CN102031146A - 一种两段法高芳烃油加氢转化方法 - Google Patents

一种两段法高芳烃油加氢转化方法 Download PDF

Info

Publication number
CN102031146A
CN102031146A CN2010106022044A CN201010602204A CN102031146A CN 102031146 A CN102031146 A CN 102031146A CN 2010106022044 A CN2010106022044 A CN 2010106022044A CN 201010602204 A CN201010602204 A CN 201010602204A CN 102031146 A CN102031146 A CN 102031146A
Authority
CN
China
Prior art keywords
section
oil
reaction zone
stage
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010106022044A
Other languages
English (en)
Inventor
何巨堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2010106022044A priority Critical patent/CN102031146A/zh
Publication of CN102031146A publication Critical patent/CN102031146A/zh
Pending legal-status Critical Current

Links

Abstract

一种两段法高芳烃油加氢转化方法,一段加氢生成油重裂化原料在二段通过串联的二段第一反应区2R1(高沸点馏分加氢裂化反应区)和二段联合加氢裂化反应区2RU(低沸点馏分裂化反应区)以降低二次裂解反应,一段加氢生成油轻裂化原料1LBO(轻蜡油馏分和或重柴油馏分)引入反应区2RU;一段加氢反应流出物与二段段加氢反应流出物可以分别分离或联合分离;可以将二段加氢生成油重裂化原料引入2R1,可以将二段加氢生成油轻裂化原料引入2RU实现循环裂化。本发明特别适合于以中温煤焦油或中温煤焦油重馏分或蒽油为原料制备优质柴油组分的加氢转化过程。

Description

一种两段法高芳烃油加氢转化方法
技术领域
本发明涉及一种两段法高芳烃油加氢转化方法,一段加氢生成油高沸点裂化原料在二段通过串联的二段第一反应区2R1(高沸点蜡油馏分裂化反应区)和二段联合加氢裂化反应区2RU(低沸点蜡油馏分裂化反应区),一段加氢生成油低沸点裂化原料1LBO(低沸点蜡油馏分和或重柴油馏分)引入二段联合加氢裂化反应区2RU;将二段加氢生成油高沸点裂化原料引入2R1,将二段加氢生成油低沸点裂化原料引入二段第二反应区2RU实现循环裂化。特别地讲,本发明涉及一种以中温煤焦油或中温煤焦油重馏分或蒽油为原料制备柴油组分的加氢转化过程。
背景技术
以高芳烃油如中温煤焦油或中温煤焦油重馏分或蒽油为第一原料烃,采用先加氢精制后加氢裂化的两段法生产柴油组分的过程,通常一段加氢精制生成油中包含重蜡油组分、轻蜡油组分和重柴油组分,在完成重蜡油组分和轻蜡油组分加氢裂化生产柴油的情况下,按照现有技术,存在如下工程技术问题:
①按照联合加工技术方案,一段加氢精制生成油中的重蜡油组分和轻蜡油组分的混合物进入同一加氢裂化反应区,必然使用同一种加氢裂化催化剂,不可能同时对重蜡油组分和轻蜡油组分构成最佳操作条件,在完成一段加氢精制生成油重蜡油组分加氢裂化生产柴油的同时,必然造成一段加氢精制生成油轻蜡油组分的过度裂化(因为催化剂裂解活性相对高、反应温度相对高、催化剂空速相对低),增加附加氢耗、降低柴油收率;特别是对于一段加氢精制生成油中轻蜡油组分收率高的情况(比如中温焦油加氢精制生成油),此缺点更为显著;
②按照分别独立加工技术方案,建设两套装置,工程投资巨大,特别是装置规模较小时,此缺点更为显著。
本发明所述技术方案的高芳烃油两段法加氢转化方法,未见报道。
因此,本发明的第一目的在于提出一种两段法高芳烃油加氢转化方法,第一原料烃的加氢生成油高沸点裂化原料在二段串联通过第一加氢裂化反应区2R1和二段联合加氢裂化反应区2RU,第一原料烃的加氢生成油低沸点裂化原料通过二段联合加氢裂化反应区2RU,以降低二次裂解反应。
本发明的第二目的在于提出一种两段法煤焦油加氢转化方法。
发明内容
本发明一种两段法高芳烃油加氢转化方法,其特征在于包含以下步骤:
①在一段加氢反应部分,在氢气和一段加氢精制催化剂存在条件下,第一原料烃(高芳烃油)完成一段加氢精制反应,生成一个由氢气、常规气体烃和常规液体烃组成的一段加氢反应流出物1RP;
②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段冷高压分离部分分离为一段冷高分油1LL和一段冷高分气1LV;一段冷高分油1LL用作一段加氢生成油;
③在一段加氢生成油分离部分,分离一段加氢生成油得到一段加氢生成油高沸点裂化原料1HBO和一段加氢生成油低沸点裂化原料1LBO;
④在二段加氢反应部分,至少一部分1HBO进入二段第一反应区2R1与二段第一加氢裂化催化剂2R1C接触完成二段第一加氢裂化反应转化为二段第一反应区反应流出物2R1P,2R1P和至少一部分1LBO进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触完成二段联合加氢裂化反应,得到二段联合加氢裂化反应流出物2RUPM。
二段加氢生成油高沸点裂化原料2HBO循环裂化时,本发明的特征进一步在于:⑤在二段加氢生成油分离部分,分离二段加氢生成油得到二段加氢生成油高沸点裂化原料2HBO;至少一部分2HBO进入二段第一反应区2R1与二段第一加氢裂化催化剂2R1C接触。
二段加氢生成油低沸点裂化原料2LBO循环裂化时,本发明的特征进一步在于:⑤在二段加氢生成油分离部分,分离二段加氢生成油得到二段加氢生成油低沸点裂化原料2LBO;至少一部分2LBO进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触。
二段联合加氢裂化反应流出物2RUPM与一段加氢反应流出物进行联合分离时,本发明的特征进一步在于:④二段联合加氢裂化反应流出物2RUPM进入步骤②与一段加氢反应流出物混合。
本发明的操作条件一般为:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为280~480℃、压力为6.0~30.0MPa、一段加氢精制催化剂体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于425℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点355~425℃的烃类组成;
④二段第一反应区2R1操作条件为:温度为280~460℃、压力为6.0~30.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为270~420℃、压力为6.0~30.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
本发明的操作条件通常为:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于390℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~390℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
当一段加氢生成油低沸点裂化原料1LBO包含重柴油组分时,本发明的特征进一步在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于375℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~375℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
1LBO先独立加氢裂化、然后进行联合加氢裂化时,本发明的特征进一步在于:③部分1LBO进入二段第二反应区2R2与1LBO第二加氢裂化催化剂2R2C接触完成1LBO第二加氢裂化反应转化为二段第二反应区反应流出物2R2P,2R2P进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触。
二段第二反应区2R2操作条件一般为:④二段第二反应区2R2使用1LBO第二加氢裂化催化剂2R2C,二段第二反应区2R2操作条件为:温度为270~420℃、1LBO第二加氢裂化催化剂2R2C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
二段第二反应区2R2操作条件通常为:④二段第二反应区2R2的1LBO第二加氢裂化催化剂2R2C的体积空速为0.5~3hr-1
当一段热高分油1RPL柴油含量很低时,本发明的特征进一步在于:
②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段热高压分离部分分离为一段热高分油1RPL和一段热高分气1RPV,至少一部分1RPV进入一段冷高压分离部分;至少一部分一段热高分油1RPL进入二段第一反应区2R1与第一加氢裂化催化剂2R1C接触。
当一段热高分油1RPL进入二段第一反应区2R1时,本发明的特征进一步在于:④一段热高分油1RPL主要由常规沸点高于335℃的烃类组成,一段热高分油1RPL中常规沸点高于335℃的烃类重量浓度:通常大于0.80、最好大于0.90。
当一段热高分油1RPL进入二段第一反应区2R1时,为了降低其中的柴油含量,本发明的特征进一步在于:①第一原料烃为煤焦油;②一段热高分油1RPL与氢气物流FH完成接触并分离为气体FHP和一段脱轻组分热高分油1RPLP;至少一部分一段脱轻组分热高分油1RPLP进入二段第一反应区2R1与第一加氢裂化催化剂2R1C接触。
当二段联合加氢裂化反应流出物2RUPM与一段热高分气1RPV联合分离时时,本发明的特征进一步在于:②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段热高压分离部分分离为一段热高分油1RPL和一段热高分气1RPV,至少一部分1RPV进入一段冷高压分离部分;④二段联合加氢裂化反应流出物2RUPM进入步骤②与一段热高分气1RPV混合。
具体实施方式
以下详细描述本发明。
本发明所述压力为绝对压力。
本发明所述的常规沸点指的是物质在一个大气压力下的汽液平衡温度。
本发明所述的常规气体烃指的是常规条件下呈气态的烃类,包括甲烷、乙烷、丙烷、丁烷。
本发明所述的杂质组分指的是原料油中非烃组分的加氢物如水、氨、硫化氢、氯化氢等。
本发明所述的组分的组成或浓度或含量或收率值,除非特别说明,均为重量基准值。
本发明所述的常规液体烃指的是常规条件下呈液态的烃类,包括戊烷及其沸点更高的烃类。
本发明所述的比重,除非特别说明,指的是常压、15.6℃条件下液体密度与常压、15.6℃条件下水密度的比值。
本发明所述的石脑油指的是常规沸点低于200℃的常规液体烃。
本发明所述的柴油组分指的是常规沸点为200~355℃的烃类。
本发明所述的蜡油组分指的是常规沸点为355~530℃的烃类。
本发明所述高芳烃油(第一原料烃),指的是芳烃含量较高的烃油,其加氢生成油重蜡油馏分和轻蜡油馏分的组成差别较大。
本发明的一个重要目标是:在低的裂化率前提下,对加氢生成油重蜡油馏分进行加氢裂化生产优质柴油组分。
本发明的又一个重要目标是:在对加氢生成油重蜡油馏分进行加氢裂化生产优质柴油组分的同时,经济的对加氢生成油轻蜡油馏分(特别是对柴油高沸点馏分)实现低裂化率前提下的加氢裂化。
本发明所述高芳烃油(第一原料烃),可以是来自煤热解或其它过程的蒽油或高沸点煤焦油或煤焦油高沸点馏分,通常包含第一原料烃轻馏分FLO和第一原料烃重馏分FHO,第一原料烃轻馏分FLO主要由常规沸点低于320℃的组分组成,第一原料烃重馏分FHO主要由常规沸点高于320℃的组分组成。
本发明所述高芳烃油(第一原料烃),其第一原料烃重馏分FHO主要由常规沸点介于320~500℃的组分组成,如果高密度高芳烃油中含有常规沸点高于500℃甚至高于530℃的组分,为了保证高密度高芳烃油加氢精制过程催化剂运行周期,需要将这些不适宜加氢精制的组分分离为残液进行有关加工(比如焦化)或利用。
根据需要,本发明设置第一原料烃分离部分,将第一原料烃分离为第一原料烃轻馏分FLO、第一原料烃重馏分FHO和可能存在的残液,第一原料烃轻馏分FLO主要由常规沸点低于320℃的组分组成,第一原料烃重馏分FHO主要由常规沸点高于320℃的组分组成。第一原料烃分离部分,通常采用减压蒸馏的分离方式以降低过程温度、减缓缩合与结焦,其减压蒸馏塔塔顶操作压力(绝对压力)通常低于0.06MPa。
由于原煤性质和炼焦工艺条件均在一定范围内变化,本发明所述第一原料烃的性质也在一定范围内变化。本发明所述第一原料烃的性质,常规沸点一般为210~500℃或更高,比重通常为1.00~1.25或更高,水含量通常为0.2~5.0%,通常金属含量为2~80PPm、硫含量为0.4~1.0%、氮含量为0.6~1.4%、氧含量为0.4~4.0%。
在本发明所述高芳烃油(第一原料烃)的一段加氢精制过程中,水是不利的组分,一方面,在第一原料烃进入一段加氢精制反应器前的加热升温过程中,水的存在会加剧高密度高芳烃中酸类对管道、设备等的腐蚀,腐蚀产生的铁等金属离子进入一段加氢精制反应器,为保证预期的操作周期,必须使用更多的加氢脱金属催化剂(保护剂)同时增加氢耗量;另一方面,原料水含量的增加将提高反应过程水蒸汽分压,对催化剂性能稳定性和长周期运行不利。因此,在第一原料烃进入一段加氢精制反应部分之前,通常进行脱水处理以尽可能地降低水含量,脱水的方法不受限制。
第一原料烃通常还含有有害固体颗粒(比如直径大于10~20微米的固体颗粒),为了防止有害固体颗粒损坏加氢精制原料油高压输送泵和沉积在一段加氢精制催化剂床层上,通常在脱水前、后的适当温度条件下进行过滤。
本发明建议第一原料烃进入一段加氢精制催化剂床层之前(通常在所述第一原料烃分离部分)进行脱水及过滤处理。
本发明所述第一原料烃,可以是所述煤焦油或所述煤焦油馏分或所述煤焦油热加工(比如焦化、减粘等热加工)等过程所得馏分或它们的混合物,但必须是适宜加氢转化的组分。
本发明所述第一原料烃重馏分FHO和第一原料烃轻馏分FLO,必须是适宜加氢转化的馏分。
按照本发明,在一段第一反应区,在氢气和一段第一加氢精制催化剂存在条件下,第一原料烃轻馏分FLO完成一段第一加氢精制反应过程,生成一个由氢气、常规气体烃、常规液体烃组成的一段第一加氢精制反应流出物1R1P。
第一原料烃轻馏分FLO与第一原料烃重馏分FHO相比,分子平均碳数较少,胶质含量较少,起始反应温度较低,适宜的催化剂性质差别较大,本发明将第一原料烃轻馏分FLO引入一段第一反应区1R1与一段第一加氢精制催化剂1R1C接触,将第一原料烃重馏分FHO引入一段第二反应区1R2与一段第二加氢精制催化剂1R2C接触,一段第一反应区反应流出物1R1P串联通过一段第二反应区1R2,改善一段第二反应区1R2原料油性质和反应条件,一段第二反应区反应流出物1R2P作为一段加氢反应流出物1RP使用。当将芳香度低的氢含量高的烃油例如来自煤焦油加氢生成油的烃组分引入一段第一反应区1R1时,一段加氢反应部分反应总体过程的原料油性质被显著改善了,在降低一段冷高分油密度的同时,也有利于延长一段加氢反应过程的操作周期、提高一段加氢反应过程稳定性或优化一段加氢反应部分操作条件(比如降低停工飞温风险、加工廉价劣质原料、实现不同馏分分类加工)。
为了改善一段加氢反应部分原料油性质、延缓结焦速度、延长操作周期,本发明应用于第一原料烃煤焦油加氢转化时,可以加工第二原料烃。第二原料烃可以是任一种合适的烃,可以是石油基烃或页岩油基烃或煤焦油基烃。第二原料烃也可以是来自第一原料烃加氢转化过程产生的含烃物流比如一段热高分油或一段冷高分油或一段冷高分油分离所得油品或二段热高分油或二段冷高分油或二段热低分油或二段冷低分油或二段加氢生成油分离所得窄馏分油(通常为沸点最高者),此时本发明存在烃油循环流程。使用合适的第二原料烃,通过改善一段加氢反应部分总体原料的性质,可以改善一段加氢反应部分的操作条件。
本发明所述的第一原料烃轻馏分FLO完成的一段第一加氢精制反应过程一词,指的是在氢气和合适的一段第一加氢精制催化剂存在条件下第一原料烃轻馏分FLO发生的加氢精制反应过程,其最低的反应深度应具备最低限度的工业意义:即为第二加氢精制反应部分提供合适的原料油,应根据第一原料烃轻馏分FLO性质和一段第二加氢精制催化剂性质的要求确定:一般该过程第一原料烃轻馏分FLO的残炭脱除率大于50%、通常大于70%、最好大于85%,通常第一原料烃轻馏分FLO在一段第一加氢精制反应过程的单位重量氢气消耗量是与其在一段第二加氢精制反应过程的单位重量氢气消耗量之比值:通常为0.1~3.0、最好为0.3~1.5。
所述的一段第一加氢精制反应过程,因原料性质(金属含量、氧含量、硫含量、氮含量、芳烃含量、馏程、比重)的不同和加氢精制深度(加氢脱金属、加氢脱氧、加氢脱硫、加氢脱氮、加氢饱和、一定程度的加氢精制性“裂化”)的不同,其操作条件的变化范围很宽,应根据具体的过程条件确定。
所述的一段第一加氢精制催化剂1R1C可以是一种或两种或多种催化剂的串联组合或混装。一段第一加氢精制催化剂1R1C可以是石油炼制柴油和/或蜡油的加氢精制过程使用的加氢脱硫剂、加氢脱氮剂、加氢芳烃饱和剂等加氢精制催化剂及其组合。由于煤焦油金属含量通常较高,故通常在一段第一加氢精制反应过程(通常位于反应过程的前部)使用加氢保护剂(加氢脱金属剂)。
所述的一段第一反应区1R1,根据需要可以将任一种补充硫加入该反应部分,以保证必须的最低硫化氢浓度,保证反应过程的催化剂必须的硫化氢分压不低于最低的必须值:比如500PPm或1000PPm。所述的补充硫可以是含硫化氢或可以转化为硫化氢的对煤焦油加氢过程无不良作用的物料,比如含硫化氢的气体或油品,或与高温氢气接触后转化为硫化氢的二硫化碳或二甲基二硫等。
按照本发明,在一段第二反应区1R2,在氢气和一段第二加氢精制催化剂1R2C存在条件下,一段第一加氢精制反应流出物1R1P和第一原料烃重馏分FHO完成一段第二加氢精制反应,生成一个由氢气、常规气体烃、常规液体烃组成的一段第二加氢精制反应流出物1R2P。
本发明所述的第一原料烃重馏分FHO完成的一段第二加氢精制反应过程一词,指的是在氢气和合适的一段第二加氢精制催化剂1R2C存在条件下第一原料烃重馏分FHO发生的加氢精制反应过程,其最低的反应深度应具备最低限度的工业意义:即为后续的加氢裂化反应过程提供合适的原料油,应根据第一原料烃重馏分FHO性质和一段第二加氢精制催化剂1R2C性质的要求确定:一般该过程第一原料烃重馏分FHO的残炭脱除率大于50%、通常大于70%、最好大于85%。
所述的一段第二加氢精制反应过程,因原料性质(金属含量、氧含量、硫含量、氮含量、芳烃含量、馏程、比重)的不同和加氢精制深度(加氢脱金属、加氢脱氧、加氢脱硫、加氢脱氮、加氢饱和、一定程度的加氢精制性“裂化”)的不同,其操作条件的变化范围很宽,应根据具体的过程条件确定。
所述的一段第二加氢精制催化剂可以是一种或两种或多种催化剂的串联组合或混装。一段第二加氢精制催化剂可以是石油炼制柴油和/或蜡油的加氢精制过程使用的加氢脱硫剂、加氢脱氮剂、加氢芳烃饱和剂等加氢精制催化剂及其组合。由于煤焦油金属含量通常较高,故通常在一段第二加氢精制反应过程(通常位于反应过程的前部)使用加氢保护剂(加氢脱金属剂)。
按照本发明,经过一段第一反应区和一段第二反应区,在优选的操作条件下,可以达到的目标是:加氢石脑油的氮含量(平均值)一般低于100PPm、通常低于30PPm、最好低于10PPm;加氢柴油的十六烷值(平均值)比高密度高芳烃油同沸点组分十六烷值(平均值)提高10以上、最好提高15以上。
按照本发明,在一段热高压分离部分,一段第二加氢精制反应流出物1R2P分离为一段热高分油1HL和一段热高分气1HV,其目的是使一段第二加氢精制反应流出物1R2P中的部分高沸点馏分(存在于一段热高分油1HL中)不通过一段冷高压分离部分、即不进入一段冷高分油1LL中以降低一段冷高分油1LL的密度或芳烃含量,同时可以避免其在一段冷高压分离部分存在的水冷或空冷降温过程发生的热损失。
按照本发明,在一段冷高压分离部分,至少一部分一段加氢反应部分反应流出物1RP分离为一段冷高分油1LL、一段冷高分气1LV和一段冷高分水1LW,一段冷高分水1LW中水组分来源于一段加氢精制反应过程的生成水和或外部洗涤水。
在一段冷高压分离部分,如果第一原料烃氧含量足够高或氮含量足够低使得一段第二加氢精制反应流出物1R2P含有足够多的水因此不需要外部冲洗水时,可以不加入外部冲洗水,但是这种情况是少见的。
在一段冷高压分离部分,一段加氢反应部分反应流出物1RP通常先降低温度(一般是与一段反应部分原料换热)至约220~100℃(该温度应高于一段加氢反应部分反应流出物1RP中硫加氢氨结晶温度),然后与加入的洗涤水混合形成注水后一段加氢反应部分反应流出物1RPW。洗涤水用于吸收一段加氢反应部分反应流出物1RP中的氨及可能产生的其它杂质如氯化氢等,而吸收氨后的水溶液必然吸收一段加氢反应部分反应流出物1RP中的硫化氢。所述一段冷高压分离部分包含注水后一段加氢反应部分反应流出物1RPW的冷却、分离步骤,所述的注水后一段加氢反应部分反应流出物RPW通常先降低温度(通常使用空气冷却器和或水冷却器)至约30~70℃、最好30~60℃,在此降温过程中,注水后一段加氢反应部分反应流出物1RPW中水蒸汽逐渐冷凝为液相,吸收注水后一段加氢反应部分反应流出物1RPW中的氨并进一步吸收注水后一段加氢反应部分反应流出物RPW中的硫化氢,形成一段冷高分水1LW液体。最终所述注水后一段加氢反应部分反应流出物1RPW冷却并在一段冷高压分离器中分离为:一个在体积上主要由氢气组成的一段冷高分气1LV气体、一个主要由常规液体烃组成的一段冷高分油1LL液体和一个主要由水组成的含氨的一段冷高分水1LW液体。所述一段冷高分水1LW,其中氨的含量一般为1~15%(w),最好为3~8%(w)。洗涤水注入量的确定原则是,一方面,洗涤水注入一段加氢反应部分反应流出物RP后分为汽相水和液相水,液相水量必须大于零,最好为洗涤水总量的30%或更多,以防止水全汽化;另一方面,注入洗涤水的直接目的是在一段冷高压分离部分吸收一段加氢反应部分反应流出物RP中的氨,防止一段加氢反应部分反应流出物RP的氨浓度太高,在反应系统积聚,降低催化剂活性,通常一段冷高分气1LV的氨浓度越低越好,一般不大于200PPm,最好不大于50PPm;再一方面,洗涤水的另一直接目的是同时吸收一段加氢反应部分反应流出物RP中的硫化氢,防止一段加氢反应部分反应流出物1RP的冷却降温过程形成硫加氢氨或多硫氨结晶堵塞换热器通道,增加系统压力降。所述的一段冷高压分离部分,其一段冷高压分离器操作压力为一段反应区压力减去实际压力降,一段冷高压分离器压力与一段反应区压力的差值,不宜过低或过高,一般为0.5~1.2MPa,最好为0.5~0.8MPa。所述的一段冷高分气1LV气体,其氢气浓度值,不宜过低(导致装置操作压力上升),一般应不低于70%(v),宜不低于80%(v),最好不低于85%(v)。按照本发明,如前所述至少一部分、通常为85~100%的所述一段冷高分气1LV进入加氢反应过程使用。为了提高装置投资效率,必须保证一段冷高分气1LV氢浓度不低于前述的低限值,为此,根据具体的原料性质、反应条件、产品分布,可以排除一部分所述一段冷高分气1LV(以下简称一段冷高分气排放气)以排除反应产生的甲烷、乙烷。对于一段冷高分气排放气,可以采用常规的膜分离工艺或变压吸附工艺或油洗工艺实现氢气与非氢气体组分分离,并将回收的氢气用作新氢。
按照本发明,所述的一段加氢反应流出物分离部分,指的是将至少包含一段冷高分油1LL的原料分离为加氢生成油和循环氢的步骤。
在本发明一段冷高分油分离部分,一段冷高分油1LL被分离为两个或多个窄馏分油品,部分窄馏分油品可以循环至一段第一反应区或一段第二反应区与加氢精制催化剂接触构成“循环流程”。
本发明存在一段热高分油1HL时,在一段热高分油分离部分,分离为两个或多个窄馏分油品,部分窄馏分油品可以循环至一段第一反应区或一段第二反应区与加氢精制催化剂接触构成“循环流程”。
本发明的一段冷高分油分离部分和一段热高分油分离部分,可以部分或全部共用。
本发明所述一段加氢生成油分离部分一词,指的是将包含一段冷高分油1LL和或可能存在的一段热高分油1HL的总体原料分离为两个或多个窄馏分油品的部分,部分窄馏分油品可以循环至一段第一反应区或一段第二反应区与加氢精制催化剂接触构成“循环流程”。
按照本发明,当二段加氢生成油和一段加氢生成油进行联合分离时,二段加氢生成油高沸点裂化原料2HBO与一段加氢生成油高沸点裂化原料1HBO已经一体化,二段加氢生成油低沸点裂化原料2LBO与一段加氢生成油低沸点裂化原料1LBO已经一体化。
以下详细描述本发明的二段第一反应区2R1。
在二段加氢反应部分,至少一部分1HBO进入二段第一反应区2R1与二段第一加氢裂化催化剂2R1C接触完成二段第一加氢裂化反应转化为二段第一反应区反应流出物2R1P。
所述二段第一反应区2R1,因其原料(加氢精制重油)性质(氮含量、芳烃含量)的不同和预期的加氢裂化反应深度的不同,其操作条件的变化范围很宽,应根据具体的过程条件确定。
二段第一反应区2R1,使用的加氢裂化催化剂可以是一种或两种或多种催化剂的串联组合和混装。加氢裂化催化剂可以是合适的石油炼制过程柴油(包括劣质柴油)和/或蜡油/或重油的加氢裂化过程使用的加氢裂化催化剂(包括缓和裂化催化剂)及其组合。
如上所述二段第一反应区2R1,可以选用不掺合分子筛的无定形(硅铝)加氢裂化催化剂或少量掺合分子筛的无定形(硅铝)加氢裂化催化剂,以尽可能增强对原料中有机氮化物的适应能力,提高柴油组分产率,也可以使用加氢精制催化剂和加氢裂化催化剂及后精制催化剂进行级配。
本发明所述二段第一加氢裂化反应一词,指的是在氢气和合适的催化剂存在条件下,1HBO发生的耗氢的反应过程(通常包含裂化反应),其最低的反应深度应具备最低限度的工业意义:比如生产预期性质的柴油馏份,应根据HBO性质、预期柴油馏份性质和加氢裂化催化剂2R1C性能确定:以期提高柴油馏份十六烷值、降低柴油馏份密度至预期目标,同时兼顾液体收率,该过程裂化转化率一般为20~80%、通常为35~65%。
以下详细描述本发明的二段联合加氢裂化反应区2RU。
按照本发明,二段联合加氢裂化反应区2RU使用二段联合加氢裂化催化剂2RUC。二段联合加氢裂化催化剂2RUC应具有以下功能:
①当二段第一反应区反应流出物2R1P中柴油组分进入二段联合加氢裂化反应区2RU时,二段联合加氢裂化催化剂2RUC对联合加氢生成油柴油组分具有低裂化率(裂化率低于10%甚至低于5%);二段联合加氢裂化催化剂2RUC可以是部分催化剂活性中心的设计目标是对2R1P中柴油组分具有低裂化率(裂化率低于15%甚至低于8%)的加氢脱芳烃功能或选择性加氢开环裂化芳烃饱和脱芳功能的催化剂;
②当二段第一反应区反应流出物2R1P中蜡油组分2R1PVGO进入二段联合加氢裂化反应区2RU时,二段联合加氢裂化催化剂2RUC对2R1PVGO具有“低裂化气体产率、高柴油收率”的裂化功能,即提高二段联合加氢裂化催化剂2RUC加氢脱芳烃饱和功能、同时可能需要减弱加氢裂化功能,也可以在二段联合加氢裂化催化剂床层的尾部混装具有柴油组分选择性加氢开环脱芳功能的催化剂。
具有柴油组分选择性加氢开环脱芳功能的催化剂,可以是任意一种合适的轻蜡油加氢裂化催化剂,可以是典型的石油基高芳烃含量催化柴油用选择性加氢开环脱芳催化剂,这些技术有中国石油化工股份有限公司抚顺石油化工研究院的MCI技术、中国石油化工股份有限公司北京石油化工科学研究院的RICH技术等,记载这类技术的文献见表1。二段联合加氢裂化反应区2RU原料柴油组分的裂解物柴油收率:一般大于85%、通常大于90%、最好大于95%。
表1记载选择性加氢开环脱芳催化剂的出版物
Figure BSA00000396787300171
具有柴油组分选择性加氢开环脱芳功能的催化剂,通常对石脑油组分具有具有低裂化功能(裂化率低于5%甚至更低)的加氢脱硫、脱氮功能。
具有柴油组分选择性加氢开环脱芳功能的催化剂,通常对2R1PDC具有低裂化率(裂化率低于15%甚至低于8%)加氢脱芳烃功能。
具有柴油组分选择性加氢开环脱芳功能的催化剂,通常对2R1PVGO具有低裂化率(裂化率低于15%甚至低于8%)条件下的一定的加氢脱芳烃功能或选择性加氢开环裂化芳烃饱和脱芳功能。
二段联合加氢裂化催化剂2RUC,也可以是专门设计制备的具备上述综合功能的新的单一催化剂,也可以是用多种催化剂级配形成的具备上述综合功能的多种催化剂组合方案,也就是说二段联合加氢裂化催化剂2RUC可以包括一种、两种或多种催化剂。
按照本发明,一段加氢精制生成油高沸点裂化原料使用二段第一加氢裂化催化剂2R1C完成一段加氢精制生成油高沸点裂化原料加氢裂化生产柴油指的是一段加氢精制生成油高沸点裂化原料接触性质不同于2RUC的二段第一加氢裂化催化剂2R1C,但是并不排除在先接触二段第一加氢裂化催化剂2R1C的条件下后接触2RUC,这是因为1HBO接触2R1C生成的产物2R1P中低沸点裂化原料组分含量高,2R1P含有的2RUC可以采用缓和加氢裂化的方式改善其质量(在气体产率的的条件下完成大分子裂化),因此可以适当减少二段第一加氢裂化催化剂2R1C的用量或通过建立二段加氢生成油蜡油组分循环接触二段第一加氢裂化催化剂2R1C构成低气体产率的一段加氢精制生成油蜡油组分循环加氢裂化过程。
本发明设置的二段联合加氢裂化反应区2RU,其最后一个催化剂床层可以是加氢脱硫醇催化剂催化剂床层,这一点是加氢裂化过程的通常用法,防止二段选择性加氢改质反应的轻质烃类液体产品(液化气和或汽油馏分)腐蚀指标或硫含量超标。
以下详细描述本发明的二段第二反应区2R2的第二加氢裂化催化剂2R2C。
按照本发明,二段第二反应区2R2使用第二加氢裂化催化剂2R2C(组成和性质可以与催化剂2RUC相同或不同),可以是任意一种合适的轻蜡油加氢裂化催化剂,其性质通常不同于二段第一加氢裂化催化剂2R1C,其性质也可以同于二段第一加氢裂化催化剂2R1C但是操作温度(通常较低)、液时空速(通常较高)等操作条件不同。二段第二反应区2R2的裂解物柴油收率比二段第一反应区2R1的裂解物柴油收率:一般高5%、通常高10%。
按照本发明,可以采用CN101067095A公开的由本发明人提出的一种烃类加氢过程热量回收方法,在加氢生成油分离部分设置循环取热油系统,回收加氢反应流出物的热能,可用于第一原料烃加氢生成油分离部分以提供分馏塔(T)塔底重沸热或加热冷物流,可降低加热炉负荷取得降低加热炉投资和降低燃料耗量的效果,同时降低冷氢用量(降低循环氢系统规模)取得降低高压氢循环系统投资和降低循环氢热损失的效果。此时,加氢反应流出物与低温取热油换热,形成低温反应流出物和高温取热油;高温取热油可以进入分馏塔(T)底部,与分馏塔(T)内液相物流混合后,再分流、放热成为低温取热油循环使用。
本发明典型的煤焦油两段法加氢裂化过程,可以有效脱除煤焦油中的金属、氧、硫、氮,使其中大部分多环化合物饱和、裂化,使油品性质得到大幅度改善,石脑油馏份产品可以作为优质催化重整原料组分、柴油全馏份产品可以作为柴油调和组分(十六烷值大于28或大于32)。
新氢进入加氢过程以补充加氢部分消耗的氢气,新氢氢浓度越高越好,一般不宜低于95%(v),最好不低于99%(v)。可将全部新氢引入任一加氢反应过程。
按照本发明,一段循环氢与二段循环氢可以存在并联关系或串联关系。
以下详细描述本发明。
本发明一种两段法高芳烃油加氢转化方法,其特征在于包含以下步骤:
①在一段加氢反应部分,在氢气和一段加氢精制催化剂存在条件下,第一原料烃(高芳烃油)完成一段加氢精制反应,生成一个由氢气、常规气体烃和常规液体烃组成的一段加氢反应流出物1RP;
②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段冷高压分离部分分离为一段冷高分油1LL和一段冷高分气1LV;一段冷高分油1LL用作一段加氢生成油;
③在一段加氢生成油分离部分,分离一段加氢生成油得到一段加氢生成油高沸点裂化原料1HBO和一段加氢生成油低沸点裂化原料1LBO;
④在二段加氢反应部分,至少一部分1HBO进入二段第一反应区2R1与二段第一加氢裂化催化剂2R1C接触完成二段第一加氢裂化反应转化为二段第一反应区反应流出物2R1P,2R1P和至少一部分1LBO进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触完成二段联合加氢裂化反应,得到二段联合加氢裂化反应流出物2RUPM。
二段加氢生成油高沸点裂化原料2HBO循环裂化时,本发明的特征进一步在于:⑤在二段加氢生成油分离部分,分离二段加氢生成油得到二段加氢生成油高沸点裂化原料2HBO;至少一部分2HBO进入二段第一反应区2R1与二段第一加氢裂化催化剂2R1C接触。
二段加氢生成油低沸点裂化原料2LBO循环裂化时,本发明的特征进一步在于:⑤在二段加氢生成油分离部分,分离二段加氢生成油得到二段加氢生成油低沸点裂化原料2LBO;至少一部分2LBO进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触。
二段联合加氢裂化反应流出物2RUPM与一段加氢反应流出物进行联合分离时,本发明的特征进一步在于:④二段联合加氢裂化反应流出物2RUPM进入步骤②与一段加氢反应流出物混合。
本发明的操作条件一般为:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为280~480℃、压力为6.0~30.0MPa、一段加氢精制催化剂体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于425℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点355~425℃的烃类组成;
④二段第一反应区2R1操作条件为:温度为280~460℃、压力为6.0~30.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为270~420℃、压力为6.0~30.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
本发明的操作条件通常为:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于390℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~390℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
当一段加氢生成油低沸点裂化原料1LBO包含重柴油组分时,本发明的特征进一步在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于375℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~375℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
1LBO先独立加氢裂化、然后进行联合加氢裂化时,本发明的特征进一步在于:③部分1LBO进入二段第二反应区2R2与1LBO第二加氢裂化催化剂2R2C接触完成1LBO第二加氢裂化反应转化为二段第二反应区反应流出物2R2P,2R2P进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触。
二段第二反应区2R2操作条件一般为:④二段第二反应区2R2使用1LBO第二加氢裂化催化剂2R2C,二段第二反应区2R2操作条件为:温度为270~420℃、1LBO第二加氢裂化催化剂2R2C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
二段第二反应区2R2操作条件通常为:④二段第二反应区2R2的1LBO第二加氢裂化催化剂2R2C的体积空速为0.5~3hr-1
当一段热高分油1RPL柴油含量很低时,本发明的特征进一步在于:
②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段热高压分离部分分离为一段热高分油1RPL和一段热高分气1RPV,至少一部分1RPV进入一段冷高压分离部分;至少一部分一段热高分油1RPL进入二段第一反应区2R1与第一加氢裂化催化剂2R1C接触。
当一段热高分油1RPL进入二段第一反应区2R1时,本发明的特征进一步在于:④一段热高分油1RPL主要由常规沸点高于335℃的烃类组成,一段热高分油1RPL中常规沸点高于335℃的烃类重量浓度:通常大于0.80、最好大于0.90。
当一段热高分油1RPL进入二段第一反应区2R1时,为了降低其中的柴油含量,本发明的特征进一步在于:①第一原料烃为煤焦油;②一段热高分油1RPL与氢气物流FH完成接触并分离为气体FHP和一段脱轻组分热高分油1RPLP;至少一部分一段脱轻组分热高分油1RPLP进入二段第一反应区2R1与第一加氢裂化催化剂2R1C接触。
当二段联合加氢裂化反应流出物2RUPM与一段热高分气1RPV联合分离时时,本发明的特征进一步在于:②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段热高压分离部分分离为一段热高分油1RPL和一段热高分气1RPV,至少一部分1RPV进入一段冷高压分离部分;④二段联合加氢裂化反应流出物2RUPM进入步骤②与一段热高分气1RPV混合。
本发明,当一段加氢生成油低沸点裂化原料1LBO包含主要由常规沸点为335~355℃的重柴油馏分时,可以实现重柴油馏分加氢裂化。此方案适合于加氢生成油中常规沸点为335~355℃的重柴油馏分含量较高的场合,实现重柴油馏分加氢裂化可以提高柴油全馏分十六烷值达到要求(比如高于28或32)的情况,比如适合于加工第一原料烃为高沸点(常规沸点为315~500℃烃馏分)中温煤焦油的情况。
二段加氢生成油高沸点裂化原料2HBO的馏分范围与一段加氢生成油高沸点裂化原料1HBO的馏分范围相同,二段加氢生成油低沸点裂化原料2LBO的馏分范围与一段加氢生成油低沸点裂化原料1LBO的馏分范围相同,可以根据具体的馏分性质情况确定,目标是控制和降低二段加氢反应过程柴油组分的裂解率、同时提高柴油质量。
一段加氢生成油高沸点馏分1HBO和一段加氢生成油低沸点馏分1LBO的馏分馏程范围,可以根据具体情况确定,目标是控制和降低二段加氢反应过程柴油组分的裂解率、同时提高柴油质量。
关于煤焦油两段法加氢转化过程,目前有多项专利申请文件公开,这其中包括本发明人的多项专利申请。本发明的一段加氢反应部分和二段加氢反应部分,其功能在许多方面与已经公开的专利申请文件的描述相似,当然本发明的特征部分是新颖的,因此也与已经公开的煤焦油加氢转化过程专利申请文件的描述不完全相同。
当第一原料烃(比如为蒽油)芳烃含量极高(比如高于90%)时,其一段加氢精制生成油柴油馏份的高沸点段(常规沸点介于335~355℃的馏份甚至常规沸点介于315~335℃的馏份)馏份KK,含有部分饱和烃(烷烃、环烷烃)和大量不饱和烃(包括具有三个环状结构的芳烃),不是优良的柴油组分,由于缺乏经济的分离手段,只能作为1LBO进行联合加工。在本发明二段加氢反应部分,一段加氢生成油重馏份1HBO在二段第一反应区2R1经历加氢裂化(通常使用无定型加氢裂化催化剂),由于1HBO氮含量通常较高,2R1通常在裂化催化剂床层前配置加氢精制催化剂。2R1P中的柴油组分经过二段联合加氢裂化反应区2RU,与二段联合加氢裂化催化剂2RUC接触完成柴油选择性开环裂化脱芳条件下的柴油组份改质。按此安排,可以降低2R1单程裂化率,降低1HBO中柴油组分裂解率,二段加氢生成油中的非理想柴油组分(常规沸点介于335~355℃的馏份甚至常规沸点介于315~335℃的馏份)作为二段加氢生成油低沸点裂化原料2LBO,循环进入2RU构成循环裂化方式,完成总体高的转化率,抑制了二次裂解副反应,其最理想的设计是在2R1催化剂床层内1HBO所含芳烃完成加氢裂化和或加氢饱和,环烷烃开始大量转化时或发生浅度裂化时终止反应,将2R1中轻蜡油组分导入到二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触,完成低裂解率的轻蜡油裂化反应和重柴油改质反应。可以视KK为“轻蜡油组分KK,即将其作为1LBO的一部分在2RU进行加氢裂化,同时控制单程裂解转化率在较低的水平,抑制KK中的饱和烃在2RU中发生过度的柴油裂化反应。通过控制二段加氢生成油分离部分得到的二段循环裂化原料的初馏点,最终控制第一原料烃加氢生成油的总体裂化率。
本发明的主要优点在于:
①对加氢生成油低沸点蜡油馏分可以完成低裂化率的加氢裂化以提高柴油产率。一句话,对加氢生成油蜡油馏分的加氢裂化过程具有提高液体收率、降低氢耗最低的效果;
②在二段加氢反应部分,为使用裂解能力和加氢饱和能力最佳的二段第一加氢裂化催化剂2R1C和二段联合加氢裂化催化剂2RUC创造了原料油分类加工条件。
实施例一
中温煤焦油性质见表2,按照本发明人的“一种含煤焦油加氢过程的烃加氢组合方法”专利申请文件CN101629100A所述方案,操作条件和产品性质见表3。在一段第一加氢精制反应部分,完成第一加氢精制反应;第一加氢精制反应流出物在第二加氢精制反应部分完成转化;一段加氢反应流出物和二段加氢反应流出物混合为总体加氢反应流出物,然后注冲洗水、冷却后进入冷高压分离部分,分离为冷高分气、冷高分油和冷高分水;全部冷高分气分路进入两个加氢反应部分作循环氢使用;分离加氢生成油得到生成油石脑油、生成油柴油、生成油蜡油;全部生成油蜡油在加氢裂化反应部分循环转化。
使用本发明技术方案,一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于400℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点335~400℃的烃类组成。将二段第一加氢裂化催化剂减少35%,增加二段联合加氢裂化反应区2RU使用二段联合加氢裂化催化剂2RUC。
二段联合加氢裂化反应区2RU催化剂床层尾部使用柴油提高十六烷值专用的具有选择性开环功能的MCI催化剂,二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为16.0~19.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.5~1.0hr-1、氢气/原料油体积比为1000∶1~1500∶1。
本发明技术方案实现了生产目的:加氢柴油馏份的十六烷值(平均值)高于30,第一原料烃液体产品收率提高1.0%以上,第一原料烃柴油收率提高0.7%以上。
采用本发明各种组合技术方案,可以实现本发明的其它目的。
本实施例以一个具体的中温煤焦油二段法加氢生产优质油品为例来说明本发明的优点,但这些优点同样存在于其它本发明适用的领域如中温煤焦油二段法加氢转化过程或低温煤焦油二段法加氢转化过程或适宜的高芳烃油二段法加氢转化过程中。
表2 煤焦油性质
表3 操作条件和产品性质表
Figure BSA00000396787300281

Claims (25)

1.一种两段法高芳烃油加氢转化方法,其特征在于包含以下步骤:
①在一段加氢反应部分,在氢气和一段加氢精制催化剂存在条件下,第一原料烃(高芳烃油)完成一段加氢精制反应,生成一个由氢气、常规气体烃和常规液体烃组成的一段加氢反应流出物1RP;
②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段冷高压分离部分分离为一段冷高分油1LL和一段冷高分气1LV;一段冷高分油1LL用作一段加氢生成油;
③在一段加氢生成油分离部分,分离一段加氢生成油得到一段加氢生成油高沸点裂化原料1HBO和一段加氢生成油低沸点裂化原料1LBO;
④在二段加氢反应部分,至少一部分1HBO进入二段第一反应区2R1与二段第一加氢裂化催化剂2R1C接触完成二段第一加氢裂化反应转化为二段第一反应区反应流出物2R1P,2R1P和至少一部分1LBO进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触完成二段联合加氢裂化反应,得到二段联合加氢裂化反应流出物2RUPM。
2.根据权利要求1所述的方法,其特征在于:
⑤在二段加氢生成油分离部分,分离二段加氢生成油得到二段加氢生成油高沸点裂化原料2HBO;至少一部分2HBO进入二段第一反应区2R1与二段第一加氢裂化催化剂2R1C接触。
3.根据权利要求1所述的方法,其特征在于:
⑤在二段加氢生成油分离部分,分离二段加氢生成油得到二段加氢生成油低沸点裂化原料2LBO;至少一部分2LBO进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触。
4.根据权利要求1所述的方法,其特征在于:
④二段联合加氢裂化反应流出物2RUPM进入步骤②与一段加氢反应流出物1RP混合。
5.根据权利要求1所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为280~480℃、压力为6.0~30.0MPa、一段加氢精制催化剂体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于425℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点355~425℃的烃类组成;
④二段第一反应区2R1操作条件为:温度为280~460℃、压力为6.0~30.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为270~420℃、压力为6.0~30.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
6.根据权利要求2所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为280~480℃、压力为6.0~30.0MPa、一段加氢精制催化剂体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于425℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点355~425℃的烃类组成;
④二段第一反应区2R1操作条件为:温度为280~460℃、压力为6.0~30.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为270~420℃、压力为6.0~30.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
7.根据权利要求3所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为280~480℃、压力为6.0~30.0MPa、一段加氢精制催化剂体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于425℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点355~425℃的烃类组成;
④二段第一反应区2R1操作条件为:温度为280~460℃、压力为6.0~30.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为270~420℃、压力为6.0~30.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
8.根据权利要求4所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为280~480℃、压力为6.0~30.0MPa、一段加氢精制催化剂体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于425℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点355~425℃的烃类组成;
④二段第一反应区2R1操作条件为:温度为280~460℃、压力为6.0~30.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为270~420℃、压力为6.0~30.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
9.根据权利要求1所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于390℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~390℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
10.根据权利要求2所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于390℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~390℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
11.根据权利要求3所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于390℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~390℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
12.根据权利要求4所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于390℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~390℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
13.根据权利要求1所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于375℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~375℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
14.根据权利要求2所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于375℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~375℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
15.根据权利要求3所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于375℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~375℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
16.根据权利要求4所述的方法,其特征在于:
①第一原料烃为煤焦油,一段加氢反应部分操作条件为:温度为300~440℃、压力为12.0~20.0MPa、一段加氢精制催化剂体积空速为0.15~3.0hr-1、氢气/原料油体积比为800∶1~3000∶1;一段加氢生成油石脑油全馏分的氮含量低于100PPm,一段加氢生成油柴油全馏份十六烷值比第一原料烃同沸点组分十六烷值提高10以上;
③一段加氢生成油高沸点裂化原料1HBO主要由常规沸点高于375℃的烃类组成;一段加氢生成油低沸点裂化原料1LBO主要由常规沸点为335~375℃的烃类组成;
④二段第一反应区2R1使用低气体产率的二段第一加氢裂化催化剂2R1C,二段第一反应区2R1操作条件为:温度为320~440℃、压力为12.0~20.0MPa、二段第一加氢裂化催化剂2R1C体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段联合加氢裂化反应区2RU操作条件为:温度为300~420℃、压力为12.0~20.0MPa、二段联合加氢裂化催化剂2RUC体积空速为0.05~15hr-1、氢气/原料油体积比为800∶1~3000∶1;二段加氢生成油石脑油馏份氮含量低于5PPm,二段加氢生成油柴油全馏份十六烷值大于30。
17.根据权利要求1或2或3或4或5或6或7或8或9或10或11或12或13或14或15或16所述的方法,其特征在于:
③部分1LBO进入二段第二反应区2R2与1LBO第二加氢裂化催化剂2R2C接触完成1LBO第二加氢裂化反应转化为二段第二反应区反应流出物2R2P,2R2P进入二段联合加氢裂化反应区2RU与二段联合加氢裂化催化剂2RUC接触。
18.根据权利要求17所述的方法,其特征在于:
④二段第二反应区2R2使用1LBO第二加氢裂化催化剂2R2C,二段第二反应区2R2操作条件为:温度为270~420℃、1LBO第二加氢裂化催化剂2R2C体积空速为0.05~15hr-1、氢气/原料油体积比为400∶1~4000∶1。
19.根据权利要求18所述的方法,其特征在于:
④二段第二反应区2R2的1LBO第二加氢裂化催化剂2R2C的体积空速为0.5~3hr-1
20.根据权利要求4所述的方法,其特征在于:
②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段热高压分离部分分离为一段热高分油1RPL和一段热高分气1RPV,至少一部分1RPV进入一段冷高压分离部分;至少一部分一段热高分油1RPL进入二段第一反应区2R1与第一加氢裂化催化剂2R1C接触。
21.根据权利要求20所述的方法,其特征在于:
④一段热高分油1RPL主要由常规沸点高于335℃的烃类组成。
22.根据权利要求21所述的方法,其特征在于:
④一段热高分油1RPL中常规沸点高于335℃的烃类重量浓度大于0.80。
23.根据权利要求22所述的方法,其特征在于:
④一段热高分油1RPL中常规沸点高于335℃的烃类重量浓度大于0.90。
24.根据权利要求20所述的方法,其特征在于:
①第一原料烃为煤焦油;
②一段热高分油1RPL与氢气物流FH完成接触并分离为气体FHP和一段脱轻组分热高分油1RPLP;至少一部分一段脱轻组分热高分油1RPLP进入二段第一反应区2R1与第一加氢裂化催化剂2R1C接触。
25.根据权利要求4所述的方法,其特征在于:
②在一段加氢反应流出物分离部分,一段加氢反应流出物1RP在一段热高压分离部分分离为一段热高分油1RPL和一段热高分气1RPV,至少一部分1RPV进入一段冷高压分离部分;
④二段联合加氢裂化反应流出物2RUPM进入步骤②与一段热高分气1RPV混合。
CN2010106022044A 2010-12-14 2010-12-14 一种两段法高芳烃油加氢转化方法 Pending CN102031146A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010106022044A CN102031146A (zh) 2010-12-14 2010-12-14 一种两段法高芳烃油加氢转化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106022044A CN102031146A (zh) 2010-12-14 2010-12-14 一种两段法高芳烃油加氢转化方法

