CN102040265B - 沿面谐振脉冲放电等离子体液体杀菌消毒方法 - Google Patents

沿面谐振脉冲放电等离子体液体杀菌消毒方法 Download PDF

Info

Publication number
CN102040265B
CN102040265B CN2010105366849A CN201010536684A CN102040265B CN 102040265 B CN102040265 B CN 102040265B CN 2010105366849 A CN2010105366849 A CN 2010105366849A CN 201010536684 A CN201010536684 A CN 201010536684A CN 102040265 B CN102040265 B CN 102040265B
Authority
CN
China
Prior art keywords
liquid
high voltage
voltage terminal
sterilization
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105366849A
Other languages
English (en)
Other versions
CN102040265A (zh
Inventor
闫克平
郑超
徐羽贞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2010105366849A priority Critical patent/CN102040265B/zh
Publication of CN102040265A publication Critical patent/CN102040265A/zh
Application granted granted Critical
Publication of CN102040265B publication Critical patent/CN102040265B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开一种沿面谐振脉冲放电等离子体液体杀菌消毒方法,它是通过磁开关将脉冲电源和直流电源连接,在所述脉冲电源和磁开关之间连接第一高压电极,在所述直流电源和磁开关之间连接第二高压电极,将第一高压电极和第二高压电极置于待处理液体的液面的上方,所述第一高压电极、第二高压电极与所述待处理液体的液面的距离>0,待处理液体接地作为地电极;由所述脉冲电源单独供电,或由所述脉冲电源叠加直流电源供电,使得在第一高压电极、第二高压电极与待处理液体的液面之间分别产生一段低温等离子体,对待处理液体进行杀菌消毒。本发明能够快速高效地杀灭液体中的细菌、病毒、寄生虫、藻类等微生物。

Description

沿面谐振脉冲放电等离子体液体杀菌消毒方法
技术领域
本发明涉及水处理及消毒灭菌技术领域。
背景技术
随着环境的不断恶化,由环境中微生物引起的污染日益增多,给整个生态环境和人类健康带来了潜在的危害。饮用水,食品医药工业用水,液态食品等直接关系到人体的健康,必须进行严格的消毒灭菌。城市生活污水,医疗系统废水,工业废水等引起的微生物污染则可能导致传染病的大规模爆发,必须进行微生物的控制。有些工业循环用水污染微生物后还会对设备造成腐蚀,或改变水体的物理化学性质,影响工业生产。船舶压载水的处理不当还会引起微生物物种入侵。
目前液体消毒的主要方法是投加化学消毒剂,如饮用水常用的氯化消毒法,存在化学物质的残留和有害消毒副产物的问题。臭氧消毒日益普遍,但价格昂贵,且只能现场生产。紫外线消毒主要用于气体的杀菌,紫外线消毒对液体的澄清度有较高要求,并受水中具有紫外吸收的化学物质的影响,且紫外线在液体中穿透力有限。膜过滤的方式也能滤除部分微生物,但微生物没有被杀死,还会继续在膜上繁殖,存在较大的潜在危险。
低温等离子体杀菌技术是是目前新型的液体非热杀菌技术之一,结合了自由基、臭氧、过氧化氢、紫外线辐射、强电磁场等多重物理化学杀菌因素,同时破坏细胞体和遗传物质,具有快速高效和无残留等特点,并能同时分解液体中的多种微量有机污染物。
目前的高电压脉冲放电低温等离子体液体杀菌消毒方法,由于任何单个反应器都无法同脉冲电源实现理想的匹配,所以在脉冲放电时只有部分能量通过等离子体注入反应器用于液体处理,造成能量利用率偏低,而且其余能量由于反应器的容性储存在反应器中,并反向充电回脉冲电源,对脉冲电源造成损坏。
发明内容
本发明的目的在于提供一种高效的沿面谐振脉冲放电等离子体液体杀菌消毒方法。
为实现上述目的,本发明所采取的技术方案是:通过磁开关将脉冲电源和直流电源连接,在所述脉冲电源和磁开关之间连接第一高压电极,在所述直流电源和磁开关之间连接第二高压电极,将第一高压电极和第二高压电极置于待处理液体的液面的上方,所述第一高压电极、第二高压电极与所述待处理液体的液面的距离>0,待处理液体接地作为地电极;由所述脉冲电源单独供电,或由所述脉冲电源叠加直流电源供电,使得在第一高压电极、第二高压电极与待处理液体的液面之间分别产生一段低温等离子体,对待处理液体进行杀菌消毒。
进一步地,本发明可向所述待处理液体中通入气体和/或加入液相催化剂。
进一步地,本发明所述气体为空气、惰性气体、氧气中的任一种或任几种的组合。
进一步地,本发明所述液相催化剂为纳米金、纳米银、碳纳米管、二氧化钛等中的任一种或任几种的组合。
与现有技术相比,本发明的有益效果是:脉冲电源提供的脉冲能量一部分在第一高压电极与待处理液体之间形成一段等离子体,另一部分脉冲能量通过磁开关的谐振作用转移到第二高压电极,从而在第二高压电极与待处理液体之间再形成一段等离子体,使得能量得以充分利用,使杀菌速度和效率大大提高,同时,也避免了脉冲电源的损坏。由脉冲电源叠加直流电源供电时,在直流基压的基础上,叠加一定频率的脉冲电压,可以在同样功率下获得更好的等离子体效果,或在产生同样效果的情况下,放电电压大幅度下降,对电子元器件的要求降低,能耗也相应下降。
附图说明
图1脉冲谐振放电等离子体液体杀菌消毒方法示意图。
其中,1.脉冲电源,2.直流电源,3.谐振磁开关,4第一高压电极,5.第二高压电极,6.待处理液体。
具体实施方式
如图1所示,本发明沿面谐振脉冲放电等离子体液体杀菌消毒方法是将脉冲电源1和直流电源2通过谐振磁开关3连接,在脉冲电源1和谐振磁开关3之间连接第一高压电极4,在直流电源2和谐振磁开关3之间连接第二高压电极5,将第一高压电极4和第二高压电极5置于待处理液体6的液面的上方,待处理液体6接地作为地电极,第一高压电极4、第二高压电极5与待处理液体6的液面的距离>0,待处理液体接地作为地电极;由脉冲电源单独供电,或由所述脉冲电源叠加直流电源供电,使得在第一高压电极4、第二高压电极5与待处理液体6的液面之间产生两段低温等离子体,从而对待处理液体进行净化处理。
本发明可采取不同的操作电压、脉冲波形及频率、谐振磁开关参数、以及高压电极到液面的不同距离,在数秒至数分钟的短时间内有效地杀灭待处理液体中的微生物。在待处理液体中鼓入气体和/或使用液相催化剂可提高杀菌效率。其中,气体催化剂可以是空气、惰性气体、氧气中的任一种或任几种的组合;液相催化剂可以是纳米金、纳米银、碳纳米管、二氧化钛等中的任一种或任几种的组合。本发明通过调节等离子体功率、等离子体处理时间和待处理液体的流速,可净化处理不同特性的液体。
以下以具体实施例进一步说明本发明的技术方案及其技术效果。
实施例1:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为15KV,脉冲频率为2pps,控制第一高压电极、第二高压电极到水面距离为3mm,静止处理2L水,细菌初始浓度为106cfu/mL,处理时间为1min,结果显示,水中的细菌杀死率为99.5%。
实施例2:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为15KV,脉冲频率为20pps,控制第一高压电极、第二高压电极到水面距离为3mm,水体流速为2L/min,细菌初始浓度为106fu/mL,2L/min水流从电极下流过时,处理时间为10s,结果显示,水中的细菌杀死率为99.9%。
实施例3:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为20KV,脉冲频率为15pps,控制第一高压电极、第二高压电极到水面距离为4mm,水体流速为1L/min,细菌初始浓度为105cfu/mL,1L/min水流从电极下流过,同时在水中通入2L/min的空气,处理时间为10s,结果显示,水中的细菌杀死率为99.99%。
实施例4:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为10KV,脉冲频率为30pps,控制第一高压电极、第二高压电极到水面距离为2mm,水体流速为4L/min,细菌初始浓度为105cfu/mL,4L/min水流从电极下流过时,同时在水中通入2L/min的氧气,处理时间为3s,结果显示,水中的细菌杀死率为99.95%。
实施例5:
以水为待处理液体,以酿酒酵母为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为25KV,脉冲频率为10pps,控制第一高压电极、第二高压电极到水面距离为5mm,水体流速为3L/min,细菌初始浓度为105cfu/mL,3L/min水流从电极下流过,同时在水中通入1L/min的氦气,处理时间为4s,结果显示,水中的酵母菌杀死率为99.93%。
实施例6:
以水为待处理液体,以枯草芽孢杆菌为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为30KV,脉冲频率为5pps,控制第一高压电极、第二高压电极到水面距离均为6mm,水体流速为5L/min,细菌初始浓度为107cfu/mL,5L/min水流从电极下流过,同时通入4L/min的体积比为1比1的氦气与氧气的混合气体,处理时间为2s,结果显示,水中的细菌杀死率为99.98%。
实施例7:
以牛奶为待处理液体,以乳酸杆菌为杀灭对象进行液体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为40KV,脉冲频率为1pps,控制第一高压电极、第二高压电极到水面距离为8mm,液体流速为1L/min,细菌初始浓度为104cfu/mL,1L/min牛奶从电极下流过,电极下方加入固定化纳米金催化剂1g,处理时间为10s,结果显示,牛奶中的细菌杀死率为99.9%。
实施例8:
以水为待处理液体,以酿酒酵母为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为50KV,脉冲频率为1pps,控制第一高压电极、第二高压电极到水面距离为12mm,水体流速为5L/min,细菌初始浓度为104cfu/mL,5L/min水流从电极下流过,电极下方加入固定化纳米银催化剂0.5g,处理时间为5s,结果显示,水中的细菌杀死率为99.7%。
实施例9:
以海水为待处理液体,以小球藻为杀灭对象进行水体杀菌试验,用分光光度法和血球计数法检测杀藻前后的变化。由脉冲电源单独供电,脉冲峰值电压为25KV,脉冲频率为4pps,控制第一高压电极、第二高压电极到水面距离为3mm,水体流速为2L/min,小球藻初始浓度为105个/mL,2L/min水流从电极下流过,电极下方加入固定化碳纳米管催化剂2g,处理时间为20s,结果显示,水中的小球藻杀死率为99.99%。
实施例10:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为10KV,脉冲频率为30pps,控制第一高压电极、第二高压电极到水面距离为2mm,水体流速为3L/min,细菌初始浓度为105cfu/mL,3L/min水流从电极下流过时,电极下方加入固定化二氧化钛催化剂3g,处理时间为2s,结果显示,水中的细菌杀死率为99.99%。
实施例11:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为15KV,脉冲频率为20pps,控制第一高压电极、第二高压电极到水面距离为3mm,水体流速为3L/min,细菌初始浓度为105cfu/mL,3L/min水流从电极下流过,电极下方加入固定化二氧化钛和碳纳米管催化剂各0.5g,处理时间为2s,结果显示,水中的细菌杀死率为99.94%。
实施例12:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源单独供电,脉冲峰值电压为15KV,脉冲频率为20pps,控制第一高压电极、第二高压电极到水面距离为3mm,水体流速为1L/min,细菌初始浓度为105cfu/mL,1L/min水流从电极下流过,电极下方加入固定化二氧化钛催化剂1g,同时在水中通入2L/min的氧气,处理时间为6s,结果显示,水中的细菌杀死率为100%。
实施例13:
以水为待处理液体,以消毒学指示菌大肠杆菌ATCC25922为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源和直流电源叠加供电,脉冲电源单峰值电压为5KV,脉冲频率为10pps,直流电源为5KV,控制第一高压电极、第二高压电极到水面距离为5mm,水体流速为3L/min,细菌初始浓度为105cfu/mL,3L/min水流从电极下流过,处理时间为2s,结果显示,水中的细菌杀死率为99.92%。
实施例14:
以水为待处理液体,以酿酒酵母为杀灭对象进行水体杀菌试验,用平板计数法(HPC)检测杀菌前后菌落的变化。由脉冲电源和直流电源叠加供电,脉冲电源单峰值电压为5KV,脉冲频率为10pps,直流电源为5KV,控制第一高压电极、第二高压电极到水面距离为5mm,水体流速为3L/min,酿酒酵母初始浓度为105cfu/mL,3L/min水流从电极下流过,处理时间为2s,结果显示,水中的细菌杀死率为99.95%。

