方法
CN102443550B (zh) 一种脱氮细菌的筛选方法
CN102040315A (zh) 两级a/o工艺处理高氨氮废水
CN108117158B (zh) 一种脱氮颗粒污泥的快速培养方法
CN101759295A (zh) 用于城市污水处理中的硝化菌高效培养工艺
CN106434469B (zh) 一种耐低温硝化菌剂及其制备方法和应用
CN101139134A (zh) 一种对高氨氮低c/n比的废水处理工艺及用途
CN102465101B (zh) 利用亚硝酸盐进行反硝化的脱氮菌剂及其应用
CN103373767B (zh) 一种高含盐催化剂污水的生物脱氮方法
CN102465102B (zh) 亚硝酸型生物脱氮菌剂及其应用
CN113149350A (zh) 一种水体原位修复鳌合生物催化颗粒及其制备方法
CN106554084B (zh) 一种废水处理系统短程硝化反硝化的快速启动方法
CN104944671B (zh) 一种分子筛催化剂废水的处理方法
CN103102016B (zh) 一种控制污水生化处理过程硝化反应进程的方法
CN103373760A (zh) 一种a/o工艺处理含氨废水的快速启动方法
CN113403238B (zh) 一种工业化连续高效生产硝化菌剂的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant