CN102037572A - 太阳能生成系统 - Google Patents

太阳能生成系统 Download PDF

Info

Publication number
CN102037572A
CN102037572A CN200980109006XA CN200980109006A CN102037572A CN 102037572 A CN102037572 A CN 102037572A CN 200980109006X A CN200980109006X A CN 200980109006XA CN 200980109006 A CN200980109006 A CN 200980109006A CN 102037572 A CN102037572 A CN 102037572A
Authority
CN
China
Prior art keywords
battery
array
energy
equipment
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200980109006XA
Other languages
English (en)
Inventor
T·D·费
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WEDGE TECHNOLOGIES LLC
Original Assignee
WEDGE TECHNOLOGIES LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WEDGE TECHNOLOGIES LLC filed Critical WEDGE TECHNOLOGIES LLC
Publication of CN102037572A publication Critical patent/CN102037572A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

一种产生太阳能电能的设备通常包括:聚焦太阳辐射的光学部件;准直光学部件;布置于准直光学部件的焦点附近的用于在多个相邻的波长带之间分散入射太阳辐射的半导体光学栅楔;光伏电池阵列,每个电池由将通过楔分散的相应波长带吸收并转换成光伏能量的材料而形成;以及,配置于所述楔和阵列之间用于将分离的波长带引导到相应的光伏电池上的折射光学部件。