Publications (1)

Publication Number Publication Date
CN102031146A true CN102031146A (zh) 2011-04-27

Family

ID=43884610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010106022044A Pending CN102031146A (zh) 2010-12-14 2010-12-14 一种两段法高芳烃油加氢转化方法

Country Status (1)

Country Link
CN (1) CN102031146A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585898A (zh) * 2011-12-15 2012-07-18 何巨堂 一种高氮高芳烃油两段法烃氢化方法
CN108611119A (zh) * 2016-12-12 2018-10-02 河北新启元能源技术开发股份有限公司 石油脑催化重整装置及其催化重整工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629106A (zh) * 2008-10-03 2010-01-20 何巨堂 一种煤焦油加氢转化生产柴油的方法
CN101892077A (zh) * 2010-02-23 2010-11-24 何巨堂 一种高压部分串联的两段法烃氢化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629106A (zh) * 2008-10-03 2010-01-20 何巨堂 一种煤焦油加氢转化生产柴油的方法
CN101892077A (zh) * 2010-02-23 2010-11-24 何巨堂 一种高压部分串联的两段法烃氢化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585898A (zh) * 2011-12-15 2012-07-18 何巨堂 一种高氮高芳烃油两段法烃氢化方法
CN108611119A (zh) * 2016-12-12 2018-10-02 河北新启元能源技术开发股份有限公司 石油脑催化重整装置及其催化重整工艺

Similar Documents

Publication Publication Date Title
CN101892077B (zh) 一种高压部分串联的两段法烃氢化方法
CN101629103B (zh) 一种不同沸程煤焦油馏份的加氢转化组合方法
CN102051222A (zh) 一种两段法高氮高芳烃油加氢转化方法
CN102071057A (zh) 一种两段法高氮高芳烃油加氢转化方法
CN101831317A (zh) 一种高芳高氮烃的氢化方法
CN101712886A (zh) 一种煤焦油氢化方法
CN103146426A (zh) 一种将费托合成产物转化为石脑油、柴油和液化石油气的方法
CN102146298A (zh) 一种烃加氢转化过程组合方法
CN102021029A (zh) 一种两段法高芳烃油加氢转化方法
CN103740404A (zh) 一种高氮高芳烃加氢改质方法
CN101629101A (zh) 一种不同沸程煤焦油馏份的加氢转化组合方法
CN102021028A (zh) 一种两段法高芳烃油加氢转化方法
CN101717660A (zh) 一种烃氢化方法
CN103333713A (zh) 一种高氮高芳烃加氢改质和热裂化组合方法
CN102021027A (zh) 一种精制段生成油不同馏分分路裂化的两段法烃氢化方法
CN102433156B (zh) 一种不同沸程高芳烃高密度烃油加氢转化组合方法
CN102585898A (zh) 一种高氮高芳烃油两段法烃氢化方法
CN102031146A (zh) 一种两段法高芳烃油加氢转化方法
CN103773462A (zh) 一种生产优质化工原料的两段加氢裂化方法
CN105524656A (zh) 一种使用气提氢气分离加氢产物的烃加氢改质方法
CN101629100B (zh) 一种含煤焦油氢化过程的烃氢化组合方法
CN101041783B (zh) 一种煤焦油加氢转化方法
CN102161911A (zh) 一种高氮高芳烃油加氢转化集成方法
CN102154024A (zh) 一种高氮高芳烃油的加氢转化集成方法
CN101629104B (zh) 一种不同沸程煤焦油馏份的加氢转化组合方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110427