CN101977444B - 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法 - Google Patents

移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法 Download PDF

Info

Publication number
CN101977444B
CN101977444B CN 201010534929 CN201010534929A CN101977444B CN 101977444 B CN101977444 B CN 101977444B CN 201010534929 CN201010534929 CN 201010534929 CN 201010534929 A CN201010534929 A CN 201010534929A CN 101977444 B CN101977444 B CN 101977444B
Authority
CN
China
Prior art keywords
data
base station
travelling carriage
control unit
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 201010534929
Other languages
English (en)
Other versions
CN101977444A (zh
Inventor
庭野和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43577280&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101977444(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to CN 201010534929 priority Critical patent/CN101977444B/zh
Publication of CN101977444A publication Critical patent/CN101977444A/zh
Application granted granted Critical
Publication of CN101977444B publication Critical patent/CN101977444B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

设有监视按通信业务或按发送信道的数据并确定按通信业务或按发送信道的数据量信息的数据量信息确定装置,将该数据量信息确定装置确定的按通信业务或按发送信道的数据量信息发送给基站。

Description

移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法
本申请是申请日为2004年4月30日、申请号为200480042891.1(PCT/JP2004/006272)、发明名称为“移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法”的专利申请的分案申请。
技术领域
本发明涉及进行分组数据通信的移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法。
背景技术
近年,作为高速CDMA(Code Division Multiple Access:码分多址通信)移动通信方式,被称之为第3代的通信标准,国际电信联盟(ITU)中作为IMT-2000采用,W-CDMA(FDD:Frequency Division Duplex)于2001年在日本开始商用业务。
W-CDMA方式当初的目标性能设定为取得每移动台最大2Mbps(Mega bit per sec)程度的通信速度,标准化团体3GPP(3rdGeneration Partnership)于1999年将其汇编出版的1999版(版本名:3.x.x)确定为最初的标准。
再有,上述出版(含后续出版)的各种标准书通过互联网在网址URL:http://www.3gpp.org/ftp/Specs/archive/上作了公开,并对其内容作了更新。现在,作为1999版的其他新版制定了第4和第5版,第6版正在制定中。
上述标准书中规定,「移动台对基站的数据发送中,即使进行分组数据那样的突发(Burst)发送时,也总是将无线资源按各移动台作为专用信道(DCH:Delicated CHannel)确保」。因而,基于无线资源的有效利用的观点,存在很多资源的浪费。
另外,由于来自移动台的数据发送受移动台的自律发送的控制(Autonomous Transmission),各移动台的发送定时是任意(随机)的。CDMA通信方式中,来自其他移动台的发送全部都是干扰源,因此,基站接收数据时的干扰噪声量和其变动量只能统计地进行预计。
因而,通信系统的无线资源管理中,设想变动量大的情况,就需要抑制吞吐量(移动台的最大发送速率),确保可提供干扰余裕的无线资源分配。
W-CDMA方式的标准中的移动台发送用的无线资源分配控制,实际上不是由基站实施,而是由组织基站的基站控制装置(RNC:RadioNetwork Controller)来实施。
基站控制装置对移动台实施的无线资源分配控制和其设定信息的交换需要较长的处理时间(数100msec量级),因此不能一边监视着无线传播环境的变化和其他移动台的发送状况(来自其他移动台的干扰量)一边进行高速的无线资源分配控制。
因而,基于上述标准书的规定,提出了通过给基站的一部分增设无线资源分配功能来改善与移动台的数据发送相关的无线资源分配的控制精度的方法。
作为上行链路的性能改善/功能增强型(E-DCH:Enhancement ofDedicated CHannel)而新提出的资料,R1-030067(「AH64:Reducingcontrol channel overhead for Enhanced Uplink」,以下称为非专利文献1)的图1中,公开了上行链路中的随需应变的信道分配方式。
再有,该资料如下所示已在互联网上公布:URL:http://www.3gpP.org/ftp/tsg_ran/WG1_RL1/TSGR1_30/Docs/Zips/R1-030067.zip>[2004年1月7日检索]。
上述非专利文献的图1中,持有要发送的数据分组的移动台(UE:User Equipment)通过含有未发送分组数据的数据量信息(Queue size)的发送请求用信道(US ICCH:Uplink Scheduling Information ControlChannel)将分组数据的发送请求发送给基站(Node-B)。
基站一旦从移动台接收到分组数据的发送请求,就通过下行链路的分配用信道(DSACCH:Downlink Scheduling Assignment ControlChannel)对移动台发送表示发送定时的分配等的无线资源分配结果(调度结果)。
移动台一旦从基站接收到调度结果,就按照该调度结果将分组数据通过数据发送用信道(EUDCH:Enhanced Uplink Dedicated TransportChannel)向基站发送。
这里,分组数据的发送时的调制方式等信息另外通过调制形式信息信道(UTCCH:Uplink TFRI Control Channel)向基站发送。
基站一旦从移动台接收到分组数据,就将该分组数据的接收确认结果(所谓ACK/NACK)的信息放到通知用信道(DANCCH:DownlinkAck/Nack Control Channel)向移动台发送。
再有,这些信道可设想成传统的标准信道的增强型或新信道的导入,但其详细情况还未曾提出。
这种从移动台向基站通知数据量信息的技术,也在专利文献1(特开2003-46482号公报)作了公开。
传统的W-CDMA方式的标准中,虽然移动台发送来的关于未发送数据量的信息被基站暂时接收,但只是直接通过基站而照原样发送给基站控制装置。因而,基站不能掌握关于未发送数据量的信息的内容。因此,基站不能实现上述非专利文献1所描述的对无线资源的控制。
即便能够设置将基站控制装置取得的信息发送给基站的装置,移动台向基站控制装置传送未发送数据量信息的传送周期也很长(例如,250ms/500ms/.../6000ms),因此基站不能实施高速的无线资源控制。
与上述非专利文献1中公开的随需应变的信道分配方式相关联的、关于未发送数据的数据量信息的通知发送定时的方案公开于R1-031056(Uplink signalling of scheduling information:以下称为非专利文献2)。该方案提出了周期的发送方法等各种发送方法。另外,该资料如下所示已在互联网上公布:URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_34/Docs/Zips /R1-030056.zip>[2004年1月7日检索]。
但是,W-CDMA方式中,由于一个移动台能够同时进行多个通信业务,优先度和迟延要求(所谓QoS:Quality of Service)相异的数据在移动台中共存,上述的各种文献中没有考虑到这种情况,因此可以认为只是将总数据量的信息通知基站。
传统的通信系统具有以上所述的结构,因此只将总数据量的信息通知基站,尽管如此,基站还是不能掌握按通信业务或按发送信道的数据的数据量,不能适当地控制按通信业务或按发送信道的数据发送定时。
本发明为解决上述的课题构思而成,其目的在于实现能够适当地控制按通信业务或按发送信道的数据的发送定时的基站、通信系统、发送控制信息通知方法及无线通信方法。
另外,本发明的目的在于实现使基站能够适当地控制按通信业务或按发送信道的数据的发送定时的移动台及数据量信息发送方法。
发明内容
本发明的移动台设有通过监视按通信业务或按发送信道的数据来确定按通信业务或按发送信道的数据量信息的数据量信息确定装置,并将由该数据量信息确定装置确定的按通信业务或按发送信道的数据量信息发送给基站。
因此,具有使基站能够适当地控制按通信业务或按发送信道的数据的发送定时的效果。
附图说明
图1是表示本发明实施例1的通信系统的结构图。
图2是表示本发明实施例1的移动台的结构图。
图3是表示移动台中的上位层块单元、无线链路单元、媒体访问控制单元和物理层控制单元在各信道之间的多重关系。
图4是表示移动台的无线资源控制单元之内部的结构图。
图5是表示移动台的无线链路控制单元之内部的结构图。
图6是表示移动台的媒体访问控制单元之内部的结构图。
图7是表示移动台的物理层控制单元之内部的结构图。
图8是表示本发明实施例1的基站及基站控制装置的结构图。
图9是表示基站及基站控制装置的媒体访问控制单元之内部的结构图。
图10是表示基站的物理层控制单元之内部的结构图。
图11是表示上行链路中的分组数据(E-DCH)的发送流程的发送流程图。
图12A是例示按业务的缓冲器占有率及对其组合的指标的说明图,图12B是例示按无线链路控制单元的发送缓冲器的缓冲器占有率及对其组合的指标的说明图。
图13是表示实施多个通信业务时移动台和基站间交换的通信业务设定信息的通知和发送缓冲器的大小设定的通知的处理流程的处理流程图。
图14是表示作为移动台能力(UE Capability Notice)信息之一、只通知全部无线链路控制单元的发送缓冲器的合计存储器大小信息时专用的从基站到基站控制装置的交换的处理流程图。
图15A是表示一例按通信业务的缓冲器的数据量信息及对其组合的指标的说明图,图15B是表示一例按无线链路控制单元的发送缓冲器的数据量信息及对其组合的指标的说明图。
图16是表示用以使基于「数据量/保用位速率」(单位:sec)形式的数据量通知成为可能的按通信业务的种类(Class)的服务质量(QoS:Quality of Service)的说明图。
图17是表示移动台的媒体访问控制单元之内部的结构图。
图18A是一例按通信业务的缓冲器的数据量信息及对其组合的指标的说明图,图18B是一例按无线链路控制单元的发送缓冲器的数据量信息及对其组合的指标的说明图。
图19A是一例按通信业务的缓冲器的数据量信息及对其组合的指标的说明图,图19B是一例按无线链路控制单元的发送的数据量信息及对其组合的指标的说明图。
图20是用以使基于「数据量/延迟」(单位:bit per sec)形式的数据量通知成为可能的按通信业务的种类(Class)的服务质量(QoS:Qualityof Service)的说明图。
图21是一例作为数据量信息(TRbuffer)的E-DCH的通信速度值及其指标(TFCI)的说明图。
图22是作为数据量信息(TRbuffer)的E-DCH的通信速度值及其指标(TFRI)的说明图。
图23是表示一例作为数据量信息(TRbuffer)的E-DCH发送时的DPDCH的信道振幅系数(β)设定及其指标的说明图。
图24是表示一例移动台的多路复用单元中的传输信道和物理信道间的多路复用的说明图。
图25是表示一例作为数据量信息(TRbuffer)的E-DCH发送时的发送物理信道功率偏置的设定及其指标的说明图。
图26是表示上行链路中的分组数据(E-DCH)的发送流程的发送流程图。
图27是关于发送上行链路无线资源请求信息时的发送周期定时的说明图。
图28是表示设定发送中采用的发送参量时的移动台、基站及基站控制装置间的交换的流程图。
具体实施方式
以下,为了更详细地说明本发明,参照附图描述本发明的最佳实施例。
实施例1.
图1是表示本发明实施例1的通信系统的结构图。图中,通信系统由移动台1、基站2及基站控制装置3构成。
基站2覆盖特定的通信范围(一般称为区或小区),实施与多个移动台1的无线通信。但是,为了方便说明,图1中仅示出一个移动台1,但是可以为多个。移动台1和基站2之间用多个无线链路(或者信道)进行通信。
基站控制装置3与公用电话网和互联网等的外部通信网络4连接,进行基站2和通信网络4之间的数据分组通信的中继。
W-CDMA标准中,移动台1称为UE(User Equipment),基站2称为Node-B,基站控制装置3称为RNC(Radio Network Controller)。
上行链路DPCCH(Dedicated Physical Control CHannel)是移动台1对基站2的控制用物理信道(Physical Control Channel),下行链路的DPCCH是基站2对移动台1的物理层控制用信道。用上述两个DPCCH实现移动台1和基站2的收发定时的同步控制等,维持通信中的无线链路。
上行链路的DPDCH(Dedicated Physical Data CHannel)是用以发送与移动台1对基站2的传统的标准信道(DCH)对应的数据的数据发送用物理层信道(Physical Data Channel),或用以发送本发明的分组数据对应信道(E-DCH)的信息数据的数据发送用物理层信道。
下行链路的DPDCH是用以发送与基站2对移动台1的传统的标准信道(DCH)对应的数据的数据发送用物理层信道。
上行链路的E-DPCCH(Enhanced-Dedicated Physical ControlCHannel)是用以从移动台1将移动台信息通知基站2的物理层控制用信道。
下行链路E-DPCCH是用以将基站2中的无线资源分配结果的通知或基站2中的数据的接收确认结果通知移动台1的信道。
再有,上述各种信道也包括传统标准中没有的信道,通过对传统标准的增强型或新信道的插入实现,但是不确定,作为新标准设定时,在标准书TS25.211的新版中,在确保与传统标准的兼容性(所谓Backward Compatibility)的同时,对其格式作了追加规定。
接着,参照图2至图7说明移动台1的内部构造。
图2是表示本发明的实施例1的移动台1的结构图,图中,上位层块单元11称为UPPER,用应用程序或TCP/IP层等上位协议层中的公知技术进行预定的处理,并将对基站2的1个以上的发送数据(TX Data)输出到无线链路控制单元12,另一方面从无线链路控制单元12输入1个以上的接收数据(Rx Data)。实施例1中,为了便于说明,假设上位层块单元11将对应于2种通信业务的发送数据(Tx Data)输出到无线链路控制单元12。
无线链路控制单元12称为RLC(Radio Link Control),一方面实施与上位层块单元11的数据(Tx Data、Rx Data)交换,另一方面在媒体访问控制单元13之间设置1个以上的逻辑信道(LOG ch:Logical Channel),由1个以上的逻辑信道实施与媒体访问控制单元13的数据交换。另外,无线链路控制单元12将存储在内部的发送缓冲器的发送数据的数据量信息(LOGbuffer)输出到媒体访问控制单元13。
媒体访问控制单元13称为MAC(Media Access Control),一方面进行与无线链路控制单元12的数据交换,另一方面在物理层控制单元14之间设置1个以上的传输信道(TRch:Transport CHannel),通过1个以上的传输信道与物理层控制单元14进行数据的交换。另外,媒体访问控制单元13将存储于内部的发送缓冲器的发送数据的数据量信息(TRbuffer)输出到物理层控制单元14。
物理层控制单元14被称为PHY(PHYsical),一方面与媒体访问控制单元13进行数据的交换,一方面通过从天线15收发射频信号来进行与基站2的无线通信。
无线资源控制单元16被称为RRC(Radio Resource Control),用以控制上位层块单元11、无线链路控制单元12、媒体访问控制单元13及物理层控制单元14,进行各种信息(Upcont、RLCcont、MACcont、PHYcont)的交换。
再有,无线链路控制单元12和媒体访问控制单元13构成数据量信息确定装置,物理层控制单元14构成发送装置。
图3是表示移动台1中上位层块单元11、无线链路控制单元12、媒体访问控制单元13及物理层控制单元14在各种信道之间的多重关系的说明图。
图3中,″NodeB→UE″是下行链路,表示移动台为接收侧。″UE→NodeB″是上行链路,表示移动台为发送侧。
本实施例1中,假设同时进行2个通信业务(Service1,Service2)。另外,Service1的收发数据(Tx Data,Rx Data)被分配给逻辑信道1(DTCH1:Dedicated Traffic CHannel 1),Service2的收发数据(Tx Data,Rx Data)被分配给逻辑信道2(DTCH2:Dedicated Traffic CHannel 2)。
在来自移动台1的发送(UE→NodeB)中,逻辑信道1(DTCH1)和逻辑信道2(DTCH2)在媒体访问控制单元13中被复用到作为传输信道的分组数据对应信道(E-DCH),分组数据对应信道(E-DCH)在物理层控制单元14中被分配给上行链路DPDCH。
从无线资源控制单元16通过基站2发送给基站控制装置3的移动台信息,在无线资源控制单元16中成为控制用逻辑信道(DCCH:Dedicated Control CHannel)数据,并进而在媒体访问控制单元13中被复用到上行链路的DCH。
另外,分组数据对应信道(E-DCH)和上行链路的DCH在物理层控制单元14中被复用到上行链路DPDCH。
物理层控制单元14中,生成上行链路控制用的信道即DPCCH和E-DPCCH。
另一方面,在来自基站2的接收(NodeB→UE)中,下行链路的DPDCH数据被分配给下行链路的DCH,逻辑信道1(DTCH1)、逻辑信道2(DTCH2)、控制用逻辑信道DCCH被复用到下行链路的DCH。
另外,物理层控制单元14中,与上行链路一样,使用下行链路的DPCCH和E-DPCCH。
图4是表示移动台1的无线资源控制单元16之内部的结构图,图中,RRC控制单元21为了控制无线资源控制单元16的整体动作并控制上位层决单元11、无线链路控制单元12、媒体访问控制单元13及物理层控制单元14,进行各种信息(Upcont、RLCcont、MACcont、PH Ycont)的交换。特别是,从上位层块单元11获取与通信业务有关的设定信息等,并将该设定信息等输出到无线链路控制单元12、媒体访问控制单元13及物理层控制单元14。
业务单元22确定关于移动台1和基站控制装置3间的通信业务的详细设定,并将该设定信息存储。
通信能力单元23将关于移动台1的各种通信能力(例如,最大发送功率、最大传输速率、总体存储器大小等)的信息存储,并在通信开始时将各种通信能力的信息经由无线链路控制单元12、媒体访问控制单元13及物理层控制单元14通知基站2。
图5是表示移动台1的无线链路控制单元12之内部的结构图,图中,接收缓冲器31a、31b从媒体访问控制单元13输入逻辑信道(DTCH1、DTCH2)的数据,并作为通信业务的数据(RX DATA1,RXDATA2)输出到上位层块单元11。接收缓冲器31c从媒体访问控制单元13输入逻辑信道(DCCH)的数据,并作为控制信息输出到RLC控制单元33。
发送缓冲器32a、32b从上位层块单元11输入通信业务的数据(TXDATA1,TX DATA2),并作为逻辑信道(DTCH1、DTCH2)的数据输出到媒体访问控制单元13。发送缓冲器32c从上位层块单元11输入控制信息,并作为逻辑信道(DCCH)的数据输出到媒体访问控制单元13。
RLC控制单元33对整个无线链路控制单元12进行控制。缓冲器监视单元34监视发送缓冲器32a、32b、32c中存储的数据(未发送的数据),并将发送缓冲器32a、32b、32c的数据量信息(LOGbuffer)输出到媒体访问控制单元13。
图6是表示移动台1的媒体访问控制单元13之内部的结构图,图中,接收DCH缓冲器41从物理层控制单元14输入接收DCH数据,然后将该接收DCH数据输出到数据分离单元42。
数据分离单元42将复用到接收DCH数据中的各逻辑信道(DTCH1、DTCH2、DCCH)的数据用公知的技术分离,并输出到无线链路控制单元12的接收缓冲器31a、31b、31c。
数据复用单元43将从无线链路控制单元12的发送缓冲器32a、32b、32c输出的各逻辑信道(DTCH1、DTCH2、DCCH)的数据用公知的技术复用(或分配),作为DCH数据输出到发送DCH缓冲器44,并作为E-DCH数据输出到增强型发送MAC处理单元45。
增强型发送MAC处理单元45从数据复用单元43输入E-DCH数据,并将该E-DCH数据输出到增强型DCH发送缓冲器46,同时从无线链路控制单元12的缓冲器监视单元34输入数据量信息(LOGbuffer),作为数据量信息(LOGbuffer)输出到数据量信息计算单元47。另外,增强型发送MAC处理单元45输入由物理层控制单元14接收、解调的下行链路E-DPCCH的数据。
数据量信息计算单元47基于数据量信息(LOGbuffer)计算在按通信业务(或在分配到E-DCH的逻辑信道中数据发送用的逻辑信道(DTCH1、DTCH2)的数据量,并将该数据量信息(TRbuffer)输出到物理层控制单元14。
MAC控制单元48控制整个媒体访问控制单元13,并进行与无线资源控制单元16的信息(MACcont)交换。
图7是表示移动台1的物理层控制单元14之内部的结构图,图中,天线15一旦接收了基站2发送的射频信号,接收部51就将该射频信号用公知的技术变换成基带信号。
解调单元52将接收部51输出的基带信号用公知的技术解调,并作为各种下行链路的物理信道(DPDCH、DPCCH、E-DPCCH)的数据输出到分离单元53。
分离单元53用公知的技术从各种下行链路的物理信道(DPDCH、DPCCH、E-DPCCH)的数据分离出与传输信道(DCH)和与物理控制信道(DPCCH、E-DPCCH)相关的数据。另外,分离单元53将DCH数据和DPCCH数据输出到媒体访问控制单元13,并将DPCCH数据输出到PHY控制单元57。再有,本实施例1中,复用到接收DPDCH的传输信道只包含一个DCH。
多路复用单元54输入从媒体访问控制单元13输出的上行链路的传输信道(DCH、E-DCH)的数据和从PHY控制单元57输出的上行链路DPCCH的数据及上行链路E-DPCCH的数据,将这些数据用公知的技术多路复用,作为各种发送物理信道(DPDCH、DPCCH,E-DPCCH)的数据输出到调制单元55。
调制单元55将从多路复用单元54输出的各种发送物理信道(DPDCH、DPCCH、E-DPCCH)的数据用公知的技术调制,作为发送基带信号输出到发送单元56。
本例中,将DPDCH、DPCCH、E-DPCCH用不同的扩展代码进行分码复用,但是复用方法并不以此为限。
发送单元56将从调制单元55输出的发送基带信号用公知的技术变换成射频信号,从天线15将射频信号发送给基站2。
PHY控制单元57控制整个物理层控制单元14,并进行与无线资源控制单元16的信息(PHYcont)交换。另外,PHY控制单元57从媒体访问控制单元13的数据量信息计算单元47输入数据量信息(TRbuffer),另外,将上行链路的无线信道即DPCCH及E-DPCCH的数据输出到多路复用单元54。
接着,参照图8至图10说明基站2的内部构造。
但是,基站2的基本结构跟表示移动台1的内部构造的图2至图7中上行链路关联构成部件和下行关联链路关联构成部件作了替换后的结构相同,因此主要就与移动台1不同的构成部件进行说明。
图8是表示本发明实施例1的基站2及基站控制装置3的结构图。
在图2所示的移动台1中全部构成部件被装在内部,与移动台1的不同,本例的构成部件被分散配置在基站控制装置3及基站2中。
也就是,上位层块单元101、无线链路控制单元102及无线资源控制单元106被配置在基站控制装置3中,物理层控制单元104被配置在基站2中。另外,媒体访问控制单元103被配置在基站控制装置3和基站2这两方。
另外,媒体访问控制单元103中,控制上行链路的E-DCH发送用无线资源的调度器116内置,这一点与移动台1不同。另外,物理层控制单元104构成接收装置及通知装置,媒体访问控制单元103构成发送定时确定装置。
上位层块单元101、无线链路控制单元102及无线资源控制单元106与移动台1的相同,因此省略其说明。
图9是表示基站2及基站控制装置3的媒体访问控制单元103之内部的结构图,图中,接收DCH缓冲器111从物理层控制单元104输入接收DCH数据,并将该接收DCCH数据输出到数据分离单元113。
增强型DCH接收缓冲器112从物理层控制单元104输入E-DCH数据,并将该E-DCH数据输出到数据分离单元113。
数据分离单元113将复用到接收DCH数据及E-DCH数据的各逻辑信道(DTCH1、DTCH2、DCCH)的数据用公知的技术分离,然后输出到无线链路控制单元102的接收缓冲器。
数据复用单元114将从无线链路控制单元102的发送缓冲器输出的各逻辑信道(DTCH1、DTCH2、DCCH)的数据用公知的技术复用(或分配),作为DCH数据输出到发送DCH缓冲器115。
调度器116从物理层控制单元104输入接收确认结果(ACK/NACK)和上行链路E-DPCCH的数据,并将下行链路E-DPCCH的数据输出到物理层控制单元104。
MAC控制单元117控制整个媒体访问控制单元103,并进行与无线资源控制单元106的信息(MACcont)交换。
图10是表示基站1的物理层控制单元104之内部的结构图,图中,接收单元121用天线105接收来自移动台1的射频信号,并将该射频信号用公知的技术变换成基带信号。
解调单元122将接收部121输出的基带信号用公知的技术解调,并作为各种上行链路的物理信道(DPDCH、DPCCH、E-DPCCH)的数据输出到分离单元123。
分离单元123从各种上行链路的物理信道(DPDCH、DPCCH、E-DPCCH)的数据用公知的技术分离为传输信道(DCH及E-DCH)和物理控制信道(DPCCH、E-DPCCH)的数据。另外,分离单元123将DCH数据、E-DCH数据及E-DPCCH数据输出到媒体访问控制单元103。另外,分离单元123将E-DCH数据的接收确认结果(ACK/NACK)和上行链路E-DPCCH数据输出到媒体访问控制单元103的调度器116,并将上行链路DPCCH数据输出到PHY控制单元127。