Description

太阳能生成系统
太阳能光伏(PV)电池现在为地球上的偏远场所和航天器提供电力,在这些地方其它电源是昂贵的或不能利用的。太阳能PV技术还不能同大部分中心位置的发电应用相竞争,因为它们都显著地比其它可用能源(例如,煤,气和核能)昂贵。
太阳能PV技术仍然被关注,因为随着其供给的减少,现存的发电形式无疑将会变得更加昂贵。所有形式的太阳能电力也是可再生的和对环境友好的。当前具有动力来使太阳能PV电池更便宜并且提高其效率(直接将太阳能转换为电)。
当前全球仅电能生产成本大约为$300M/hr;并且整体的能源市场是该数字的两倍。能够以比现有的燃煤或核能安装成本低的成本来安装的任何能源生产能力都将会受到热烈欢迎。
太阳能PV电池的现存问题是双重的。首先,基于其安装成本,对于中心位置的发电而言,它们不能同传统能源相竞争,(太阳能大约$7-$10/安装瓦特,相比而言,煤、核能、或天然气为$4-$5/瓦特)。其次,目前太阳能PV电池需要与用于众多电子工业(计算机、LED和二极管激光器)中的稀缺半导体材料相同的稀缺半导体材料。为了使太阳能PV电池作为发电源具有竞争性,它们必须具有更低的制造成本,在它们将太阳能转换为电时变得更有效率得多,并且它们必须几乎完全使用便宜且丰富的材料来制造。
当前太阳能电池技术在屋顶应用中使用单结电池。这种电池通常具有大约12%到18%的效率且需要纯硅,纯硅在电子工业大量用于其它应用。为了提高太阳能电池的效率,已进行了大量尝试来制造“多结”电池。设计这些堆叠的电池,使得电池的不同层吸收入射太阳能的不同能量带。
这种多结电池被证明是更有效率的-在实验室中最好的例子取得的效率是刚刚超过40%。然而,复杂性限制了其组件中必须用的材料(例如Ge,III-V)并且目前它们比单结电池要昂贵得多。
当前聚光太阳能电池的制造中,可以实现(Spectrolab,波音公司)40%或更大的最大效率,但只有当每个电池层(包括涂层)的厚度能够极高精度地气相沉积时,才是如此。每个电池层的厚度必须被精确控制以在电池的每个部分保持相同的电流生成。对于多结电池,尤其如此,在多结电池中结间相等的电流需要在每个结之间的昂贵的、精确的隧道二极管。除了与精确制造相关的高工艺成本之外,这些多结部件还必须相互间“晶格匹配”。
这意味着电池设计者受限于稀缺的、昂贵的半导体合金组合,以便在每一个结达到精确相同的分子晶格间距。
为了在中心位置发电市场中竞争,太阳能PV电池和聚光系统必须成本低于$2/安装瓦特。同样,它们必须达到高效率以使它们的“占空比”(duty cycle)有竞争力。目前一种典型的中心位置发电设备“工作”(on station)~20小时/天。在美国西南部,固定的,SOA太阳能板只有大约6小时/天产生电能,占空比为~25%。跟踪太阳的太阳能电池将会每天平均约11小时产生电能。
发明内容
依照本发明用于产生太阳能光伏能量的设备通常包括:聚焦太阳辐射的光学部件;紧接着是准直光学部件;半导体光学栅楔(optical gate wedge),设置用于将入射的太阳辐射分散成多个相邻的波长带。该楔可包括多个涂层以减少反射损失。
提供光伏电池阵列,每个电池用吸收和转换被该楔分散的相应波长带成为电能的材料形成。折射光学部件配置在该楔和该阵列之间以将被分离的波长带引导到相应的光伏电池上。
以这种方式,在分散的阵列中的电池中的每种半导体材料为仅匹配该材料吸收和转换太阳光而成为电能的能力的入射太阳光谱中的波长范围而设置。
这些“未堆叠的”(unstacked)太阳能电池阵列使用丰富的且不那么贵的材料以比现有多结电池低很多的工艺成本制造。一旦每个PV材料和电池针对其适当的光子波长或能量而被优化,则获得的光伏(PV)电池阵列电能/总功率分数(效率)将超过40%。
相反地,如前所述的,现有技术太阳能板系统受限于18%或更少的整体效率。
更特别地,折射光学部件设置在该楔和该阵列之间,其目的是将分离的波长带引导到相应的光伏电池上。每个电池包括单结的III-V或Si光伏电池,其显著降低了设备的成本。
更特别的,作为一个示例,该阵列可以包括5个电池,其中第一个电池吸收能量为0.95到1.15eV的太阳光子,第二个电池吸收能量为1.2到1.4eV的太阳光子,第三个电池吸收能量为1.45到1.7eV的太阳光子,第四个电池吸收能量为1.75到2.1eV的太阳光子,并且第五个电池吸收能量为2.15到2.8eV的太阳光子。
更特别的,第一个电池可由GaInAsP形成,第二个电池可由Si形成,第三个电池可由GaAs形成,第四个电池可由GaInP形成且第五个电池可由Al2GaInP4形成。
为了进一步提高设备的效率和效果,该折射光学部件可以设置用于将来自该楔的光空间分散到光伏电池上,垂直电池表面入射。
依照本发明提供一种优化光伏电池阵列的方法,通常包括:聚焦太阳辐射到半导体光学栅楔上;通过该栅楔分散太阳辐射成多个相邻波长带,引导相邻波长带使它们垂直光伏电池阵列的表面入射。更特别的,该方法进一步包括设置多个单结III-V或Si光伏电池以形成线性阵列。
附图说明
通过考虑以下结合附图的详细描述本发明将更容易理解,其中:
图1是依照本发明的产生太阳光伏能量的光伏(PV)盒的图示,其一般性地示出了准直光学部件、半导体光学栅楔、光伏电池阵列以及设置在该楔和该阵列之间的阵列光学部件;
图2是太阳能生成系统的图示,包括与图1所示PV盒操作上有关系地配置的聚焦光学部件;
图3是依照本发明图2所示聚焦光学部件的一个实施例的图示,其示例出具有4面镜子的菲涅耳阵列;
