CN102024861A - 具深蚀刻孔洞的基板式太阳能电池 - Google Patents

具深蚀刻孔洞的基板式太阳能电池 Download PDF

Info

Publication number
CN102024861A
CN102024861A CN201010244543XA CN201010244543A CN102024861A CN 102024861 A CN102024861 A CN 102024861A CN 201010244543X A CN201010244543X A CN 201010244543XA CN 201010244543 A CN201010244543 A CN 201010244543A CN 102024861 A CN102024861 A CN 102024861A
Authority
CN
China
Prior art keywords
substrate
solar cell
tool
type solar
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010244543XA
Other languages
English (en)
Inventor
王立康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102024861A publication Critical patent/CN102024861A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种具深蚀刻孔洞的基板式太阳能电池,是以半导体材料为基板的太阳能电池,可为单晶(Single Crystal)、多晶(Polycrystal)或无晶系(Amorphous)等结构,具有数个经由蚀刻或加工等方式形成的深孔洞,且各深孔洞的深度含该基板厚度的四分之一以上,或各深孔洞的洞底表面距离该基板孔洞侧的另一侧表面是含五十微米以下。本发明可降低载子(Carrier)再次结合的机率,增加光能/电能转换效率,不必使用埋藏式电极(buried contact)。

Description

具深蚀刻孔洞的基板式太阳能电池
技术领域
本发明涉及一种具深蚀刻孔洞的基板式太阳能电池,尤指一种以整个半导体基板为太阳能电池,该半导体基板具有数个深孔洞,不必使用埋藏式电极(buriedcontact)。
背景技术
请参阅图5所示,已知的基板式太阳能电池通常包含一半导体基板7,其中是以一N型半导体层71与一P型半导体层72,形成一P-N接面(P-N junction)73,并包含一前电极74及一背电极75。当太阳光照射电池正面76时,入射光穿透该电池正面76并在靠近电池表面区被吸收,产生电子与电洞两种载子(Carrier),之后各向该前电极74与该背电极75处靠拢,以形成端电压差。然而,由于太阳光会在该电池正面76产生一部分反射而无法全部入射至该半导体基板7内部,使太阳能电池产生电力的效率不佳。据此,一般通常是将该电池正面76制成凹凸不平整的表面,抑或在该电池正面76镀制一抗反射膜,更甚有将上述两者予以结合,藉此达到抗反射的目的,以使大部分太阳光入射至太阳能电池内吸收,进而产生较多的电力。如图6所示,上述凹凸不平整的表面,是可在太阳光的光线8a射向凹凸表面77时,使大部分能量进入太阳能电池内,而部分反射的光线8b则可再次射向该电池板内被电池吸收而产生电力,而该基板式太阳能电池在背光侧亦含有一背表面场(Back Surface Field)78,以增加太阳能电池的效率。
然而,在前述基板式太阳能电池中,由于该P型半导体层72厚度几乎是整个基板的厚度,而该N型半导体层71则较薄。当太阳光照射时,少数载子的扩散长度不够长,电子电洞易再次结合,如此将不利于电子及电洞分别累积至该前电极74及该背电极75处,因此电力的输出会遭减弱,造成太阳光能转成电能的转换效率有限。
一般基板式太阳能电池的材料为硅,有单晶、多晶及无晶系三种。以光能/电能转换效率而言,单晶系不仅比多晶系优越,并且又比无晶系佳。而为解决上述载子扩散长度短的问题,通常将太阳能电池制成硅薄膜型态。然而,薄膜型态的太阳能电池却含有无法将太阳光完全吸收利用的缺点,以致其光能/电能的转换效率不佳;再者,若以硅薄膜制成于非硅半导体基板上则不易形成单晶结构或缺陷较少的多晶结构,因此其光能/电能的转换效率亦同样不佳。故,一般无法符合使用者于实际使用时所需。
发明内容
本发明所要解决的技术问题是:针对上述现有技术的不足,提供一种具深蚀刻孔洞的基板式太阳能电池,以整个半导体基板为太阳能电池,该半导体基板具有数个深孔洞,可降低载子再次结合的机率,进而增加光能成电能的转换效率,不必使用埋藏式电极(buried contact)。
为了解决上述技术问题,本发明所采用的技术方案是:一种具深蚀刻孔洞的基板式太阳能电池,包含半导体基板、半导体层、P-N接面,该半导体层位于该半导体基板一侧的表面上,该P-N接面由该半导体基板与该半导体层构成,其特点是:所述半导体基板包含数个深孔洞,构成孔洞区与平坦区;各深孔洞的深度为基板厚度的四分之一以上。
如此,以半导体材料为基板的太阳能电池,具有数个经由蚀刻或加工等方式形成的深孔洞,可降低载子再次结合的机率,以增加该基板式太阳能电池的光能/电能转换效率,不必使用埋藏式电极。
附图说明
图1是本发明一实施例的剖面示意图。
图2是本发明沟槽状深孔洞的示意图。
图3是本发明独立式深孔洞的示意图。
图4是本发明另一实施例的剖面示意图。
图5是已知的太阳能电池板。
图6是已知太阳能电板的凹凸表面示意图。
标号说明:
基板式太阳能电池1、5    P型半导体层11、51
深孔洞12、52            沟槽状121
独立孔洞式122           N型半导体层13、53
P-N接面14、54           前电极15、55
背电极16、56            孔洞区的电池表面17、57
平坦区的电池表面18、58  背表面场19、78
太阳光线2、3、6         受光侧的电池正面59
半导体基板7             N型半导体层71
P型半导体层72           P-N接面73
前电极74                背电极75
电池正面76              凹凸表面77
光线8a、8b
具体实施方式
请参阅图1所示,为本发明一实施例的剖面示意图。如图所示:本发明为一种具深蚀刻孔洞的基板式太阳能电池,包含以半导体材料为基板的太阳能电池,可为单晶(Single Crystal)、多晶(Polycrystal)或无晶系(Amorphous)的结构,并具有数个经由半导体制程的湿蚀刻、干蚀刻、激光(Laser)亦或机械加工等方式形成的深孔洞,且各深孔洞的深度是基板厚度的四分之一以上,或各深孔洞的洞底表面距离基板背光侧表面是五十微米以下。
该基板式太阳能电池1为一半导体基板,且该半导体基板是以硅(Silicon)或锗(Germanium)等第四族元素及其化合物,或三、五族元素及其化合物为半导体材料的P型半导体层11。在该基板式太阳能电池1的受光侧上包含有数个独立式深孔洞或沟槽状深孔洞12,于该受光侧上构成孔洞区与平坦区,且在该受光侧的表面制有一N型半导体层13,与该P型半导体层11形成一P-N接面(P-NJunction)14。在该受光侧表面及背光侧表面各自含有一前电极15及一背电极16,可将电能引导输出至外部电路,其中,在该受光侧的前电极15可设置于该孔洞区的电池表面17或该平坦区的电池表面18,同时在背光侧亦含有一背表面场19;以及,该具有孔洞区与平坦区的受光侧可进一步含有抗反射膜,或其表面可呈现为凹凸状的抗反射表面,或其表面可呈现为凹凸状且含有抗反射膜。以上所述,构成全新的基板式太阳能电池1。
当本发明于运用时,若太阳光线2照射在该平坦区的电池表面18,该光线2于近表面处被吸收,产生电子及电洞载子(Carrier)。若太阳光线3照射在该孔洞区的电池表面17,其在电池内部产生的电子电洞载子系处在较薄的太阳能电池板中,可使载子的扩散长度增加,因而降低载子再次结合的机率,使该前电极16及该背电极17处可累积较多的电荷,进而产生较多的电力;另外,由于该基板式太阳能电池1所具有的深孔洞12,其口径是由表面开口处向半导体基板内部延伸呈逐渐缩小状、放大状或一直维持不变,于缩小下可谓为一斜面深孔,故可造成电池表面的受光面积增加,相对而言,产生电子电洞的面积区域亦同样增加,进而可使产生的电力增大,提升光能/电能转换效率,不必使用埋藏式电极(buried contact)。
请进一步参阅图2及图3所示,分别为本发明沟槽状深孔洞的示意图及本发明独立式深孔洞的示意图。如图所示:本发明的基板式太阳能电池1上,各深孔洞12的结构可为沟槽状121或独立式122,并且,该沟槽状型态可为直线型或非直线型布置,而该独立孔洞式型态的开口则可为几何形状。
请参阅图4所示,为本发明另一实施例的剖面示意图。如图所示:本发明的基板式太阳能电池5为一半导体基板,且该半导体基板以硅或锗等第四族元素及其化合物,或三、五族元素及其化合物为半导体材料的P型半导体层51。在该基板式太阳能电池5的背光侧上包含有数个独立式深孔洞或沟槽状深孔洞52,于该背光侧上构成孔洞区与平坦区,且在该基板式太阳能电池5另一面的受光侧表面制有一N型半导体层53,与该P型半导体层51形成一P-N接面54。在该受光侧表面及背光侧表面各自含有一前电极55及一背电极56,可将电能引导输出至外部电路,其中,在该背光侧的背电极56可设置于该孔洞区的电池表面57、该平坦区的电池表面58或布满整个背光侧表面,同时在背光侧亦含有一背表面场19;该受光侧可进一步含有抗反射膜,或呈现为凹凸状的抗反射表面,或其表面呈现为凹凸状且含有抗反射膜。
当本发明于运用时,若太阳光线6照射在该受光侧的电池正面59,由于具有深孔洞52的缘故,因而在许多处所该背电极56是十分靠近该N型半导体层53,可降低光能被吸收后产生电子电洞再次结合的机率,因此进入电池内部的光能转换为电子电洞的载子可分别向该前电极55及该背电极56累积,使该前电极55、背电极56处可累积较多的电荷,以产生较大的电力,故可提升该基板式太阳能电池5光能/电能转换效率;另外,该基板式太阳能电池5所具有的深孔洞52亦可具斜角度,其口径由表面开口处向半导体基板内部延伸呈逐渐缩小状、放大状或一直维持不变,亦同样皆可达到上述提升太阳能电池效率的目的。
如上所述,本发明虽然是在P型半导体基板上制成深孔洞结构以增加光能/电能转换效率,然,本发明的深孔洞结构亦可实施于N型半导体基板上,且其提升太阳能电池效率的原理亦分别同于图1及图4两实施例。
综上所述,本发明为一种具深蚀刻孔洞之基板式太阳能电池,可有效改善现有技术的种种缺点,是以半导体材料为基板的太阳能电池,具有数个经由蚀刻或加工等方式形成的深孔洞,可降低载子再次结合的机率,以增加该基板式太阳能电池的光能/电能转换效率,不必使用埋藏式电极,进而能产生更进步、更实用、更符合使用者的所须,确已符合发明专利申请的要件,依法提出专利申请。

Claims (17)

1.一种具深蚀刻孔洞的基板式太阳能电池,包含半导体基板、半导体层、P-N接面,该半导体层位于该半导体基板一侧的表面上,该P-N接面由该半导体基板与该半导体层构成,其特征在于:所述半导体基板包含数个深孔洞,构成孔洞区与平坦区;各深孔洞的深度为基板厚度的四分之一以上。
2.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述半导体基板为P型半导体,而该半导体层为N型半导体。
3.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述半导体基板为N型半导体,而该半导体层为P型半导体。
4.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述深孔洞经湿蚀刻、干蚀刻、激光或机械加工方式所形成。
5.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述深孔洞为独立式深孔洞。
6.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述深孔洞为沟槽状深孔洞。
7.如权利要求6所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述沟槽状深孔洞的沟槽状型态为直线型或非直线型。
8.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述深孔洞形成于该半导体基板的受光侧。
9.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述深孔洞形成于该半导体基板的背光侧。
10.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述各深孔洞的洞底表面距离该基板孔洞侧的另一侧表面五十微米以下。
11.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述半导体材料为硅、或锗等第四族元素及其化合物、或三、五族元素及其化合物。
12.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述半导体基板的受光侧及背光侧表面各含有一将电能引导输出至外部电路的电极。
13.如权利要求12所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述电极设置该半导体基板一侧的孔洞区的电池表面或平坦区的电池表面,而背光侧含有背表面场。
14.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述数个深孔洞的个别口径是从开口处向基板内部延伸呈逐渐缩小状、逐渐放大状或维持不变。
15.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述具有孔洞区与平坦区的一侧含有抗反射膜。
16.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述具有孔洞区与平坦区的一侧呈现为凹凸状的抗反射表面。
17.如权利要求1所述的具深蚀刻孔洞的基板式太阳能电池,其特征在于:所述具有孔洞区与平坦区的一侧表面呈现为凹凸状,且含有抗反射膜。
CN201010244543XA 2009-09-09 2010-08-04 具深蚀刻孔洞的基板式太阳能电池 Pending CN102024861A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/556,130 US20110056548A1 (en) 2009-09-09 2009-09-09 Wafer-Based Solar Cell with Deeply Etched Structure
US12/556,130 2009-09-09

Publications (1)

Publication Number Publication Date
CN102024861A true CN102024861A (zh) 2011-04-20

Family

ID=43646738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010244543XA Pending CN102024861A (zh) 2009-09-09 2010-08-04 具深蚀刻孔洞的基板式太阳能电池

Country Status (2)

Country Link
US (1) US20110056548A1 (zh)
CN (1) CN102024861A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393977A (zh) * 2017-08-09 2017-11-24 西安交通大学 一种超宽带减反膜及其制备方法
CN109119496A (zh) * 2017-08-29 2019-01-01 柯作同 太阳能电池及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540431B2 (ja) * 2010-07-30 2014-07-02 国立大学法人東北大学 光電変換部材
JP2019165033A (ja) * 2016-07-20 2019-09-26 国立研究開発法人科学技術振興機構 太陽電池素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969746A (en) * 1973-12-10 1976-07-13 Texas Instruments Incorporated Vertical multijunction solar cell
CN201082499Y (zh) * 2007-09-30 2008-07-09 荀建华 晶体硅太阳能电池组串焊模版

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352948A (en) * 1979-09-07 1982-10-05 Massachusetts Institute Of Technology High-intensity solid-state solar-cell device
US4322571A (en) * 1980-07-17 1982-03-30 The Boeing Company Solar cells and methods for manufacture thereof
JPH0690014A (ja) * 1992-07-22 1994-03-29 Mitsubishi Electric Corp 薄型太陽電池及びその製造方法,エッチング方法及び自動エッチング装置,並びに半導体装置の製造方法
WO2005083799A1 (en) * 2004-02-24 2005-09-09 Bp Corporation North America Inc Process for manufacturing photovoltaic cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969746A (en) * 1973-12-10 1976-07-13 Texas Instruments Incorporated Vertical multijunction solar cell
CN201082499Y (zh) * 2007-09-30 2008-07-09 荀建华 晶体硅太阳能电池组串焊模版

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393977A (zh) * 2017-08-09 2017-11-24 西安交通大学 一种超宽带减反膜及其制备方法
CN109119496A (zh) * 2017-08-29 2019-01-01 柯作同 太阳能电池及其制造方法

Also Published As

Publication number Publication date
US20110056548A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP6975368B1 (ja) 太陽電池及び太陽電池モジュール
CN103325861B (zh) 具有多晶硅掺杂区域的背面接触太阳能电池的沟槽工艺和结构
CN102246324B (zh) 深沟槽背接触光伏太阳能电池
US20110132423A1 (en) Photovoltaic solar module comprising bifacial solar cells
CN113345970A (zh) 一种p型背接触式晶硅太阳能电池、制备方法及电池组件
US20090223561A1 (en) Method of etching asymmetric wafer, solar cell including the asymmetrically etched wafer, and method of manufacturing the same
CN201112399Y (zh) 具有浓硼浓磷扩散结构的太阳能电池
CN101692467A (zh) 基于丝网印刷工艺的制作高效双面p型晶体硅太阳电池的方法
JP2010130023A (ja) 太陽電池およびその製造方法
KR20190055834A (ko) P형 perc 양면 태양전지 및 그 모듈, 시스템과 제조방법
JP2019522380A (ja) 太陽電池セル組立体
WO2018157495A1 (zh) 打孔perc双面太阳能电池及其组件、系统和制备方法
CN102024861A (zh) 具深蚀刻孔洞的基板式太阳能电池
CN103022174A (zh) 一种基于n型硅片的金属贯穿式背发射极晶硅太阳电池及其制备方法
KR101411996B1 (ko) 고효율 태양전지
CN114678437B (zh) 光伏组件
CN116093191A (zh) 一种太阳能电池和光伏组件
CN113644154B (zh) 光伏组件
CN209571422U (zh) 一种双面晶硅太阳能电池
CN219800869U (zh) 背接触太阳能电池、电池组件和光伏系统
CN111584650A (zh) 一种高效p型太阳能电池及光伏组件
JP2931451B2 (ja) 太陽電池素子
US20130125969A1 (en) Photovoltaic devices and methods of forming the same
JP2997363B2 (ja) 太陽電池素子
KR20130039896A (ko) 박막 태양 전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110420