多路复用单元124被输入从媒体访问控制单元103输出的下行链路的传输信道(DCH)的数据、从调度器116输出的下行链路E-DPCCH数据、从PHY控制单元127输出的下行链路的DPCCH数据,并将这些数据用公知的技术复用,作为各种发送物理信道(DPDCH、DPCCH、E-DPCCH)的数据输出到调制单元125。
调制单元125将多路复用单元124输出的各种发送物理信道(DPDCH、DPCCH、E-DPCCH)的数据用公知的技术调制,作为发送基带信号输出到发送单元126。
本例中,将DPDCH、DPCCH、E-DPCCH用不同的扩展代码分码复用,但是多重方法并不以此为限。
发送单元126将调制单元125输出的发送基带信号用公知的技术变换成射频信号,从天线105将射频信号发送给移动台1。
PHY控制单元127控制整个物理层控制单元104,并进行与无线资源控制单元106的信息(PHYcont)交换。
图11是表示上行链路中的分组数据(E-DCH)的发送流程的发送流程图。
接着,就动作进行说明。
首先,移动台1测定未发送数据的数据量(步骤ST1)。
也就是,移动台1的上位层块单元11中发生的业务1(Service1)及业务2(Service2)的数据被作为发送数据(TX DATA1,TX DATA2)存储在无线链路控制单元12的发送缓冲器32a、32b中,而且,从发送缓冲器32a、32b作为发送用的逻辑信道(DTCH1、DTCH2)的数据输出到媒体访问控制单元13的数据复用单元43。
另外,与业务1的数据发送有关的各种移动台控制信息,作为控制信息(RLCont)从无线资源控制单元16的业务单元22通过RLC控制单元34存储到发送缓冲器32c,而且,从发送缓冲器32c作为控制用逻辑信道(DCCH)输出到媒体访问控制单元13的数据复用单元43。
此时,无线链路控制单元12的发送缓冲器32a、32b、32c将被存储的数据的数据量信息(Data size)定期地或在数据量发生了变化时输出到缓冲器监视单元34。
无线链路控制单元12的缓冲器监视单元34将发送缓冲器32a 32b、32c输出的数据量信息作为数据量信息(LOGbuffer)输出到媒体访问控制单元13的数据量信息计算单元47。
媒体访问控制单元13的数据量信息计算单元47(数据量信息确定装置)从缓冲器监视单元34接收数据量信息(LOGbuffer),并基于该数据量信息(LOGbuffer)计算按通信业务的数据量(业务1及业务2的数据量)。或者,计算分配给E-DCH的逻辑信道中的按数据发送用的逻辑信道的数据量(DTCH1及DTCH2的数据量)。
然后,将按通信业务或按数据发送用的逻辑信道的数据量信息(TRbuffer)输出到物理层控制单元14的PHY控制单元57。
接着,移动台1为了进行上行链路的无线资源分配请求,将上行链路E-DPCCH通知基站2(步骤ST2)。
步骤ST2中的移动台1的E-DPCCH的具体的发送动作如下。
首先,物理层控制单元14的PHY控制单元57将数据量信息(TRbuffer)作为上行链路E-DPCCH的数据输出到多路复用单元54。
物理层控制单元14的多路复用单元54将PHY控制单元57输出的上行链路E-DPCCH的数据用公知的技术复用到上行链路E-DPCCH。
物理层控制单元14的调制单元55将通过多路复用单元54复用的上行链路E-DPCCH的数据用公知的技术调制,作为发送基带信号输出到发送单元56。
物理层控制单元14的发送单元56将调制单元55输出的发送基带信号用公知的技术变换成射频信号,从天线15将射频信号发送给基站2。
再有,上行链路E-DPCCH中,除了数据量信息(TRbuffer)之外,还可包含上述非专利文献1的发送请求用信道USICCH的说明中所示的发送功率余裕信息(Power margin)等其他的移动台信息。包含什么样的信息进行发送,因基站2中安装的调度器116的结构不同而异,与本发明的效果不直接关联,其具体细节由标准书TS25.331(RRCsignalling)规定。
本例中,假设基站2的调度器116作为分配确定装置利用数据量信息(TRbuffer)和发送功率余裕信息(Power margin)进行调度。
再有,数据量信息(TRbuffer)被复用到上行链路的E-DPCCH时,如下文所述,可将数据量信息(TRbuffer)变换成各种格式。
(1)按通信业务或按复用到E-DCH的数据用逻辑信道(DTCH1、DTCH2)的发送缓冲器的数据量(位数)
(2)表示(1)的数据量(位数)的组合的指标(Index)
(3)按无线链路控制单元12的发送缓冲器32a、32b、32c的缓冲器占有率(%)
(4)表示(3)的缓冲器占有率(%)的组合的指标(Index)
图12A是表示一例按业务的缓冲器占有率及对其组合的指标的说明图,图12B是表示一例按无线链路控制单元12的发送缓冲器32a、32b的缓冲器占有率及对其组合的指标的说明图。
再有,E-DPCCH的信道格式(Channel format)在标准书TS25.211中作了规定,多路复用处理在标准书TS25.212中作了规定,数据量信息与指标(Index)的对应在标准书TS25.214中作了规定。
以下,说明步骤ST2中的基站2的E-DPCCH的接收动作。
一旦天线105接收到从移动台1发送来的射频信号,物理层控制单元104的接收单元121就将该射频信号用公知的技术变换成基带信号。
物理层控制单元104的解调单元122一旦从接收部121接收到基带信号,就将该基带信号用公知的技术解调,并将该上行链路E-DPCCH的数据输出到分离单元123。
物理层控制单元104的分离单元123一旦从解调单元122接收到上行链路E-DPCCH的数据,就将该E-DPCCH数据输出到媒体访问控制单元103的调度器116。
媒体访问控制单元103的调度器116一旦从物理层控制单元104接收到E-DPCCH数据,就基于该E-DPCCH数据进行对各移动台1的上行链路用的无线资源的控制(调度)(步骤ST3)。
步骤ST3中的基站2的调度的具体动作如下。
基站2的调度器116,将反映了调度结果的来自各移动台1的发送功率的增加部分设置在发送功率余裕值以内,还比较各移动台1的通信业务的种类和数据量来确定无线资源分配。
作为无线资源的分配方法,可采用以下所示的方法,在基站2及通信系统的设计中,例如,将小区整体的吞吐量设计、选定成最高。
(1)将未发送数据分组量大的移动台1设为优先的方法
(2)将有发送功率余裕的移动台1设为优先的方法
(3)将发送请求按照接收顺序分配的方法
(4)确定顺序后按顺序分配给移动台1的分配方法(所谓RoundRobin方法)
(5)优先分配给传播损失小或干扰小的通信环境良好的移动台1的方法(所谓Max C/I方法)
(6)居于Round Robin和Max C/I之间的方法(所谓Proportional Fair方法)
另外,为选定调度对象有各种各样的方法可适用,比如(1)仅以E-DCH为对象进行调度,对于DCH进行传统的基站控制装置3中的控制的方法,(2)在传统的基站控制装置3中的控制的限制下,对包含DCH的对象进行控制的方法等,在基站2及通信系统的设计中,例如,设计、选定成使小区整体的吞吐量成为最高。
本实施例1中,作为表示调度结果的信息,假设使用最大发送功率余裕(Max Power Margin)及移动台发送定时信息(MAP),并通知移动台1。
什么样的信息设为调度结果信息,因基站2中安装的调度器116的动作而异,与本发明的效果并不直接关联,其详细情况由标准书TS25.331(RRC signalling)规定。
接着,基站2将调度的结果信息经由下行链路E-DPCCH通知移动台1(步骤ST4)。
步骤ST4中的基站2的具体发送动作如下。
基站2的调度器116将调度的结果信息即最大发送功率余裕(MaxPower Margin)和移动台发送定时信息(MAP)作为E-DPCCH数据输出到物理层控制单元104的多路复用单元124。
物理层控制单元104的多路复用单元124将调度器116输出的下行链路E-DPCCH数据用公知的技术复用到下行链路E-DPCCH。
物理层控制单元104的调制单元125将通过多路复用单元124复用的下行链路E-DPCCH的数据用公知的技术调制,作为发送基带信号输出到发送单元126。
物理层控制单元104的发送单元126将调制单元125输出的发送基带信号用公知的技术变换成射频信号,从天线105将射频信号发送给移动台1。
再有,作为调度的结果信息的最大发送功率余裕(Max PowerMargin),可以是以E-DCH为对象或是以包含DCH的全发送功率为对象,其详细情况在标准书TS25.214等中规定。
步骤ST4中的移动台1的具体接收动作如下。
物理层控制单元14的接收单元51一旦天线15接收到从基站2发送来的射频信号,就将该射频信号用公知的技术变换成基带信号。
物理层控制单元14的解调单元52一旦从接收单元51接收到基带信号,就将该基带信号用公知的技术解调,并将下行链路的E-DPCCH的数据输出到分离单元53。
物理层控制单元14的分离单元53,一旦从解调单元52接收到下行链路E-DPCCH的数据,就将该E-DPCCH数据作为调度结果信息输出到媒体访问控制单元13的增强型发送MAC处理单元45。
移动台1一旦从基站2接收到调度结果信息,就参照该调度结果信息通过上行链路DPDCH发送未发送数据(步骤ST5)。
步骤ST5中的移动台1的具体的发送动作如下。
媒体访问控制单元13的增强型发送MAC处理单元45,在基站2通知的最大发送功率余裕(Max Power Margin)的范围内确定可发送的发送数据量(或者传输速率),并将未发送数据作为E-DCH数据输出到增强型DCH发送缓冲器46。
此时,增强型发送MAC处理单元45控制输出定时,以在由调度结果信息(MAP)指定的定时将未发送数据发送。
增强型DCH发送缓冲器46中存储的E-DCH数据被输出到物理层控制单元14的多路复用单元54。
另一方面,控制用逻辑信道(DCCH)的数据作为DCH数据存储在发送DCH缓冲器44中,进而从发送DCH缓冲器44输出到物理层控制单元14的多路复用单元54。
物理层控制单元14的多路复用单元54,将增强型DCH发送缓冲器46输出的E-DCH数据和发送DCH缓冲器44输出的DCH数据用公知的技术复用到上行链路DPDCH。
物理层控制单元14的调制单元55将通过多路复用单元54复用的上行链路DPDCH的数据用公知的技术调制,作为发送基带信号输出到发送单元56。
物理层控制单元14的发送单元56将调制单元55输出的发送基带信号用公知的技术变换成射频信号,并从天线15向基站2发送射频信号。
步骤ST5中的基站2的具体的接收动作如下。
一旦天线105接收到移动台1发送来的射频信号,物理层控制单元104的接收单元121就将该射频信号用公知的技术变换成基带信号。
物理层控制单元104的解调单元122一旦从接收单元121接收到基带信号,就将该基带信号用公知的技术解调,并将上行链路DPDCH的数据输出到分离单元123。
物理层控制单元104的分离单元123一旦从解调单元122接收到上行链路DPDCH数据,就从该DPDCH数据分离出E-DCH数据和DCH数据。
另外,分离单元123调查E-DCH数据并实施对该E-DC H数据的接收确认,若该接收确认结果为OK,则将ACK输出到调度器116,并将该E-DCH数据输出到增强型DCH接收缓冲器112。
增强型DCH接收缓冲器112将分离单元123输出的E-DCH数据通过无线链路控制单元102输出到上位层块单元101。
分离单元123在E-DCH数据的接收确认结果为NG时将NACK输出到调度器116,并将该E-DCH数据废弃。
再有,通过物理层控制单元104的分离单元123分离的DCH数据经由接收DCH缓冲器111、数据分离单元113输出到无线链路控制单元102。
基站2将E-DCH数据的接收确认结果(ACK/NACK)经由下行链路E-DPCCH通知移动台1(步骤ST6)。
步骤ST6中的基站2的具体发送动作如下。
物理层控制单元104的分离单元123将E-DCH数据的接收确认结果(ACK/NACK)输出到调度器116。
调度器116一旦从分离单元123接收到E-DCH数据的接收确认结果(ACK/NACK),就将该接收确认结果(ACK/NACK)作为下行链路E-DPCCH的数据输出到物理层控制单元104的多路复用单元124。
物理层控制单元104的多路复用单元124将调度器116输出的下行链路E-DPCCH数据用公知的技术复用到下行链路E-DPCCH。
物理层控制单元104的调制单元125将通过多路复用单元124复用的下行链路E-DPCCH的数据用公知的技术调制,并作为发送基带信号输出到发送单元126。
物理层控制单元104的发送单元126将调制单元125输出的发送基带信号用公知的技术变换成射频信号,从天线105将射频信号发送给移动台1。
步骤ST6中的移动台1的具体接收动作如下。
一旦天线15接收到基站2发送来的射频信号,物理层控制单元14的接收单元51就将该射频信号用公知的技术变换成基带信号。
物理层控制单元14的解调单元52一旦从接收单元51收到基带信号,就将该基带信号用公知的技术解调,并将下行链路E-DPCCH的数据输出到分离单元53。
物理层控制单元14的分离单元53一旦从解调单元52接收到下行链路的E-DPCCH的数据,就将该E-DPCCH数据输出到媒体访问控制单元13的增强型发送MAC处理单元45。
媒体访问控制单元13的增强型发送MAC处理单元45一旦从分离单元53接收到E-DCH数据的接收确认结果(ACK/NACK)即E-DPCCH数据,就分析该接收确认结果(ACK/NACK),确定是重发分组数据还是新发分组数据,并向增强型DCH发送缓冲器46输出数据。
