CN102044844B - 分布放大的取样光栅分布布拉格反射可调谐激光器 - Google Patents

分布放大的取样光栅分布布拉格反射可调谐激光器 Download PDF

Info

Publication number
CN102044844B
CN102044844B CN2010105645457A CN201010564545A CN102044844B CN 102044844 B CN102044844 B CN 102044844B CN 2010105645457 A CN2010105645457 A CN 2010105645457A CN 201010564545 A CN201010564545 A CN 201010564545A CN 102044844 B CN102044844 B CN 102044844B
Authority
CN
China
Prior art keywords
layer
sampled
ingaasp
grating
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010105645457A
Other languages
English (en)
Other versions
CN102044844A (zh
Inventor
刘扬
赵玲娟
朱洪亮
潘教青
王圩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2010105645457A priority Critical patent/CN102044844B/zh
Publication of CN102044844A publication Critical patent/CN102044844A/zh
Application granted granted Critical
Publication of CN102044844B publication Critical patent/CN102044844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:一衬底;一n-InP缓冲层制作在衬底上;一InGaAsP下限制层制作在n-InP缓冲层上;一增益层制作在InGaAsP下限制层上;一InGaAsP上限制层制作在增益层上,其表面形成有取样光栅结构,该取样光栅光栅结构位于无源波导之上;一p-InP层制作在InGaAsP上限制层上;一p-InGaAsP刻蚀阻止层制作在p-InP层上;一上p-InP盖层制作在p-InGaAsP刻蚀阻止层上;一p-InGaAs接触层制作在上p-InP盖层上,其上形成有不同区段的隔离沟;一金属电极制作在p-InGaAs接触层的上表面,形成光栅分布布拉格反射可调谐激光器;其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区、增益区、相区和分布放大的后取样光栅区。

Description

分布放大的取样光栅分布布拉格反射可调谐激光器
技术领域
本发明涉及半导体光电集成技术领域,特别涉及一种分布放大的取样光栅分布布拉格反射可调谐激光器。
背景技术
光网络正在向高速大容量、良好的扩展性和智能化的方向发展。提升光网络的容量时,将更加注重光网络的灵活性和可扩展性,交换智能化和光电子器件集成化是降低运营成本,以应对快速变化的市场环境。发展可调谐器件、多功能集成的光开关器件或组件将是构建智能光网络的基石。
密集波分复用(DWDM)系统的飞速发展带来了对相关器件的强烈需求。目前的DWDM系统普遍已经达到32路波长复用,Infinera利用铟磷基的单片集成技术实现了的1.6Tb/s(40G×40路波长复用)光子集成回路(PIC)芯片。如果使用普通波长固定的激光器就需要生产出如此多波长,生产工艺的控制要极其严格和烦琐,产品一致性要求非常之高。为保证系统安全性要求做保护备份时,也需要同样多品种的同样数量的器件,系统设备的成本及复杂度将很高。而波长可调激光器能够大大减轻DWDM系统在光源配置、备份和维护上的巨大压力。
可调谐激光器在实现波长灵活切换,避免阻塞,降低网络保护恢复成本,提高可靠性等方面也起着无可代替的作用。基于磷化铟(InP)材料的宽带可调谐激光器具有纳秒级的调谐速度,可以满足包交换的需求;还可以集成更多的电子或光电子器件,形成系统集成芯片(SOC)以完成更复杂(如快速波长变换,波长信道的上传以及下传等)的功能,以满足智能光网络的需求。可调谐激光器还可以用于基于WDM技术的光互连中,代替电缆完成计算机之间或芯片之间的互连。
传统的取样光栅光栅分布布拉格反射激光器较长的前后光栅区会引起较大的吸收损耗降低光功率输出,并且在波长调谐的过程中由于注入电流引起波导吸收系数的变化,其各个出光波长之间的光功率的变化。分布放大的取样光栅分布布拉格反射可调谐激光器的激光器可以有效的利用器件空间,提高激光器功率并平衡各波长出光功率。
发明内容
本发明的目的是克服现有技术的不足,针对现有取样光栅分布布拉格反射激光器较长的前后取样光栅区引起的波导损耗以及注入电流时引起的各个出光波长之间的光功率的变化的不足,提供一种结构紧凑,光功率高,功率平衡性好,制作工艺简单的分布放大的取样光栅分布布拉格反射可调谐激光器。
为达到上述目的,本发明提供一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:
一衬底;
一n-InP缓冲层,该n-InP缓冲层制作在衬底上;
一InGaAsP下限制层,该InGaAsP下限制层制作在n-InP缓冲层上;
一增益层,该增益层制作在InGaAsP下限制层上,该增益层为交替的有源波导和无源波导结构;
一InGaAsP上限制层,该InGaAsP上限制层制作在增益层上,该InGaAsP上限制层的表面形成有取样光栅结构,该取样光栅光栅结构位于无源波导之上;
一p-InP层,该p-InP层制作在InGaAsP上限制层上;
一p-InGaAsP刻蚀阻止层,该p-InGaAsP刻蚀阻止层制作在p-InP层上;
一上p-InP盖层,该上p-InP盖层制作在p-InGaAsP刻蚀阻止层上;
一p-InGaAs接触层,该p-InGaAs接触层制作在上p-InP盖层上,在该p-InGaAs接触层上形成有不同区段的隔离沟;
一金属电极,该金属电极制作在p-InGaAs接触层的上表面,形成光栅分布布拉格反射可调谐激光器;
其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区、增益区、相区和分布放大的后取样光栅区。
为达到上述目的,本发明还提供一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:
一衬底;
一n-InP缓冲层,该n-InP缓冲层制作在衬底上;
一InGaAsP下限制层,该InGaAsP下限制层制作在n-InP缓冲层上;
一增益层,该增益层制作在InGaAsP下限制层上,该增益层为交替的有源波导和无源波导结构;
一InGaAsP上限制层,该InGaAsP上限制层制作在增益层上,该InGaAsP上限制层的表面形成有取样光栅结构,该取样光栅光栅结构位于无源波导之上;
一p-InP层,该p-InP层制作在InGaAsP上限制层上;
一p-InGaAsP刻蚀阻止层,该p-InGaAsP刻蚀阻止层制作在p-InP层上;
一上p-InP盖层,该上p-InP盖层制作在p-InGaAsP刻蚀阻止层上;
一p-InGaAs接触层,该p-InGaAs接触层制作在上p-InP盖层上,在该p-InGaAs接触层上形成有不同区段的隔离沟;
一金属电极,该金属电极制作在p-InGaAs接触层的上表面,形成光栅分布布拉格反射可调谐激光器结构;
其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区、相区和分布放大的后取样光栅区。
为达到上述目的,本发明又提供一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:
一衬底;
一n-InP缓冲层,该n-InP缓冲层制作在衬底上;
一InGaAsP下限制层,该InGaAsP下限制层制作在n-InP缓冲层上;
一增益层,该增益层制作在InGaAsP下限制层上,该增益层为交替的有源波导和无源波导结构;
一InGaAsP上限制层,该InGaAsP上限制层制作在增益层上,该InGaAsP上限制层的表面形成有取样光栅结构,该取样光栅光栅结构位于无源波导之上;
一p-InP层,该p-InP层制作在InGaAsP上限制层上;
一p-InGaAsP刻蚀阻止层,该p-InGaAsP刻蚀阻止层制作在p-InP层上;
一上p-InP盖层,该上p-InP盖层制作在p-InGaAsP刻蚀阻止层上;
一p-InGaAs接触层,该p-InGaAs接触层制作在上p-InP盖层上,在该p-InGaAs接触层上形成有不同区段的隔离沟;
一金属电极,该金属电极制作在p-InGaAs接触层的上表面,形成光栅分布布拉格反射可调谐激光器;
其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区和分布放大的后取样光栅区。
附图说明
为进一步说明本发明的技术特征,结合以下附图,对本发明作一详细的描述,其中:
图1是本发明第一实施例分布放大的取样光栅分布布拉格反射可调谐激光器的纵向切面结构图;
图2是本发明第一实施例分布放大的取样光栅分布布拉格反射可调谐激光器的俯视电极图;
图3是本发明第一实施例分布放大的取样光栅分布布拉格反射可调谐激光器的器件整体结构示意图;
图4是本发明第二实施例分布放大的取样光栅分布布拉格反射可调谐激光器的纵向切面结构图。
图5是本发明第三实施例分布放大的取样光栅分布布拉格反射可调谐激光器的纵向切面结构图。
具体实施方式
请参阅图1、2、3所示,为本发明的第一实施例,本发明提供一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:
一衬底1,该衬底为n型InP衬底;
一n-InP缓冲层2,该n-InP缓冲层2制作在衬底1上;
一InGaAsP下限制层3,该InGaAsP下限制层3制作在n-InP缓冲层2上,在量子阱偏移结构中该层厚度约为250nm到350nm,在量子阱混杂以及对接生长等集成方中式厚度约为100nm到150nm,材料带隙波长为1.2微米至1.3微米之间;
一增益层4,该增益层4制作在InGaAsP下限制层3上,该增益层4为交替的有源波导5和无源波导6结构;其中有源波导5为多量子阱结构,带隙波长约为1.55微米,无源波导6在量子阱混杂集成方式中为多量子阱结构,在量子阱偏移结构、对接生长等方式中为体材料i型InGaAsP层;
一InGaAsP上限制层7,该InGaAsP上限制层7制作在增益层4上,厚度约为100nm到150nm,材料带隙波长为1.2微米至1.3微米之间;该InGaAsP上限制层7的表面形成有取样光栅8结构,该取样光栅光光栅8结构位于无源波导6之上;其中分布放大前取样光栅区14中的取样光栅8周期同布放大的后取样光栅区17中的取样光栅8周期略有不同,从而完成纵模选择和扩展调谐范围;
一p-InP层9,该p-InP层9制作在InGaAsP上限制层7上,该层厚度约为120nm;
一p-InGaAsP刻蚀阻止层10,该p-InGaAsP刻蚀阻止层10制作在p-InP层9上,厚度约为20nm,用做脊型条刻蚀时的刻蚀停止层;
一上p-InP盖层11,该上p-InP盖层11制作在p-InGaAsP刻蚀阻止层10上,厚度约为1.8微米;
一p-InGaAs接触层12,该p-InGaAs接触层12制作在上p-InP盖层11上,在该p-InGaAs接触层12上形成有不同区段的隔离沟,该隔离沟中注入有氦离子,以实现各电极之间的电隔离;
一金属电极13,该金属电极13制作在p-InGaAs接触层12的上表面,形成光栅分布布拉格反射可调谐激光器;
其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区14、增益区15、相区16和分布放大的后取样光栅区17;其中分布放大前取样光栅区14包含6至8个取样周期,每个周期长度约为58微米,其中光栅区约为5微米,分布增益区约为20微米;增益区15长度约为350微米;相区16约为100至150微米;分布放大的后取样光栅区17包含8至10个取样周期,每个周期长度约为62微米,其中光栅区约为6微米,分布增益区约为20微米;分布放大前取样光栅区14和分布放大的后取样光栅区17中的取样光栅8周期根据设计要求还可灵活变化。
其中所述分布放大前取样光栅区14包括交替重复的前光栅区18和前放大区19;分布放大后取样光栅区17包括交替重复的后光栅区20和后放大区21;将放大区分布的加入到取样光栅中可以更加有效的利用器件的空间,同时补偿较长的无源波导所带来的损耗,从而提高器件的输出功率。
其中该增益区15为有源波导5结构;相区16为无源波导6结构。
其中所述增益层4中,位于前光栅区18、后光栅区20和相区16中的无源波导6材料的带隙波长同位于增益区15和前放大区19及后放大区21中的有源波导5材料的带隙波长相比,蓝移量大于80nm,以降低波导吸收损耗;该带隙波长蓝移可通过量子阱混杂的集成方式获得,也可以通过采用量子阱偏移结构、对接生长的方式或者其他集成方式获得。
其中所述分布放大前取样光栅区14的金属电极13为梳状的前光栅区电极22和前放大区电极23;分布放大后取样光栅区17的金属电极13为梳状的后放大区电极24和后光栅区电极25。
请参阅图4所示,为本发明的第二实施例,同时结合配合图2、3所示,本发明的第二与第一实施例基本相同,不同之处为在放大前取样光栅区14和分布放大的后取样光栅区17中增益足够大的情况下,激光器结构可以不包括增益区15,以减小器件尺寸,此时放大前取样光栅区14和分布放大的后取样光栅区17中的取样周期数较之第一实施例要多,例如放大前取样光栅区14包含10至12个取样周期,分布放大的后取样光栅区17包含12至15个取样周期。
请参阅图4所示,为本发明的第三实施例,同时结合配合图2、3、4所示,本发明的第三与第二实施例基本相同,不同之处为在放大前取样光栅区14和分布放大的后取样光栅区17中增益足够大的情况下,激光器结构可以不包括增益区15和相区16,以减小器件尺寸和电极数量。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (11)

1.一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:
一衬底;
一n-InP缓冲层,该n-InP缓冲层制作在衬底上;
一InGaAsP下限制层,该InGaAsP下限制层制作在n-InP缓冲层上;
一增益层,该增益层制作在InGaAsP下限制层上,该增益层为交替的有源波导和无源波导结构;
一InGaAsP上限制层,该InGaAsP上限制层制作在增益层上,该InGaAsP上限制层的表面形成有取样光栅结构,该取样光栅光栅结构位于无源波导之上;
一p-InP层,该p-InP层制作在InGaAsP上限制层上;
一p-InGaAsP刻蚀阻止层,该p-InGaAsP刻蚀阻止层制作在p-InP层上;
一上p-InP盖层,该上p-InP盖层制作在p-InGaAsP刻蚀阻止层上;
一p-InGaAs接触层,该p-InGaAs接触层制作在上p-InP盖层上,在该p-InGaAs接触层上形成有不同区段的隔离沟,以实现各电极的隔离;
一金属电极,该金属电极制作在p-InGaAs接触层的上表面,形成光栅分布布拉格反射可调谐激光器;
其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区、增益区、相区和分布放大的后取样光栅区,所述分布放大前取样光栅区包括交替重复的前光栅区和前放大区;分布放大后取样光栅区包括交替重复的后光栅区和后放大区,所述分布放大前取样光栅区的金属电极为梳状的前光栅区电极和前放大区电极;该分布放大后取样光栅区的金属电极为梳状的后放大区电极和后光栅区电极。
2.根据权利要求1所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中所述的在增益层中,位于前光栅区、后光栅区和相区中的无源波导材料的带隙波长同位于增益区和前放大区及后放大区中的有源波导材料的带隙波长相比,蓝移量大于80nm,以降低波导吸收损耗。
3.根据权利要求1所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中增益区为有源波导结构;相区为无源波导结构。
4.根据权利要求1所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中在该p-InGaAs接触层上形成的隔离沟中注入有氦离子,以实现各电极之间的电隔离。
5.一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:
一衬底;
一n-InP缓冲层,该n-InP缓冲层制作在衬底上;
一InGaAsP下限制层,该InGaAsP下限制层制作在n-InP缓冲层上;
一增益层,该增益层制作在InGaAsP下限制层上,该增益层为交替的有源波导和无源波导结构;
一InGaAsP上限制层,该InGaAsP上限制层制作在增益层上,该InGaAsP上限制层的表面形成有取样光栅结构,该取样光栅光栅结构位于无源波导之上;
一p-InP层,该p-InP层制作在InGaAsP上限制层上;
一p-InGaAsP刻蚀阻止层,该p-InGaAsP刻蚀阻止层制作在p-InP层上;
一上p-InP盖层,该上p-InP盖层制作在p-InGaAsP刻蚀阻止层上;
一p-InGaAs接触层,该p-InGaAs接触层制作在上p-InP盖层上,在该p-InGaAs接触层上形成有不同区段的隔离沟;
一金属电极,该金属电极制作在p-InGaAs接触层的上表面,形成光栅分布布拉格反射可调谐激光器;
其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区、相区和分布放大的后取样光栅区,所述分布放大前取样光栅区包括交替重复的前光栅区和前放大区;分布放大后取样光栅区包括交替重复的后光栅区和后放大区,所述分布放大前取样光栅区的金属电极为梳状的前光栅区电极和前放大区电极;该分布放大后取样光栅区的金属电极为梳状的后放大区电极和后光栅区电极。
6.根据权利要求5所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中所述的在增益层中,位于前光栅区、后光栅区和相区中的无源波导材料的带隙波长同位于前放大区及后放大区中的有源波导材料的带隙波长相比,蓝移量大于80nm,以降低波导吸收损耗。
7.根据权利要求5所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中相区为无源波导结构。
8.根据权利要求5所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中在该p-InGaAs接触层上形成的隔离沟中注入有氦离子,以实现各电极之间的电隔离。
9.一种分布放大的取样光栅分布布拉格反射可调谐激光器,包括:
一衬底;
一n-InP缓冲层,该n-InP缓冲层制作在衬底上;
一InGaAsP下限制层,该InGaAsP下限制层制作在n-InP缓冲层上;
一增益层,该增益层制作在InGaAsP下限制层上,该增益层为交替的有源波导和无源波导结构;
一InGaAsP上限制层,该InGaAsP上限制层制作在增益层上,该InGaAsP上限制层的表面形成有取样光栅结构,该取样光栅光栅结构位于无源波导之上;
一p-InP层,该p-InP层制作在InGaAsP上限制层上;
一p-InGaAsP刻蚀阻止层,该p-InGaAsP刻蚀阻止层制作在p-InP层上;
一上p-InP盖层,该上p-InP盖层制作在p-InGaAsP刻蚀阻止层上;
一p-InGaAs接触层,该p-InGaAs接触层制作在上p-InP盖层上,在该p-InGaAs接触层上形成有不同区段的隔离沟;
一金属电极,该金属电极制作在p-InGaAs接触层的上表面,形成光栅分布布拉格反射可调谐激光器;
其中该光栅分布布拉格反射可调谐激光器分为分布放大前取样光栅区和分布放大的后取样光栅区,所述分布放大前取样光栅区包括交替重复的前光栅区和前放大区;分布放大后取样光栅区包括交替重复的后光栅区和后放大区,所述分布放大前取样光栅区的金属电极为梳状的前光栅区电极和前放大区电极;该分布放大后取样光栅区的金属电极为梳状的后放大区电极和后光栅区电极。
10.根据权利要求9所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中所述的在增益层中,位于前光栅区、后光栅区中的无源波导材料的带隙波长同位于前放大区及后放大区中的有源波导材料的带隙波长相比,蓝移量大于80nm,以降低波导吸收损耗。
11.根据权利要求9所述的分布放大的取样光栅分布布拉格反射可调谐激光器,其中在该p-InGaAs接触层上形成的隔离沟中注入有氦离子,以实现各电极之间的电隔离。
CN2010105645457A 2010-11-24 2010-11-24 分布放大的取样光栅分布布拉格反射可调谐激光器 Active CN102044844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105645457A CN102044844B (zh) 2010-11-24 2010-11-24 分布放大的取样光栅分布布拉格反射可调谐激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105645457A CN102044844B (zh) 2010-11-24 2010-11-24 分布放大的取样光栅分布布拉格反射可调谐激光器