图4是依照本发明图2所示聚焦光学部件的一个可选实施例的图示,其示例出具有36面镜子的菲涅耳阵列;以及
图5是生成的电学瓦特对太阳光谱与以eV为单位的光子能量之间的关系图,示出了依照本发明通过使用单结二极管光伏电池阵列的设备的效率。
具体实施方式
参考图1,示出了按照本发明的产生太阳光伏能量的光伏(PV)盒,其通常包括:准直光学部件12;半导体光学栅楔14,如果需要选择性反射入射辐射,则其可以被涂覆;设置在楔14和光伏电池22、24、26、28、30的阵列18之间的折射光学部件16。太阳辐射通过窗口8进入该PV盒10。
如图2所示,太阳能量生成系统2包括聚焦太阳辐射到PV盒10的窗口8上的聚焦光学部件4。该PV盒通过几个支柱6附着到聚焦光学部件4的支撑上。
聚焦光学部件4可以具有任意适合的构造和尺寸,例如,图3中所示,其中聚焦光学部件包括具有4面镜子34、36、38、40的菲涅耳阵列4a,每面镜子直径为0.5m,它们离两个半导体光学栅楔14约0.5m的距离。所述楔14具有约0.04m2的面积。假设太阳能输入为920W/m2且聚焦光学部件收集面积为0.78m2,位于该楔位置处的功率大约是722W。以40%的效率来计,功率输出差不多为300瓦电能。合适的楔14在Fay的美国专利No.7238954和7286582中描述。这些参考文献在这里整体引入目的是为了描述用于本发明的适合的楔14。
PV盒10可通过增加聚焦光学部件4、准直光学部件12、楔14、折射光学部件16和光伏电池阵列18的尺寸,而调节为任何适合的尺寸。例如,如图4所示,聚焦光学部件4b可包括排列为三圈的36面镜子的阵列,总的直径为14m且收集面积为113m2。假设太阳能输入为920W/m2且聚焦光学部件收集面积为113m2,位于所述楔处的功率大约是105,000W。以40%的效率来计,功率输出差不多为42,000瓦电能。这种情况下,可使用面积为0.18m2的9个楔14。利用聚焦光学部件4a和4b收集的太阳能的量分别代表了适用于家庭和商业发电的实施例。
用于聚焦光学部件4的菲涅耳透镜和折射光学部件16可从Edmuds Optics或Opto Sigma,或Newport Optical得到。半导体光学栅楔14,如上文参考的美国专利所述可以通过TWO-SIX和Janos Optical得到。
可以利用常规的太阳能跟踪器(未示出)以便使聚焦光学部件4a、4b在0.1度内垂直于入射太阳辐射。
重要地,本发明的设置使光伏电池的线性阵列成为可能,所述光伏电池可以包括单结的III-V或Si光伏电池。任何数量的合适的光伏电池22-30可在该阵列中使用,虽然图中示出了5个,但是任何数量,例如3个,可以被使用,这取决于太阳能生成系统2的尺寸。这些“未堆叠的”太阳能电池阵列18使用丰富的且不那么昂贵的材料,具有低得多的工艺成本。由于每个光伏材料和电池由于所述楔而针对其适合的光波长或能量入射被优化,该光伏电池阵列18可具有超过40%的效率。转而,所述楔14具有与串联连接以增加电压的光伏电池阵列18的表面大约相同的折射率。另外,这些PV电池优选地通过外部电连接相互阻抗匹配以最大化整体电输出。
采用5个电池的阵列的情况下,第一个电池22可构造为吸收能量为0.95到1.15eV的太阳光子,第二个电池24可构造为吸收能量为1.20到1.4eV的太阳光子,第三个电池26可构造为吸收能量为1.45到1.7eV的太阳光子,第四个电池28可构造为吸收能量为1.75到2.1eV的太阳光子,并且第五个电池30可构造为吸收能量为2.15到2.18eV的太阳光子。
更特别地,电池22可以是GaInAsP,第二电池24可以是Si,第三电池26可以是GaAs,第四电池28可以是GaInP2,且第五电池30可以是Al2GaInP4。这些电池基于沿用已久的发光二极管或者LED工业技术。这些LED将电流转换为多个波长的光,每一个接近该材料的带隙。这些相同的LED(通过小的设计变更)能够接收通过楔分散的每个波长带内的太阳光并将其高效率地转化为电流。
这种基于的LED光伏电池可通过许多厂商获得,例如,Cree公司等。然而,合适的材料并不局限于上文列举的那些,还可包括用于优化太阳光谱的近红外不可见区域的光伏-电能转换的IV、III-V、或II-VI族材料类型的材料。适用于本发明的材料的进一步描述在Fay的U.S.5617206、7238954和7286582中描述。这些参考文献也通过该特定的引用结合到本文中。
如上文所述,光伏电池22-30的效率通过光学栅楔18提供,光学栅楔18引起的分散足够克服太阳角直径(9.3毫弧度)的光学产生的局限性。折射光学部件16完成分散且聚焦不同波长(光子能量)的光到不同的电池22-30。折射光学部件16进一步垂直于电池22-30在空间上分散光,以防止光伏阵列18的电池22-30过热。
设备的效率如图5所示。横跨太阳光谱大气层上的太阳光谱(图5中所描述的标题为AM0,或者在空气质量为零)如曲线52所示,并且生成的电瓦数如曲线54所示,其中以分段1、2、3、4、5表示的每个电池的太阳能转换范围对应于电池22、24、26、28、30。
尽管上文描述了根据本发明的特定的太阳能生成系统和方法,其目的是阐明本发明的优势,应当理解,本发明并不局限于此。就是说,本发明可合适地含有所描述的元件,由所描述的元件组成,或者基本由所描述的元件组成。进一步地,可以在缺少在此处未特别公开的任何元件的情况下,适当地实践本文所说明性地公开的发明。相应地,对本技术熟练人员来说的任何及所有变更、改变或等效设置,应视为在由所附权利要求界定的本发明的范围内。

Claims (18)

1.一种用于产生太阳光伏能量的设备,该设备包括:
用于聚焦太阳辐射的光学部件;
准直光学部件;
半导体光学栅楔,其设置成靠近所述准直光学部件的焦点,用于将入射的太阳辐射分散成多个相邻的波长带;
光伏电池阵列,每个电池由吸收通过所述楔分散的相应波长带并且将所述波长带转换成电能的材料形成;以及
折射光学部件,置于所述楔和所述阵列之间用于将分离的波长带引导到相应的光伏电池上。
2.如权利要求1所述的设备,其中每个电池包括单结的、III-V或者Si光伏电池。
3.如权利要求2所述的设备,其中所述阵列包括3个光伏电池。
4.如权利要求2所述的设备,其中所述阵列包括5个光伏电池。
5.如权利要求1所述的设备,其中所述阵列包括5个电池,第一个电池吸收能量为0.95到1.15eV的太阳光子,第二个电池吸收能量为1.2到1.4eV的太阳光子,第三个电池吸收能量为1.45到1.7eV的太阳光子,第四个电池吸收能量为1.75到2.1eV的太阳光子,并且第五个电池吸收能量为2.15到2.8eV的太阳光子。
6.如权利要求3所述的设备,其中第一电池是GaInAsP,第二电池是Si,第三电池是GaAs,第四电池是GaInP2,且第五电池是Al2GaInP4
7.如权利要求1所述的设备,其中折射光学部件布置用于将来自所述楔的光空间分散到所述光伏电池上,垂直于电池表面入射。
8.如权利要求1所述的设备,其中所述楔包括防反射涂层以减少反射损失。
9.如权利要求1所述的设备,其中所述聚焦光学部件包括多面菲涅耳镜子。
10.如权利要求9所述的设备,其中所述聚焦光学部件包括4面菲涅耳镜子。
11.如权利要求9所述的设备,其中所述聚焦光学部件包括以3个同心圆排列的36面菲涅耳镜子。
12.一种最佳化光伏电池阵列的方法,所述方法包括:
将太阳辐射聚焦到半导体光学栅楔上;
通过所述栅楔将太阳辐射分散成多个相邻波长带;以及
大致与所述光伏电池阵列成直角地将所述相邻波长带引导到所述光伏电池阵列上,使得每个阵列元件的带隙能量匹配入射的光子能量。
13.如权利要求12所述的方法,进一步包括排列多个单结的、III-V或者Si光伏电池以形成光伏电池阵列。
14.如权利要求13所述的方法,其中排列多个电池包括排列3个相邻的电池。
15.如权利要求13所述的方法,其中排列多个电池包括排列5个相邻的电池。
16.如权利要求12所述的方法,其中聚焦光学部件包括多面菲涅耳镜子。
17.如权利要求16所述的方法,其中使用多面菲涅耳镜子包括使用4面菲涅耳镜子。
18.如权利要求16所述的方法,其中使用多面菲涅耳镜子包括使用36面菲涅耳镜子。
CN200980109006XA 2008-03-14 2009-02-26 太阳能生成系统 Pending CN102037572A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/048926 2008-03-14
US12/048,926 US20090229651A1 (en) 2008-03-14 2008-03-14 Solar energy production system
PCT/US2009/035338 WO2009114284A2 (en) 2008-03-14 2009-02-26 Solar energy production system

Publications (1)

Publication Number Publication Date
CN102037572A true CN102037572A (zh) 2011-04-27

Family

ID=41061658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980109006XA Pending CN102037572A (zh) 2008-03-14 2009-02-26 太阳能生成系统

Country Status (9)

Country Link
US (2) US20090229651A1 (zh)
EP (1) EP2269235A4 (zh)
JP (1) JP2011514682A (zh)
CN (1) CN102037572A (zh)
AU (1) AU2009223412A1 (zh)
BR (1) BRPI0909341A2 (zh)
CA (1) CA2729611A1 (zh)
IL (1) IL208096A0 (zh)
WO (1) WO2009114284A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113875147A (zh) * 2019-03-25 2021-12-31 Lusoco公司 用于从环境光生成能量的设备和光电转换设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088781A1 (zh) * 2010-01-19 2011-07-28 华中科技大学 一种采用光子晶体的色散型太阳能电池
US9133585B2 (en) * 2010-12-01 2015-09-15 Paulo Alexandre Teixeira E. Silva Cardoso System of superstructures and section presenting such system of superstructures
JPWO2012161332A1 (ja) * 2011-05-24 2014-07-31 日本電気株式会社 集光型太陽光発電装置
US9876133B2 (en) 2014-08-19 2018-01-23 King Fahd University Of Petroleum And Minerals Photovoltaic system for spectrally resolved solar light
RU2684685C1 (ru) * 2018-05-14 2019-04-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Фотоэлектрический модуль
CN109470236B (zh) * 2018-11-26 2021-01-15 中国科学院长春光学精密机械与物理研究所 一种星敏感器

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021267A (en) * 1975-09-08 1977-05-03 United Technologies Corporation High efficiency converter of solar energy to electricity
US4300811A (en) * 1978-08-28 1981-11-17 Rca Corporation III-V Direct-bandgap semiconductor optical filter
US4350837A (en) * 1981-02-11 1982-09-21 Clark Stephan R Spectrovoltaic solar energy conversion system
US4433199A (en) * 1982-06-17 1984-02-21 Middy Gerald W Solar insolation and concentration by coupled fiber optics
US4577110A (en) * 1983-04-11 1986-03-18 Biochem Sensors, Inc. Optical apparatus and method for measuring the characteristics of materials by their fluorescence
US4603940A (en) * 1983-08-30 1986-08-05 Board Of Trustees Of The Leland Stanford Junior University Fiber optic dye amplifier
US4609286A (en) * 1984-04-16 1986-09-02 Becton, Dickinson And Company Dispersion prism for separation of wavelengths of spectrally rich light in a flow cytometry apparatus
FI843409A0 (fi) * 1984-08-29 1984-08-29 Labsystems Oy Fluorometer.
US5023885A (en) * 1988-09-20 1991-06-11 Siemens Aktiengesellschaft External optical resonator for a semiconductor laser
US4907237A (en) * 1988-10-18 1990-03-06 The United States Of America As Represented By The Secretary Of Commerce Optical feedback locking of semiconductor lasers
US5189676A (en) * 1989-09-06 1993-02-23 The Board Of Trustees Of The Leland Stanford Junior University Broadband laser source
US5091652A (en) * 1990-01-12 1992-02-25 The Regents Of The University Of California Laser excited confocal microscope fluorescence scanner and method
US5154777A (en) * 1990-02-26 1992-10-13 Mcdonnell Douglas Corporation Advanced survivable space solar power system
US5956355A (en) * 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5189547A (en) * 1991-05-28 1993-02-23 New Focus, Inc. Electro-optical light modulator driven by a resonant electrical circuit
JP3309430B2 (ja) * 1992-07-28 2002-07-29 ソニー株式会社 レーザ光発生装置
US5319668A (en) * 1992-09-30 1994-06-07 New Focus, Inc. Tuning system for external cavity diode laser
US5528612A (en) * 1993-11-19 1996-06-18 The United States Of America As Represented By The Secretary Of The Navy Laser with multiple gain elements
US5491344A (en) * 1993-12-01 1996-02-13 Tufts University Method and system for examining the composition of a fluid or solid sample using fluorescence and/or absorption spectroscopy
US6287298B1 (en) * 1994-02-04 2001-09-11 Spectra-Physics Lasers, Inc. Diode pumped, multi axial mode intracavity doubled laser
DE19510102C1 (de) * 1995-03-20 1996-10-02 Rainer Dr Uhl Konfokales Fluoreszenzmikroskop
US5611870A (en) * 1995-04-18 1997-03-18 Edtek, Inc. Filter array for modifying radiant thermal energy
US5617206A (en) * 1995-12-04 1997-04-01 Phi, Applied Physical Sciences International Compact laser diode monitor using defined laser momentum vectors to cause emission of a coherent photon in a selected direction
AU2269597A (en) * 1996-02-13 1997-09-02 Optical Corporation Of America External cavity semiconductor laser with monolithic prism assembly
US5867512A (en) * 1997-02-10 1999-02-02 Sacher; Joachim Tuning arrangement for a semiconductor diode laser with an external resonator
US5912910A (en) * 1996-05-17 1999-06-15 Sdl, Inc. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices
DE19634405C2 (de) * 1996-08-26 2003-02-20 Hne Elektronik Gmbh & Co Satel Solarmodul
US5787878A (en) * 1996-09-23 1998-08-04 Ratliff, Jr.; George D. Solar concentrator
US5995521A (en) * 1997-05-16 1999-11-30 New Focus, Inc. External cavity laser pivot design
PE48299A1 (es) * 1997-06-11 1999-07-06 Nalco Chemical Co Fluorometro de estado solido y metodos de uso para el mismo
US6121053A (en) * 1997-12-10 2000-09-19 Brookhaven Science Associates Multiple protocol fluorometer and method
US5998796A (en) * 1997-12-22 1999-12-07 Spectrumedix Corporation Detector having a transmission grating beam splitter for multi-wavelength sample analysis
US6316774B1 (en) * 1998-08-18 2001-11-13 Molecular Devices Corporation Optical system for a scanning fluorometer
US6236456B1 (en) * 1998-08-18 2001-05-22 Molecular Devices Corporation Optical system for a scanning fluorometer
CA2280398C (en) * 1998-10-26 2009-01-20 Lothar Lilge A semiconductor based excitation illuminator for fluorescence and phosphorescence microscopy
US6084998A (en) * 1998-12-30 2000-07-04 Alpha And Omega Imaging, Llc System and method for fabricating distributed Bragg reflectors with preferred properties
US6628682B1 (en) * 1999-11-29 2003-09-30 Komatsu Ltd. Wavelength detection device for line-narrowed laser apparatus and ultra line-narrowed fluorine laser apparatus
US6369894B1 (en) * 2000-05-01 2002-04-09 Nalco Chemical Company Modular fluorometer
WO2002035260A2 (en) * 2000-10-27 2002-05-02 Molecular Devices Corporation Light detection device
US6697192B1 (en) * 2000-11-08 2004-02-24 Massachusetts Institute Of Technology High power, spectrally combined laser systems and related methods
US6804000B2 (en) * 2000-12-15 2004-10-12 Sloan-Kettering Institute For Cancer Research Beam-steering of multi-chromatic light using acousto-optical deflectors and dispersion-compensatory optics
US6693925B2 (en) * 2001-04-18 2004-02-17 Chromaplex, Inc Modulatable multi-wavelength fiber laser source
JP2002350613A (ja) * 2001-05-28 2002-12-04 Fuji Photo Film Co Ltd 光学装置の迷光遮断構造
US6469241B1 (en) * 2001-06-21 2002-10-22 The Aerospace Corporation High concentration spectrum splitting solar collector
US6717045B2 (en) * 2001-10-23 2004-04-06 Leon L. C. Chen Photovoltaic array module design for solar electric power generation systems
US6930822B2 (en) * 2001-11-20 2005-08-16 Spectra Physics, Inc. Wavelength locker
US7005645B2 (en) * 2001-11-30 2006-02-28 Air Liquide America L.P. Apparatus and methods for launching and receiving a broad wavelength range source
FI20020018A0 (fi) * 2002-01-08 2002-01-08 Wallac Oy Viritysvalolaitteisto
US6816514B2 (en) * 2002-01-24 2004-11-09 Np Photonics, Inc. Rare-earth doped phosphate-glass single-mode fiber lasers
TWI291274B (en) * 2002-07-04 2007-12-11 Arima Optoelectronics Corp Resonating cavity system for broadly tunable multi-wavelength semiconductor lasers
US6649439B1 (en) * 2002-08-01 2003-11-18 Northrop Grumman Corporation Semiconductor-air gap grating fabrication using a sacrificial layer process
US6661814B1 (en) * 2002-12-31 2003-12-09 Intel Corporation Method and apparatus for suppressing stimulated brillouin scattering in fiber links
US7038781B2 (en) * 2003-10-01 2006-05-02 Coherent, Inc. Time correlation of ultrafast laser pulses
US7238954B1 (en) * 2003-10-08 2007-07-03 Fay Jr Theodore Denis Optical external cavities having brewster angle wedges
US7286582B1 (en) * 2003-10-08 2007-10-23 Fay Jr Theodore Denis Optical external cavities having brewster angle wedges
US20050169324A1 (en) * 2004-01-30 2005-08-04 Ilday Fatih O. Self-similar laser oscillator
US20060029110A1 (en) * 2004-08-03 2006-02-09 Imra America, Inc. Cavity monitoring device for pulse laser
WO2006037114A2 (en) * 2004-09-28 2006-04-06 Hitachi Via Mechanics, Ltd Fiber laser based production of laser drilled microvias for multi-layer drilling, dicing, trimming or milling applications
US7526003B2 (en) * 2004-12-08 2009-04-28 Polaronyx, Inc. Nonlinear polarization pulse shaping mode locked fiber laser at one micron
US7352790B2 (en) * 2005-01-21 2008-04-01 Northrop Grumman Corporation Method and apparatus for producing an eye-safe laser
JP2007019361A (ja) * 2005-07-11 2007-01-25 Mitsutoyo Corp 周波数安定化レーザ
US7805081B2 (en) * 2005-08-11 2010-09-28 Pacific Biosciences Of California, Inc. Methods and systems for monitoring multiple optical signals from a single source
US7945077B2 (en) * 2005-11-30 2011-05-17 Lawrence Livermore National Security, Llc Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues
WO2007114871A2 (en) * 2005-12-22 2007-10-11 Solbeam, Inc. Electro-optic prism assemblies
EP2023127B1 (en) * 2006-05-31 2017-12-20 Olympus Corporation Biological specimen imaging method and biological specimen imaging apparatus
US20070289622A1 (en) * 2006-06-19 2007-12-20 Lockheed Martin Corporation Integrated solar energy conversion system, method, and apparatus
CN101083288A (zh) * 2007-06-12 2007-12-05 邱定平 分光谱太阳能光电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALLEN BARNETT ET AL.: "《MILESTONES TOWARD 50% EFFICIENT SOLAR CELL MODULES》", 《THE 22ND EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113875147A (zh) * 2019-03-25 2021-12-31 Lusoco公司 用于从环境光生成能量的设备和光电转换设备

Also Published As

Publication number Publication date
AU2009223412A1 (en) 2009-09-17
WO2009114284A3 (en) 2010-01-07
EP2269235A4 (en) 2016-06-29
EP2269235A2 (en) 2011-01-05
WO2009114284A2 (en) 2009-09-17
IL208096A0 (en) 2010-12-30
CA2729611A1 (en) 2009-09-17
BRPI0909341A2 (pt) 2015-09-29
US20090229651A1 (en) 2009-09-17
US20140174498A1 (en) 2014-06-26
JP2011514682A (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
Sharaf et al. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I–Fundamentals, design considerations and current technologies
Mojiri et al. Spectral beam splitting for efficient conversion of solar energy—A review
US7208674B2 (en) Solar cell having photovoltaic cells inclined at acute angle to each other
Datas Optimum semiconductor bandgaps in single junction and multijunction thermophotovoltaic converters
CN102037572A (zh) 太阳能生成系统
US20090250098A1 (en) Method for Solar-To-Electricity Conversion
Chen et al. Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method
US20140183960A1 (en) Photovoltaic power generation system
Andreev et al. Solar thermophotovoltaic converters based on tungsten emitters
van Dijk et al. Exploration of external light trapping for photovoltaic modules
Eisler et al. Spectrum splitting photovoltaics: Polyhedral specular reflector design for ultra-high efficiency modules
CN101894875B (zh) 一种高效聚光式太阳能光电转换器
Rumyantsev et al. Terrestrial and space concentrator PV modules with composite (glass-silicone) Fresnel lenses
Eisler et al. Design improvements for the polyhedral specular reflector spectrum-splitting module for ultra-high efficiency (> 50%)
US20110259421A1 (en) Photovoltaic module having concentrator
Ayane et al. Performance analysis of a two stage micro photovoltaic concentrator
Martín et al. Development of GaSb photoreceiver arrays for solar thermophotovoltaic systems
Rajaee et al. Analysis and Implementation of a New Method to Increase the Efficiency of Photovoltaic Cells by Applying a Dual Axis Sun Tracking System and Fresnel Lens Array
Alvarez et al. Optics design key points for high-gain photovoltaic solar energy concentrators
Antonini Photovoltaic Concentrators-Fundamentals, Applications, Market & Prospective
KR101402722B1 (ko) 광결정 구조체를 이용한 파장 제한 광전지 장치
KR101723148B1 (ko) 태양광 발전용 태양전지 유닛 및 그 제조방법
Abd Alaziz et al. Effects of reflectance and shading on parabolic dish photovoltaic solar concentrator performance
KR102424453B1 (ko) 입체형 태양전지로 구성된 태양광 모듈 및 이를 이용한 태양광 발전시스템
Sherif et al. First demonstration of multi-junction receivers in a grid-connected concentrator module

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110427