增强型DCH发送缓冲器46将增强型发送MAC处理单元45输出的数据作为E-DCH数据输出到物理层控制单元14的多路复用单元54。
物理层控制单元14的多路复用单元54将增强型DCH发送缓冲器46输出的E-DCH数据用公知的技术复用到上行链路DPDCH。
物理层控制单元14的调制单元55将通过多路复用单元54复用的上行链路DPDCH的数据用公知的技术调制,作为发送基带信号输出到发送单元56。
物理层控制单元14的发送单元56将调制单元55输出的发送基带信号用公知的技术变换成射频信号,并用天线15将射频信号(Data)发送给基站2。
如上所述,移动台1发送给基站2的E-DCH数据的数据量信息,直接在基站2中分析、利用,基站2基于数据量信息用公知的技术实施上行链路中的分组数据发送的调度。
图13是表示与实施多个通信业务时移动台1和基站2之间交换的通信业务设定信息通知及发送缓冲器32a、32b、32c的大小设定通知有关的处理流程的处理流程图。
这些通知处理在实际的通信业务的数据发送处理前实施,或在发送途中的通信业务设定变更时实施,且与实际的数据发送分开地实施。
首先,移动台1通知基站控制装置3移动台能力(UE CapabilityNotice)信息,例如「全部无线链路控制单元12中的发送缓冲器32a、32b、32c的合计存储器大小」、「全部无线链路控制单元12中的接收缓冲器31a、31b、31c的合计存储器大小」、「全部媒体访问控制单元13中的发送缓冲器的合计存储器大小」等存储器信息,以及「最大发送功率」、「最大传输速率」等无线通信能力(步骤ST11)。
此时,基站2作为中继地点仅执行无线信号的收发和与基站控制装置3的信息传送。
移动台1和基站控制装置3之间的各种信息的交换称为RRC信令(RRC signalling),在标准书TS25.331等中规定。
另外,移动台能力(UE Capability Notice)的规定,在标准书TS25.306中作出。
再有,传统技术中,RRC信令利用DCCH及DC H进行收发。
步骤ST11中的移动台1的具体发送动作如下。
移动台能力信息存储在移动台1的无线资源控制单元16的通信能力单元23。
无线资源控制单元16的通信能力单元23将「全部无线链路控制单元12中的发送缓冲器32a、32b、32c的合计存储器大小」信息作为控制信息(RLCcont)输出到无线链路控制单元12的RLC控制单元33。
该控制信息(RLCcont)在无线链路控制单元12中成为控制用逻辑信道(DCCH)的数据,经由已说明的媒体访问控制单元13及物理层控制单元14的处理后从移动台1无线发送给基站2。
步骤ST11中的基站2及基站控制装置3的具体接收动作如下。
从移动台1无线发送来的无线信号一旦由基站2的天线105接收,就被实施物理层控制单元104的接收单元121、解调单元122及分离单元123中解调处理等而成为DCH数据,并在媒体访问控制单元103的数据分离单元113中成为DCCH数据。
数据分离单元113中分离的DCCH数据经由基站控制装置3的无线链路控制单元102,作为控制信息(RLCcont)通知无线资源控制单元106。
接着,基站控制装置3,将实施各通信业务所需的设定(ServiceSetup)信息及各通信业务所需的移动台发送缓冲器存储器分区(Memory Partitioning)信息通过RRC信令通知移动台1(步骤ST12)。
该通知处理通过与上述移动台能力的通知处理相反的动作进行。
移动台1一旦接收到上述设定信息,就将该设定信息存储在无线资源控制单元16的业务单元22中,并发出对移动台内部各单元的指示,实施移动台的动作设定(Configration或Reconfigration)。
接着,移动台1的无线资源控制单元16将表示已经将上述设定信息反映到了移动台内部的各单元的结束信息(Complete)经由基站2通知基站控制装置3(步骤ST13)。
其详细动作与上述移动台能力的通知处理相同,其说明省略。
接着,基站控制装置3将实施各通信业务所需的设定信息及各通信业务所需的移动台接收缓冲器存储器分区信息通知基站2地(步骤ST14)。
这里,基站2和基站控制装置3之间的交换被称为NBAP信令(NBAP signalling),在标准书TS25.423、TS25.433等中规定。NBAP信令信息,通过例如同轴电缆等的有线通信传送。
上述信息从基站控制装置3的无线资源控制单元106通知无线链路控制单元102及媒体访问控制单元103。
最后,基站2的媒体访问控制单元103将表示设定信息已经反映到基站内的各单元的结束信息(Complete)作为控制信息(MACcont)通知到基站控制装置3的无线资源控制单元106(步骤ST15)。
再有,上述信息的交换中,移动台1和基站控制装置3之间的交换,基站2和基站控制装置3之间的交换可独立地实施。
接着,就设定信息的交换的变形例进行说明。
图14是表示只将全部无线链路控制单元的发送缓冲器的合计存储器大小信息作为移动台能力(UE Capability Notice)信息之一从基站2通知到基站控制装置3时专用的交换的处理流程图。
首先,与图13所示的一样,移动台1将移动台能力信息通知基站控制装置3(步骤ST21)。
接着,基站控制装置3通过RRC信令将接收信息(ACK)通知移动台1(步骤ST22)。
接着,基站控制装置3通过NBAP信令将移动台能力信息通知基站2(步骤ST23)。
接着,基站2通过NBAP信令将接收信息(ACK)通知基站控制装置3(步骤ST24)。
再有,各信令中的具体动作与图13所示的相同,其说明省略。
如以上说明,本实施例1中,除了对基站控制装置3使用RRC信令进行数据量信息的通知以外,移动台1通过基站终端通信来通知:按数据分组通信业务的或按用E-DCH数据发送的数据分组发送用逻辑信道的未发送数据的数据量信息(或其组合信息)。从而,由于能够应对与W-CDM4A方式中的多个同时的通信业务,基站2中的上行链路的数据分组发送控制(上行链路的无线资源控制)的效率提高,小区整体的吞吐量可得到改善。
另外,通过使用将多个数据量信息组合后的指标(Index),可取得减少发送所需的位数并减少因信令而速度低下(开销)的效果。
而且,由于从移动台1不经由基站控制装置3而直接将数据量信息发送给基站2,能够进行高速、高频度的发送,可取得提高基站2中的移动台1的发送控制(上行链路无线资源控制)的效率并改善小区整体的吞吐量。
另外,本实施例1中,基站2将最大发送功率余裕(Max PowerMargin)和发送定时(MAP)作为调度结果信息通知移动台1,但也可采用与用于无线资源分配请求的数据量信息相同的格式、以发送许可数据量控制的形式进行发送控制。
实施例2.
图15A是表示一例按通信业务的缓冲器的数据量信息及对其组合的指标的说明图,图15B是表示一例按无线链路控制单元12的发送缓冲器32a、32b的数据量信息及对其组合的指标的说明图。
图中,作为表示缓冲器内存储的数据的数据量信息的表达方法,采用「数据量/保用位速率」(单位:sec)。
图16是表示为使「数据量/保用位速率」/单位:sec)形式的数据量通知成为可能而按通信业务的种类(Class)区分的服务质量(QoS:Quality of Service)的说明图。再有,QoS的规定在标准书TS23.107中作出。标准中记载上述保用位速率为GBR(Guaranteed Bit Rate)。
进行某通信业务时选择哪一QoS种类(class)或哪一种类的QoS进行通信,在如图13所说明的移动台1的无线资源控制单元16和基站控制装置3的无线资源控制单元106之间的设定信息交换时加以确定。
按每种通信业务选择了满足QoS所需的种类(class)后,其设定信息被保存在移动台1的业务单元22,需要时由无线资源控制单元16通知到无线链路控制单元12、媒体访问控制单元13及物理层控制单元14。
移动台1的数据量信息计算单元47根据无线链路控制单元12通知的各缓冲器的数据量信息(bit)和无线资源控制单元16通知的QoS信息的保用位速率(bit/sec)值计算数据发送所需的最大时间(sec)。
该计算结果作为数据量信息(TRbuffer),在上行链路的无线资源分配请求时作为上行链路E-DPCCH的信道信息的一部分载入,从移动台1到基站2进行通知。
基站2的调度器116参照该数据量信息(TRbuffer),实施对各移动台1的无线资源分配。
其他的具体动作与上述实施例1中说明的相同,其说明省略。
如以上说明,本实施例2中,除了用RRC信令对基站控制装置3进行数据量信息的通知以外,移动台1通过基站终端通信通知:按数据分组通信业务或按用E-DCH数据发送的数据分组发送用逻辑信道的未发送数据的数据量信息(或其组合信息)。从而,能够应对W-CDMA方式中的多个同时的通信业务,提高基站2中的上行链路的数据分组发送控制(上行链路的无线资源控制)的效率化,并改善小区整体的吞吐量。
另外,通过使用将多个数据量信息组合后的指标(Index),能够取得减少发送所需的位数并减少因信令的速度低下(开销)的效果。
而且,由于从移动台1不经由基站控制装置3而直接将数据量信息发送给基站2,能够使高速、高频度的发送成为可能,提高基站2中的移动台1的发送控制(上行链路无线资源控制)的效率,并改善小区整体的吞吐量。
另外,由于将「某时刻的未发送数据的发送所需的最大时间(sec)」通知基站2,基站2能够直接估计某移动台1中的通信业务的最大迟延时间,从而可实施高效率的调度。
另外,与将数据量用直接位数表达时相比,表达所需的数值范围及阶段(步骤)数较少,因此可取得减少无线发送时需要的位数并减少因信令造成的速度低下(开销)的效果。
另外,通过在分组数据的处理频繁的Interactive class及Background class中也规定保用位速率(Guaranteed bit rate)值,全部通信业务能够统一地处理,能够实现将基站2的调度器116简化的效果,这在传统的QoS规定中未作出规定。
再有,本实施例2中,对于传统标准的GBR栏中GBR值未作规定的interactive class及Background class,规定了GBR值。
但是,考虑到标准书过去的版本(出版)中规定的与移动台1和基站2的兼容(Backward compatibility:后向兼容),可以对全部种类另外增加新的GBR规定,并不以本实施例2为限定。
另外,本实施例2中,数据量信息计算单元47根据无线链路控制单元12的各发送缓冲器的数据量信息进行计算,并将其计算结果通知基站2,但是,也可如图17所示,由媒体访问控制单元13的增强型发送MAC处理单元45收集发送DCH缓冲器44及增强型DCH发送缓冲器46的数据量信息(Data size)并用于数据量信息(TRbuffer)的计算。
实施例3.
图18A是表示一例按通信业务的缓冲器的数据量信息和对其组合的指标的说明图,图18B是表示一例按无线链路控制单元12的发送缓冲器32a、32b的数据量信息及对其组合的指标的说明图。
图中,作为表示移动台1的发送缓冲器中存储的数据的数据量的信息表达方法,采用以用作通信时间单位的TTI分割「数据量/保用位速率」(单位:sec)所得的值。这里,TTI是从媒体访问控制单元13到物理层控制单元14的数据传送的单位时间,传统的标准中采用2/10/20/40/80msec等。
实施某通信业务时,选择哪一个TTI时间长度,在移动台1的无线资源控制单元16和基站控制装置3的无线资源控制单元106之间如图13所说明的设定信息的交换时加以确定。
所使用的TTI值按每个通信业务选择后,该设定信息被保存在移动台1的业务单元22中,根据需要,从无线资源控制单元16向无线链路控制单元12、媒体访问控制单元13及物理层控制单元14通知。
移动台1的数据量信息计算单元47根据无线链路控制单元12通知的各缓冲器的数据量信息(bit)和无线资源控制单元16通知的TTI值及QoS信息的保用位速率(bit/sec)值来计算数据发送所需的最大时间(TTI单位)。
该计算结果,作为数据量信息(TRbuffer)在上行链路的无线资源分配请求时作为上行链路的E-DPCCH的信道信息的一部分载入,从移动台1向基站2通知。
基站2的调度器116参照该数据量信息(TRbuffer),实施对各移动台1的无线资源分配。
其他具体动作与上述实施例1中说明的相同,因此其说明省略。
如上所述,通过用处理单位时间进行表达,能够使用于表达的数值范围减少,从而使用于表达所需的位数减少。另外,由于能够统一到以TTI单位处理的其他通信处理,能够实现基站2的调度器116的简化。
再有,本实施例3中,作为调度结果信息将最大发送功率余裕(MaxPower Margin)和发送定时(M4AP)从基站2向移动台1通知,但是也可采用与无线资源分配请求所用的数据量信息相同的格式,以发送许可时间控制的形式来实施发送控制。
实施例4.
图19A是表示一例按通信业务的缓冲器的数据量信息及对其组合的指标的说明图,图19B是表示一例按无线链路控制单元12的发送缓冲器32a、32b的数据量信息及对其组合的指标的说明图。
图中,作为表达移动台1的发送缓冲器中存储的数据的数据量的信息表达方法,采用「数据量/延迟(迟延)」(单位:bps(bit per sec))。另外,该延迟的规定在标准书TS23.107中作为QoS规定的一部分加以规定。标准书TS23.107中,该延迟记述为Transfer delay。
实施某通信业务时,选择哪一种延迟(QoS种类(class))或哪一种类的QoS进行通信,在移动台1的无线资源控制单元16和基站控制装置3的无线资源控制单元106之间如图13说明的设定信息的交换时加以确定。
按每个通信业务选择了满足QoS所需的种类(class)后,该设定信息被保存在移动台1的业务单元22种,根据需要,从无线资源控制单元16向无线链路控制单元12、媒体访问控制单元13及物理层控制单元14通知。
移动台1的数据量信息计算单元47根据从无线链路控制单元12通知的各缓冲器的数据量信息(bit)和从无线资源控制单元16通知的延迟值,计算发送当前缓冲器中存储的数据所需的最低传输速率(bit persec)。
该计算结果作为数据量信息(TRbuffer)在上行链路的无线资源分配请求时作为上行链路E-DPCCH的信道信息的一部分载入,从移动台1向基站2通知。
基站2的调度器116参照该数据量信息(TRbuffer)实施对各移动台1的无线资源分配。
其他具体动作与上述实施例1中说明的相同,其说明省略。
图20是表示为了能以「数据量/延迟」(单位:bit per sec)的形式进行数据量通知而按通信业务的种类(Class)提供服务质量(QoS:Qualityof Service)的说明图。
传统的QoS规定中,对会话类(Conversational class)、流媒体类(Streaming class)、交互类(Interactive class)及背景类(Backgroundclass)等4类作了规定,但是未对处理分组数据频繁的Interactive class及Backgroundclass中传送延迟(Transfer delay)进行规定。
本实施例4中,Interactive class及Background class中也规定了传送延迟(Transfer delay)。
如以上说明,本实施例4中,在对基站控制装置3使用RRC信令进行数据量信息的通知之外,将按数据分组通信业务或按以E-DCH数据发送的数据分组发送用逻辑信道的未发送数据的数据量信息(或其组合信息)通过基站终端通信从移动台1进行通知。从而,能够应对W-CDM4A方式中的多个同时的通信业务,因此能够提高基站2中的上行链路的数据分组发送控制(上行链路的无线资源控制)的效率,并改善小区整体的吞吐量。
另外,通过采用将多个数据量信息组合后的指标(Index),可减少发送所需的位数,从而也可取得降低因信令造成的速度低下(开销)的效果。
而且,从移动台1不经由基站控制装置3而直接将数据量信息发送给基站2,因此能够进行高速、高频度的发送,能够取得提高基站2中的移动台1的发送控制(上行链路无线资源控制)的效率并改善小区整体的吞吐量的效果。
另外,由于将「发送移动台1的发送缓冲器中存储的数据所需的传输速率(bit per sec)」通知了基站2,基站2能够直接估计某移动台1中的通信业务的最低传输速率,从而取得能够进行高效率调度的效果。
另外,与直接用位数表达数据量时相比,表达所需的数值范围及阶段(步骤)数减少,从而无线发送时所需的位数进一步减少,能够取得减少因信令造成的速度低下(开销)的效果。
另外,通过在分组数据的处理频繁的Interactive class及Backgroundclass中也规定最低传输速率(bit per sec)值,在传统的QoS规定中未如此规定,能够将全部通信业务统一地处理,从而实现将基站2的调度器116的简化的效果。
再有,本实施例4中,对传统标准中QoS规定中未作规定的延迟(Transfer delay)值的Interactive class及Background class规定了延迟。
但是,可考虑该标准书过去的版本(出版)中规定的移动台1和基站2和的兼容(Backward compatibility:后向兼容),对全部种类另外增加新的延迟规定,并不以本实施例4为限定。
另外,本实施例4中,数据量信息计算单元47根据无线链路控制单元12的各发送缓冲器的数据量信息进行计算,并基于该计算44结果通知了基站2,但是如图17所示,也可由媒体访问控制单元13的增强型发送MAC处理单元45收集发送DCH缓冲器44及增强型DCH发送缓冲器46的数据量信息(Data size)来用于数据量信息(TRbuffer)的计算。
再有,本实施例4中,从基站2将调度结果信息即最大发送功率余裕(Max Power Margin)和发送定时(MAP)通知了移动台1,但是也可采用与无线资源分配请求所用的数据量信息相同的格式以发送许可数据传输速率控制的形式来实施发送控制。
实施例5.
在描述本实施例5的内容之前,先对传统标准中的TFCI(TransportFormat Combination Indicator)加以说明。
所谓Transport Format Combination,是在移动台1和基站2之间的通信中设定多个逻辑信道的场合,进行关于各传输信道以哪一传输速率复用到物理数据信道(DPDCH)(标准书中将此称为Transport Format)的组合的通知时采用的指标(Index)。
各逻辑信道可取得的传输速率的组合,在图13中说明的设定信息的交换时,在移动台1的无线资源控制单元16和基站控制装置3的无线资源控制单元106之间确定。
TFC信息(TFCI)是基站2和移动台1双方预先持有的相同信息。
另外,传统标准中,上行链路的传输信道只是DCH一个。
E-DCH和DCH被完全独立地发送控制的场合,设定与独立用于E-DCH的TFC信息类似的信息,在数据发送时进行通知,但是本发明的说明中因为没必要而未作记载。E-DCH也和DCH一样在标准书中增加了TFC(或者TFCI)规定。
以下,就移动台1将TFC信息发送给基站2的情况进行说明。反向发送时也同样。
预先设定的TFC信息被保存在移动台1的业务单元22中,根据需要,从无线资源控制单元16向无线链路控制单元12、媒体访问控制单元13及物理层控制单元14进行通知。
同样,逻辑信道中的通信业务的多路复用设定等也在进行上述的交换时设定,并在业务单元22中保存,根据需要,从无线资源控制单元16向无线链路控制单元12、媒体访问控制单元13及物理层控制单元14进行通知。
媒体访问控制单元13在某发送时刻选择以哪一TFC中规定的通信速度来发送数据(标准书中,记载为TFC选择(TFC Selection)),之后,该TFC设定中规定的那部分数据被无线发送给基站2。TFC信息在无线发送时不是TFC信息本身,而是以指标(TFCI)的形式发送。基站2基于接收的TFC信息来解调上行链路的数据。
以下,就本实施例5的内容进行说明。
图21是表示一例作为数据量信息(TRbuffer)的E-DCH的通信速度值及其指标(TFCI)的说明图。
本实施例5中,作为数据量信息的表达方法采用「数据量/TTI单位时间」(单位:bps(bit per TTI)。本例中,TTI设为10ms。另外,TFCI≤7的区域假设为表示与DCH中采用的通信速度值相同的设定值,TFCI>7的区域假设为表示本发明中增强的通信速度值。
另外,通信业务设定时设定成为E-DCH用的TFC设定,也用在从增强型发送MAC处理单元45收到无线资源请求时,该TFC信息被载入上行链路E-DPCCH向基站2发送。
以下,就移动台1的动作进行说明。
移动台1的数据量信息计算单元47根据无线链路控制单元12通知的各缓冲器的数据量信息(bit)和无线资源控制单元16通知的延迟值计算无线资源请求中请求的传输速率值。
该计算结果作为数据量信息(TRbuffer)在上行链路的无线资源分配请求时作为上行链路E-DPCCH的信道信息的一部分载入,从移动台1向基站2通知。
基站2的调度器116参照该数据量信息(TRbuffer)实施对各移动台1的无线资源分配。
其他具体动作与上述实施例1中说明的内容相同,其说明省略。
如以上说明,本实施例5中,在对基站控制装置3用RRC信令进行数据量信息的通知以外,移动台1还通过基站终端通信进行关于按数据分组通信业务或按以E-DCH数据发送的数据分组发送用逻辑信道的未发送数据的数据量信息(或者其组合信息)的通知。从而,能够应对W-CDMA方式中的多个同时的通信业务,提高基站2中的上行链路的数据分组发送控制(上行链路的无线资源控制)的效率,从而取得改善小区整体的吞吐量的效果。
另外,通过采用将多个数据量信息组合时的指标(Index),可减少发送所需的位数,因此能够取得减少因信令造成的速度低下(开销)的效果。
而且,由于从移动台1不经由基站控制装置3而直接将数据量信息发送给基站2,因此能够进行高速、高频度的发送,提高基站2中的移动台1的发送控制(上行链路无线资源控制)的效率,因此可取得改善小区整体的吞吐量的效果。
另外,规定用于E-DCH的TFC(TFCI)也作为上行链路的无线资源分配请求时的数据信息表达使用,无需为上行链路的无线资源分配请求特别另行规定标准,因此可取得简化移动台1的结构的效果。
再有,也可考虑同时设定多个E-DCH,这种场合,可使用各E-DCH的Transport Format的组合中采用的TFC(或其指标)。
实施例6.
图22是表示一例作为数据量信息(TRbuffer)的E-DCH的通信速度值及其指标(TFRI)的说明图。
本实施例6中,移动台1的媒体访问控制单元13和增强型发送MAC处理单元45共同实施双方的TFC选择动作。
本实施例6中,在上行链路的无线资源分配请求时将用于DCH和E-DCH的Transport Format组合的TFC(或TFCI)通过上行链路E-DPCCH发送给基站2。
移动台1的数据量信息计算单元47根据无线链路控制单元12通知的各缓冲器的数据量信息(bit)和无线资源控制单元16通知的TFC的传输速率设定值计算发送当前缓冲器中存储的E-DCH数据所需的传输速率。
获取与该计算结果的E-DCH的传输速率对应的TFCI,并将该TFCI作为数据量信息(TRbuffer)在上行链路的无线资源分配请求时作为上行链路E-DPCCH的信道信息的一部分载入,以从移动台1向基站2通知。
基站2的调度器116参照数据量信息(TRbuffer)实施对各移动台1的无线资源分配。
其他具体动作与上述实施例1中说明的相同,其说明从略。
如上所述,通过使用与传统标准中采用的传输信道的通信速度的组合,无需另行规定上行链路的无线资源分配请求时专用的标准,因此可简化移动台1的结构。
再有,本实施例6中,从基站2作为调度结果信息将最大发送功率余裕(Max power margin)和发送定时(MAP)通知到移动台1,但是也可使用与无线资源分配请求所用的数据量信息相同的格式以发送许可数据传输速率控制的形式来进行发送控制。
实施例7.
图23是表示一例作为数据量信息(TRbuffer)的E-DCH发送时的DPDCH的信道振幅系数(β)设定及其指标的说明图。
传统标准中规定对于各上行链路信道的信道振幅系数,该规定在标准书TS25.213、TS25.214等中记载。发送E-DCH时的DPDCH的信道振幅系数设为βeu。
为了说明信道振幅系数βeu,图24中示出了一例移动台1的多路复用单元54中的传输信道和物理信道之间的多路复用。
关于各传输信道和物理信道之间的多路复用在标准书TS25.213中规定,其中包括类似的图。传统标准与图24中不含E-DCH、E-DPCCH的情形相当。
图中,″βeu/d″表示在相同DPDCH中以时间复用等方式复用DCH数据和E-DCH数据时取βeu或βd。另外,″×″表示乘法运算,″+″及″∑″表示加法运算,″j″表示虚数,″Cc″等表示信道分离用扩展代码,″I或Q″表示复平面上的轴,″Sdpch,n″表示移动台识别用代码。
再有,图中,DPDCH有多个存在(DPDCH1~DPDCH6),不是说发送多个DPDCH信道,而是意指可最多可用6个扩展代码将一个DCH或E-DCH并行分割地发送。
物理层控制单元14中的传输信道和物理信道的多路复用的设定,在移动台1的无线资源控制单元16和基站控制装置3的无线资源控制单元106之间如图13说明的设定信息的交换时确定。
多路复用设定信息保存在移动台1的业务单元22指,根据需要,从无线资源控制单元16向无线链路控制单元12、媒体访问控制单元13及物理层控制单元14通知。
移动台1的数据量信息计算单元47根据无线链路控制单元12通知的各缓冲器的数据量信息(bit)和无线资源控制单元16通知的多路复用设定信息来计算当前缓冲器中存储的以E-DCH发送数据所需的传输速率。该传输速率也可为上述实施例4所示的传输速率。
获取与该计算结果的传输速率对应的E-DCH发送用信道振幅系数,将该E-DCH发送用信道振幅系数作为数据量信息(TRbuffer),在上行链路的无线资源分配请求时作为上行链路E-DPCCH的信道信息的一部分载入,从移动台1向基站2通知。
基站2的调度器116参照该数据量信息(TRbuffer),实施对各移动台1的无线资源分配。
其他具体动作与上述实施例1说明的内容相同,其说明从略。
无线发送信道振幅系数时,如以下所示,考虑各种宝保,至于如何采用哪一种报h则取决于移动台1的安装的不同而异,这在标准书TS25.211、TS25.331等中作出规定。
(1)与请求的传输速率对应的信道振幅系数的实际数值
(2)信道振幅系数的指标
(3)信道振幅系数的增减
(4)信道振幅系数的增减的指标
(5)信道振幅系数比
(6)信道振幅系数比的指标
W-CDMA方式中,数据传输速率是可变的,若传输速率高,则为了确保发送位的每1位的S/N比(所谓Eb/No)将振幅系数β设置得大。也就是,根据传输速率来规定振幅系数β。
W-CDMA方式中,全部移动台1使用相同射频,因此基站2从特定的移动台1接收射频信号时,其他移动台发送的射频信号的接收功率全部成为干扰噪声功率。
另外,基站2需要一边监视小区整体的干扰功率及吞吐量等一边调度来自各移动台1的发送。
因此,如上所述,由于取代数据量信息而以可直接换算成所请求的数据传输速率上引起的干扰功率(∝移动台发送功率)的形式发送,可减少调度器116的计算量,能够取得简化调度器116的结构的效果。
再有,由于信道振幅系数βeu对应于在E-DCH数据载入DPDCH的时刻作为DPDCH需要多大的传输速率,即便使用的通信业务为多个也没有问题,因此可取得简化调度器116的效果。
再有,本实施例7中,E-DCH单独加以规定,但是也可将与传统的DCH信道的βd的组合通过上行链路E-DPCCH110发送。
另外,本实施例7中,只在上行链路的无线资源分配请求时使用信道振幅系数βeu,还可用增益因数设定作为调度结果信息,而且,可取代通过下行链路E-DPCCH通知的最大发送功率余裕(Max PowerMargin)信息而作为最大增益因数设定使用。
从而,移动台1的多路复用单元54能够直接地设定信道振幅系数βeu,取得简化移动台1的结构的效果。
实施例8.
图25是表示一例作为数据量信息(TRbuffer)的E-DCH发送时的发送物理信道功率偏置的设定及其指标的说明图。
移动台1的数据量信息计算单元47根据无线链路控制单元12通知的各缓冲器的数据量信息(bit)和无线资源控制单元16通知的信道多路复用设定信息,计算用E-DCH发送当前缓冲器中存储的数据所需的传输速率。该传输速率也可为上述实施例4所示传输速率。
获得与该计算结果的传输速率对应的E-DCH发送用信道振幅系数,将该E-DCH发送用信道振幅系数变换成功率,进而将上行链路DPCCH的增益因数βc变换成功率,并将E-DCH传输功率变换成以上行链路DPCCH的功率作为基准的功率偏置值。
将该功率偏置值作为数据量信息(TRbuffer),在上行链路的无线资源分配请求时作为上行链路E-DPCCH的信道信息的一部分载入,从移动台1向基站2通知。
基站2的调度器116参照该数据量信息(TRbuffer)实施对各移动台1的无线资源分配。
其他具体动作与上述实施例1中说明的内容相同,其说明从略。
如上所述,取代数据量信息而以能够直接换算成在发送数据所需的传输速率上引起的干扰功率(∝移动台发送功率)的形式发送,从而减少调度器116的计算量,能够取得简化调度器116的结构的效果。
另外,本实施例8中,仅在上行链路的无线资源请求时使用功率偏置信息,但采用功率偏置值作为调度结果信息是可能的。
实施例9.
本实施例9中,基站2的调度器116不进行移动台1中的数据发送定时的调度,而调度上行链路的数据传输速率。移动台1、基站2、基站控制装置3之内部结构与上述实施例1所示的相同。
图26是表示上行链路中的分组数据(E-DCH)的发送流程的发送流程图。
上述实施例1中,如图11所示,主要用以下的4个步骤发送分组数据(E-DCH)。
(1)移动台1向基站2发送上行链路无线资源分配请求。
(2)基站2向移动台1发送调度结果信息。
(3)移动台1向基站2发送分组数据。
(4)基站2向移动台1发送接收确认结果。
与此不同,本实施例9中,如图26所示,形成将上述的(1)(2)和(3)(4)分成为(A)无线资源控制流程和(B)数据发送流程的处理流程。
这里,将发送时的传输速率增减请求(图中记为Rate Request)作为来自移动台1的无线资源分配请求(上述(1)的处理)发送,将传输速率是否可增减(图中记为Rate Grant)作为来自基站2的调度结果通知(上述(2)的处理)发送。因此,来自移动台1的数据发送(上述(3)的处理)由移动台1的判断来确定发送定时(成为所谓的自律发送控制(Autonomous Transmission))。
另外,基站2在接收了数据时将接收确认结果(上述(4)的处理)通知到移动台1。
以下,用图26A说明(A)无线资源控制流程。
首先,移动台1测定未发送数据的数据量(步骤S T101)。
也就是,移动台1的上位层块单元11中发生的业务1(Service1)及业务2(Service2)的数据作为发送数据(TX DATA1、TX DATA2)存储在无线链路控制单元12的发送缓冲器32a、32b中,进而从发送缓冲器32a、32b作为发送用的逻辑信道(DTCH1、DTCH2)的数据输出到媒体访问控制单元13的数据复用单元43。
另外,与业务1的数据发送有关的各种移动台控制信息,作为控制信息(RLCont)从无线资源控制单元16的业务单元22经由RRC控制单元21存储到发送缓冲器32c,进而从发送缓冲器32c作为控制用逻辑信道(DCCH)输出到媒体访问控制单元13的数据复用单元43。
此时,无线链路控制单元12的发送缓冲器32a、32b、32c将被存储数据的数据量信息(Data size)定期地或在数据量有了变化时输出到缓冲器监视单元34。
无线链路控制单元12的缓冲器监视单元34将发送缓冲器32a、32b、32c输出的数据量信息作为数据量信息(LOGbuffer)输出到媒体访问控制单元13的数据量信息计算单元47。
接着,移动台1为了请求上行链路的传输速率的增减,将上行链路E-DPCCH通知到基站2(步骤ST102)。
步骤ST102中的移动台1的具体发送动作如下。
媒体访问控制单元13的数据量信息计算单元47一旦从缓冲器监视单元34接收到数据量信息(LOGbuffer),就基于该数据量信息(LOGbuffer)计算按通信业务的数据量(业务1及业务2的数据量)。或计算按分配到E-DCH的逻辑信道中的数据发送用的逻辑信道的数据量(DTCH1及DTCH2的数据量)。
然后,根据该数据量的增减变化,计算请求调度器116设置的传输速率。
作为传输速率的计算方法,有如下所述的方法。
(1)使用上述实施例4中获得的传输速率的方法
(2)用PHY控制单元57监视DCH数据的传送状况,使得与E-DCH数据的合计传输速率不超过某设定值的方法
媒体访问控制单元13的数据量信息计算单元47根据数据量的增减判断传输速率增减的必要性,进而获得与该传输速率对应的E-DCH发送用信道振幅系数,将该E-DCH发送用信道振幅系数作为数据量信息(TRbuffer),在上行链路的无线资源分配请求时作为上行链路E-DPCCH的信道信息的一部分载入,从移动台1向基站2通知。
与上述无线发送有关的媒体访问控制单元13及物理层控制单元14的具体动作与上述各实施例中说明的内容相同,其说明从略。
将信道振幅系数作为上述传输速率增减请求信息无线传送时,可考虑如下所示的各种方法,采用何种方法因移动台1的安装不同而异,这在标准书TS25.211、TS25.331等中作了规定。
(1)与请求的传输速率对应的信道振幅系数的实际数值
(2)信道振幅系数的指标
(3)信道振幅系数的增减(Up/Down)
(4)信道振幅系数的增减的指标
(5)信道振幅系数的平方值(换算成功率的量纲)
(6)信道振幅系数的平方值(功率量纲换算)的指标
(7)信道振幅系数之比
(8)信道振幅系数之比的指标
(9)信道振幅系数的平方值(功率量纲换算)之比(功率偏置)
(10)功率偏置的指标
步骤ST102中基站2的具体接收动作如下。
一旦天线105接收到移动台1发送的射频信号,物理层控制单元104的接收单元121就将该射频信号用公知的技术变换成基带信号。
物理层控制单元104的解调单元122一旦从接收单元121接收到基带信号,就将该基带信号用公知的技术解调,并将上行链路E-DPCCH的数据输出到分离单元123。
物理层控制单元104的分离单元123一旦从解调单元122接收到上行链路E-DPCCH的数据,就将该E-DPCCH数据输出到媒体访问控制单元103的调度器116。
媒体访问控制单元103的调度器116一旦从物理层控制单元104接收到E-DPCCH数据,就基于该E-DPCCH数据实施对各移动台1的上行链路用的无线资源的控制(调度),并判断是否同意来自移动台1的传输速率增减请求(步骤ST103)。
调度中采用的算法可采用上述实施例1所示的各种各样的方法,在基站2及通信系统的设计中,设计、选定成例如使小区整体的吞吐量成为最高。
接着,基站2将调度的结果信息通过下行链路E-DPCCH通知到移动台1(步骤ST104)。
步骤ST104中的基站2的具体发送动作如下。
基站2的调度器116将调度的结果信息即关于传输速率是否可增减(Rate Grant)的信息作为下行链路E-DPCCH数据输出到物理层控制单元104的多路复用单元124。
物理层控制单元104的多路复用单元124将调度器116输出的下行链路E-DPCCH数据用公知的技术复用到下行链路E-DPCCH。
物理层控制单元104的调制单元125将通过多路复用单元124复用的下行链路E-DPCCH的数据用公知的技术调制,作为发送基带信号输出到发送单元126。
物理层控制单元104的发送单元126将调制单元125输出的发送基带信号用公知的技术变换成射频信号,从天线105将射频信号发送给移动台1。
作为上述调度结果即关于传输速率是否可增减(Rate Grant)的信息,如以下所示,可考虑各种方法,具体采用何种方法因基站1的实际安装而异,在标准书TS25.331中对此作了规定。
(1)与许可的传输速率对应的信道振幅系数的实际数值
(2)信道振幅系数的指标
(3)信道振幅系数的增减(Up/Down)
(4)信道振幅系数的增减的指标
(5)信道振幅系数的平方值(换算成功率的量纲)
(6)信道振幅系数的平方值(功率量纲换算)的指标
(7)信道振幅系数之比
(8)信道振幅系数之比的指标
(9)信道振幅系数的平方值(功率量纲换算)之比(功率偏置)
(10)功率偏置的指标
步骤ST104中移动台1的具体接收动作如下。
一旦天线15接收到基站2发送来的射频信号,物理层控制单元14的接收单元51就将该射频信号用公知的技术变换成基带信号。
物理层控制单元14的解调单元52一旦从接收单元51接收到基带信号,就将该基带信号用公知的技术解调,并将下行链路E-DPCCH的数据输出到分离单元53。
物理层控制单元14的分离单元53一旦从解调单元52接收到上行链路E-DPCCH的数据,就将该E-DPCCH数据作为调度结果即关于传输速率是否可增减的信息输出到媒体访问控制单元13的增强型发送MAC处理单元45。
媒体访问控制单元13的增强型发送MAC处理单元45一旦从分离单元53接收到关于传输速率是否可增减的信息,就参照该传输速率是否可增减信息将可使用最大传输速率更新。
如上所述,重复地进行:增强型发送MAC处理单元45中的移动台1的发送缓冲器的数据量的监视;传输速率的增减请求的确定;对基站2的传输速率增减请求的发送;基站2的调度器116中的传输速率确定;以及对来自基站2的调度结果通知的处理(步骤ST101~ST104)。
以下,用图26说明(B)数据发送流程。
首先,移动台1通过图26A所示的流程在适当更新的可用的最大传输速率范围内自律地发送数据(步骤ST105)。
在步骤ST105中移动台1的具体发送动作如下。
首先,媒体访问控制单元13的增强型发送MAC处理单元45在通过图26A的流程更新的最新可用传输速率范围内根据对移动台1的最大可发送功率(Max power)等而确定发送数据量(或传输速率),并将未发送数据作为E-DCH数据输出到增强型DCH发送缓冲器46。
此时,增强型发送MAC处理单元45以缓冲器中存在的数据为限进行数据输出,并自律地进行其输出定时的控制。
例如,考虑以(1)E-DCH用数据为优先、以(2)以DCH为优先和以(3)数据量多的一方为优先等各种方法,至于采用何种方法因移动台1的实际安装而异。
另一方面,控制用逻辑信道(DCCH)的数据作为DCH数据存储到发送DCH缓冲器44中,进而从发送DCH缓冲器44输出到物理层控制单元14的多路复用单元54。
物理层控制单元14的多路复用单元54根据增强型DCH发送缓冲器46输出的E-DCH数据和发送DCH缓冲器44输出的DCH数据用公知的技术复用到上行链路DPDCH。
物理层控制单元14的调制单元55将通过多路复用单元54复用的上行链路DPDCH的数据用公知的技术调制,作为发送基带信号输出到发送单元56。
物理层控制单元14的发送单元56将调制单元55输出的发送基带信号用公知的技术变换成射频信号,用天线15将射频信号发送给基站2。
步骤ST105中的基站2的动作与图11的步骤ST5相同,其说明从略。
接着,基站2将E-DCH数据的接收确认结果(ACK/NACK)通过下行链路E-DPCCH通知到移动台1(步骤ST106)。
步骤ST106中的基站2及移动台1的动作与图11的步骤ST6相同,其说明省略。
如上,重复地进行:增强型发送MAC处理单元45中的移动台1的发送缓冲器的数据量的监视;发送来的可使用传输速率范围内移动台1对基站2的数据发送;对来自基站2的接收确认结果的通知的处理(步骤ST105~ST106)。
接着,就移动台1对基站2的数据量信息的发送周期的设定进行说明。
图27是表示发送上行链路无线资源请求信息时的发送周期定时的说明图,图28是表示设定发送中采用的发送参量时的移动台1、基站2及基站控制装置3之间的交换的流程图。
图27中,与2个通信业务对应的数据量信息(D1、D2)用E-DPCCH发送。另外,发送以周期(K)进行,周期(K)分割为M个分区。
通信业务1和通信业务2中,发送的优先顺序和QoS要求高的通信业务或数据量的变动大的通信业务就使用M个分区中的多数。
从而,能够提高数据量信息的发送频度,高效率地进行基站2中的移动台发送控制,并取得改善小区整体的吞吐量的效果。
如本实施例9所说明,作为进行无线资源请求时发送的信息,移动台1对基站2发送可直接换算成在发送数据所需的传输速率上引起的干扰功率(∝移动台发送功率)的信息来取代数据量信息,从而减少基站2的调度器116的计算量,取得简化调度器116的结构的效果。
另外,作为调度结果通知时发送的信息,基站2对移动台1发送可直接换算成在发送数据时所需的传输速率上引起的干扰功率(∝移动台发送功率)的信息来取代数据量信息,从而减少移动台1的增强型发送MAC处理单元45的计算量,取得简化移动台1的结构的效果。
另外,本实施例9中,无线资源请求周期和数据发送周期已分离,不需要对数据发送定时进行调度,能够取得简化调度器116的结构的效果。
另外,作为移动台1对基站2在无线资源请求时发送的信息,仅发送传输速率请求,但也可如上述实施例1那样附加上移动台1的发送功率余裕(Power margin)信息进行发送。
另外,作为图27中说明的信息发送周期的基准,可以有各种方法,如(1)在未发送数据存在时发送,(2)在未发送数据有/无的变化时刻发送等,并不限定于本实施例9。
而且,图27中说明的信息发送周期规定及周期设定方法,在上述实施例1~8中也可使用。
另外,上述的全部数据量信息或无线资源分配请求信息,能够通过代表特定信息的指标来表示。进而基站2能够基于从移动台1接收的指标对无线资源进行分配。
不言而喻,移动台1当然包括在特定的位置固定使用的终端。
产业上的利用可能性
如上所述,本发明的移动台适用于其中基站能适当地控制按通信业务或按发送信道的数据的发送定时,并需要高效地提高W-CDMA方式中的多个通信业务的通信系统。

Claims (2)

1.一种通信系统,在具备通知表示无线资源的发送控制信息的基站和根据从所述基站通知的发送控制信息将数据发送给所述基站的移动台的通信系统中,其特征在于,
所述移动台具备:
将多个通信业务的数据按发送信道存储的发送缓冲器;
监视所述发送缓冲器中存储的按发送信道的数据并确定该按发送信道的数据量信息的数据量信息确定装置;以及
将由所述数据量信息确定装置确定的按发送信道的数据量信息连同表示发送功率的余裕的发送功率余裕信息一起发送给所述基站的发送装置,
所述基站具备:
根据从所述移动台接收的数据量信息和发送功率余裕信息,将用于从所述移动台向所述基站进行数据发送的无线资源分配给所述移动台的调度器。
2.一种无线通信方法,其特征在于,一旦多个通信业务的数据被存储到移动台中的按发送信道的发送缓冲器,就监视该发送缓冲器中存储的按发送信道的数据,确定该按发送信道的数据量信息,将按发送信道的数据量信息连同表示发送功率的余裕的发送功率余裕信息一起发送给基站,
另一方面,所述基站一旦连同表示发送功率的余裕的发送功率余裕信息一起,从所述移动台接收按发送信道的数据量信息,就根据该按发送信道的数据量信息和发送功率余裕信息来确定从所述移动台向所述基站发送的数据的无线资源,并将表示该无线资源的发送控制信息通知到所述移动台,
所述移动台根据从所述基站通知的发送控制信息将数据发送给所述基站。
CN 201010534929 2004-04-30 2004-04-30 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法 Expired - Lifetime CN101977444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010534929 CN101977444B (zh) 2004-04-30 2004-04-30 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010534929 CN101977444B (zh) 2004-04-30 2004-04-30 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2004800428911A Division CN1943259B (zh) 2004-04-30 2004-04-30 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法

Publications (2)

Publication Number Publication Date
CN101977444A CN101977444A (zh) 2011-02-16
CN101977444B true CN101977444B (zh) 2013-03-27

Family

ID=43577280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010534929 Expired - Lifetime CN101977444B (zh) 2004-04-30 2004-04-30 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法

Country Status (1)

Country Link
CN (1) CN101977444B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414943B1 (en) * 1998-08-17 2002-07-02 Lg Electronics Inc. Method and apparatus for controlling asymmetric dynamic radio bearers in mobile packet data communications system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414943B1 (en) * 1998-08-17 2002-07-02 Lg Electronics Inc. Method and apparatus for controlling asymmetric dynamic radio bearers in mobile packet data communications system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Motorola.AH64: Reducing control channel overhead for Enhanced Uplink.《3GPP R1-03-0067》.2003,背景部分第2段、图1. *
Nokia.Uplink Signalling for Node B Scheduling.《3GPP R1-04-0076》.2004,第2.1节、2.3节、附录. *

Also Published As

Publication number Publication date
CN101977444A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
CN1943259B (zh) 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法
CN101273568B (zh) 移动站、固定站、通信系统以及通信方法
CN100579310C (zh) 移动台、基站、通信系统及通信方法
CN101820644B (zh) 用于上行链路分组传输的调度分配的装置和方法
CN101112018B (zh) 发送控制方法、移动站及通信系统
US8149765B2 (en) Mobile station, base station, communications system, and communications method
EP1887828B1 (en) Mobile communication system and communication control method thereof
CN101690315A (zh) 移动通信系统中的调度相关的信息的传送
RU2006132682A (ru) Усовершенствованный восходящий выдеденный канал - прикладной протокол для интерфейсов
EP1900146B1 (en) Resource allocation method, communication system, network element, module, computer program product and computer program distribution medium
CN101741707B (zh) 一种上行数据传输方法、装置及通信系统
JP2009261035A (ja) 移動局、基地局、通信システム、データ量情報送信方法、送信制御情報通知方法及び無線通信方法
CN101977444B (zh) 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法
CN101977394B (zh) 移动台、基站、通信系统、数据量信息发送方法、发送控制信息通知方法及无线通信方法
JP5026577B2 (ja) 移動局
JP4763085B2 (ja) 移動局、通信システム及び無線通信方法
CN102711268B (zh) 移动站、基站、通信系统和通信方法
JP5220903B2 (ja) 移動局、基地局、通信システム、データ量情報送信方法、送信制御情報通知方法及び無線通信方法
WO2005101884A1 (en) A method of enhancing uplink transmissions
CN104135773A (zh) 移动站、基站、通信系统和通信方法
CN104125650A (zh) 移动站、基站、通信系统和通信方法
GB2413243A (en) Method of enhancing uplink transmissions
CN101635954A (zh) 移动台、基站、通信系统及通信方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20130327