Claims (4)

1.一种沿面谐振脉冲放电等离子体液体杀菌消毒方法,其特征在于:通过磁开关将脉冲电源和直流电源连接,在所述脉冲电源和磁开关之间连接第一高压电极,在所述直流电源和磁开关之间连接第二高压电极,将第一高压电极和第二高压电极置于待处理液体的液面的上方,所述第一高压电极、第二高压电极与所述待处理液体的液面的距离>0,待处理液体接地作为地电极;由所述脉冲电源单独供电,或由所述脉冲电源叠加直流电源供电,使得在第一高压电极、第二高压电极与待处理液体的液面之间分别产生一段低温等离子体,对待处理液体进行杀菌消毒。
2.根据权利要求1所述的沿面谐振脉冲放电等离子体液体杀菌消毒方法,其特征在于:向所述待处理液体中通入气体和/或加入液相催化剂。
3.根据权利要求2所述的沿面谐振脉冲放电等离子体液体杀菌消毒方法,其特征在于:所述气体为空气、惰性气体、氧气中的任一种或任几种的组合。
4.根据权利要求2所述的沿面谐振脉冲放电等离子体液体杀菌消毒方法,其特征在于:所述液相催化剂为纳米金、纳米银、碳纳米管、二氧化钛中的任一种或任几种的组合。
CN2010105366849A 2010-11-09 2010-11-09 沿面谐振脉冲放电等离子体液体杀菌消毒方法 Expired - Fee Related CN102040265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105366849A CN102040265B (zh) 2010-11-09 2010-11-09 沿面谐振脉冲放电等离子体液体杀菌消毒方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105366849A CN102040265B (zh) 2010-11-09 2010-11-09 沿面谐振脉冲放电等离子体液体杀菌消毒方法

Publications (2)

Publication Number Publication Date
CN102040265A CN102040265A (zh) 2011-05-04
CN102040265B true CN102040265B (zh) 2012-05-30

Family

ID=43906857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105366849A Expired - Fee Related CN102040265B (zh) 2010-11-09 2010-11-09 沿面谐振脉冲放电等离子体液体杀菌消毒方法

Country Status (1)

Country Link
CN (1) CN102040265B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204563A (zh) * 2013-01-21 2013-07-17 北京大学 一种基于低温等离子体的消毒水制备方法
CN104784722B (zh) * 2015-04-16 2017-12-19 南京农业大学 一种等离子体协同纳米材料光催化的包装内冷杀菌方法
CN105491773A (zh) * 2015-12-31 2016-04-13 大连民族大学 一种用于窥镜消毒的等离子体水制备方法及制备装置
CN111298741B (zh) * 2020-02-27 2024-03-29 浙江大学 一种飞灰的等离子体液相处理装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ264188A (en) * 1994-08-05 1996-10-28 Ennotech Holdings Ltd Method and apparatus for sterilising electrically conductive liquid by creating a voltage gradient between electrodes in contact with the liquid
US5876663A (en) * 1995-11-14 1999-03-02 The University Of Tennessee Research Corporation Sterilization of liquids using plasma glow discharge
CN1300007C (zh) * 2005-03-24 2007-02-14 浙江大学 一种用于废水处理的脉冲液相等离子体电源装置
CN100446849C (zh) * 2006-11-01 2008-12-31 浙江大学 一种高压直流/脉冲放电同步净化气液的方法及装置
CN201351129Y (zh) * 2008-11-24 2009-11-25 浙江大学 饮用水安全消毒的脉冲等离子体催化装置

Also Published As

Publication number Publication date
CN102040265A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
EP1341726B1 (en) Decontaminated fluids and biocidal liquids
JP4041224B2 (ja) 液体処理方法及び液体処理装置
CN102625730A (zh) 向液体供给离子的方法和装置以及杀菌方法和装置
CN102050512B (zh) 沿面放电等离子体液体杀菌消毒方法
US9079788B2 (en) Reducing waterborne bacteria and viruses by a controlled electric field
CN105565467B (zh) 一种杀菌消毒器
CN102040265B (zh) 沿面谐振脉冲放电等离子体液体杀菌消毒方法
JP2004143519A (ja) 水処理方法および水処理装置
CN104748229A (zh) 等离子体空气消毒净化装置
Ghasemi et al. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds
JP3695628B2 (ja) 微生物の不活化方法及び不活化装置
CN104843810A (zh) 给水处理器
JP2015524665A (ja) 水産養殖の殺菌システム
CN102765787A (zh) 污水中注入等离子体自由基灭菌消毒的方法和装置
JP4844488B2 (ja) 高電圧パルス制御による選択的液体処理方法
CN204737768U (zh) 给水消毒净化器
CN204727623U (zh) 给水处理器
CN108653756A (zh) 施加于细菌和病毒细胞膜上电压差值杀菌的系统及方法
KR101323258B1 (ko) 플라즈마 살균방법
Vaze et al. Air and water sterilization using non-thermal plasma
CN104276628A (zh) 一种非热电弧等离子体净化养殖水的方法
CN214371215U (zh) 一种基于高压窄脉冲杀菌家用电冰箱拓扑结构
CN104843837A (zh) 给水消毒净化器
CN208182764U (zh) 一种瓶装水的生产系统
CN214286045U (zh) 一种用于消毒的臭氧消毒装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20131109