Publications (2)

Publication Number Publication Date
CN102044844A CN102044844A (zh) 2011-05-04
CN102044844B true CN102044844B (zh) 2012-05-23

Family

ID=43910745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105645457A Active CN102044844B (zh) 2010-11-24 2010-11-24 分布放大的取样光栅分布布拉格反射可调谐激光器

Country Status (1)

Country Link
CN (1) CN102044844B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297147A (zh) * 2013-05-21 2013-09-11 武汉奥新科技有限公司 Sg-dbr可调谐激光器模块及其控制方法
CN108471046B (zh) * 2018-05-14 2020-08-04 南京大学 一种半导体激光器和控制方法
CN109560459A (zh) * 2018-12-03 2019-04-02 中国科学院半导体研究所 低啁啾分布布拉格反射可调谐激光器及其制备方法
CN109917505A (zh) * 2019-04-26 2019-06-21 电子科技大学中山学院 一种光栅光源
CN111124362B (zh) * 2019-12-06 2022-03-15 太原理工大学 一种基于单片集成混沌激光器的高速物理随机数发生器
CN113794107B (zh) * 2021-09-15 2024-01-23 中国科学院半导体研究所 一种量子级联激光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896325A (en) * 1988-08-23 1990-01-23 The Regents Of The University Of California Multi-section tunable laser with differing multi-element mirrors
EP1218973A4 (en) * 1999-09-03 2005-11-16 Univ California LASER SOURCE ACCORDABLE OPTICAL MODULATOR INT GR
AU2001266663A1 (en) * 2000-06-02 2001-12-17 Agility Communications, Inc. High-power, manufacturable sampled grating distributed bragg reflector lasers
JP2001352123A (ja) * 2000-06-09 2001-12-21 Fujitsu Ltd 半導体短パルス光源
US6788727B2 (en) * 2002-06-13 2004-09-07 Intel Corporation Method and apparatus for tunable wavelength conversion using a bragg grating and a laser in a semiconductor substrate
US7424041B2 (en) * 2004-04-29 2008-09-09 Avago Technologies Fiber Ip Pte Ltd. Wide tuneable laser sources

Also Published As

Publication number Publication date
CN102044844A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
CN102044844B (zh) 分布放大的取样光栅分布布拉格反射可调谐激光器
KR100958338B1 (ko) 광 증폭기가 집적된 슈퍼루미네슨트 다이오드 및 이를이용한 외부 공진 레이저
US10020638B2 (en) Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
CN101867148B (zh) 带有光子晶体反射面和垂直出射面的fp腔激光器
CN103779785B (zh) 可实现波长宽调谐的分布反射布拉格激光器及其制作方法
Nicholes et al. The world's first InP 8× 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port
CN104953468A (zh) 四段式放大反馈混沌光发射激光器结构
JP6543188B2 (ja) 波長多重光送信器及びその制御方法
WO2019128341A1 (zh) 一种激光器芯片、光发射组件、光模块及网络设备
JP4421951B2 (ja) 光送信モジュール
JP3284994B2 (ja) 半導体光集積素子及びその製造方法
Bakir et al. Heterogeneously integrated III-V on silicon lasers
JP2019008179A (ja) 半導体光素子
Soganci et al. Monolithic InP 100-port photonic switch
JP2006278729A (ja) 半導体光増幅素子
JP2007158204A (ja) 光集積デバイス
US20230187906A1 (en) Wavelength-variable laser
US10511150B2 (en) Wavelength-variable laser
CN112886392B (zh) 具有光开关作用的多段光放大耦合器
CN102082392A (zh) 可调谐激光器与光放大器的单片集成器件及其制作方法
US9979160B2 (en) Integrated optical circulator apparatus, method, and applications
Jiao et al. III–V photonic integrated circuits for beyond-telecom applications
Aihara et al. Si waveguide integrated membrane buried heterostructure DFB laser using SiN multiple-phase-shift surface grating
Sysak et al. A quantum well eam-sgdbr widely tunable transmitter fabricated in a novel dual-quantum-well integration platform
Sato et al. A compact external cavity wavelength tunable laser without an intracavity etalon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant