CN101969102A - 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法 - Google Patents

全水相纳米晶/导电聚合物杂化太阳能电池的制备方法 Download PDF

Info

Publication number
CN101969102A
CN101969102A CN2010102474381A CN201010247438A CN101969102A CN 101969102 A CN101969102 A CN 101969102A CN 2010102474381 A CN2010102474381 A CN 2010102474381A CN 201010247438 A CN201010247438 A CN 201010247438A CN 101969102 A CN101969102 A CN 101969102A
Authority
CN
China
Prior art keywords
nanocrystalline
preparation
solar cell
water phase
hybrid solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102474381A
Other languages
English (en)
Other versions
CN101969102B (zh
Inventor
杨柏
于伟利
张皓
张俊虎
范战西
魏浩桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN2010102474381A priority Critical patent/CN101969102B/zh
Publication of CN101969102A publication Critical patent/CN101969102A/zh
Priority to US13/813,628 priority patent/US9634273B2/en
Priority to PCT/CN2011/074038 priority patent/WO2012019472A1/en
Application granted granted Critical
Publication of CN101969102B publication Critical patent/CN101969102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池技术领域,具体涉及一种采用全水相合成半导体纳米晶与导电聚合物进而制备高效有机/无机杂化太阳能电池的方法。主要包括水相纳米晶和水相共轭聚合物的合成,太阳能电池器件的制备三个步骤。该方法制备的太阳能电池所需的纳米晶材料来源广泛,种类众多,尺寸可调;所采用的共轭聚合物的分子结构和分子量可调,有助于提高对太阳光的吸收。电池器件加工能够在室温下空气中进行,过程绿色环保无污染,加工周期短,成本低廉。该方法开辟了一种制备有机/无机杂化太阳能电池的新方法,成功地将水相合成的优质纳米晶引入高效太阳能电池的制备过程中,是一种绿色无污染的新型太阳能制备技术。

Description

全水相纳米晶/导电聚合物杂化太阳能电池的制备方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种采用全水相合成的半导体纳米晶与导电聚合物制备高效有机/无机杂化太阳能电池的方法。
背景技术
随着对能源需求的不断增加和化石型(煤、石油、天然气)能源储量的不断减少,寻找替代新能源已经成为当前科学研究的紧迫问题。近年来,太阳能电池,特别是有机太阳能电池,由于其具有加工简便、低成本、低能耗、绿色无污染等优点,已经取代传统的硅太阳能电池成为下一代太阳能电池的发展方向。目前,有机太阳能电池的制备方法主要有两种:旋涂制膜方法和真空气相沉积方法,分别适用于共轭聚合物体系和有机小分子体系。有机太阳能电池的缺点是有机物材料的载流子迁移率较低,影响了其整体光电转换效率。
如何提高有机物材料的载流子迁移率,尽可能增加对太阳光的吸收以提高有机太阳能电池的光电转换效率,是科研工作者必须解决的问题。如果采用具有高载流子迁移率的无机纳米晶与有机聚合物复合,然后采用相关制膜技术制备有机无机杂化太阳能电池将能有效提高对太阳光的吸收,提高光生载流子的迁移率,进而提高有机太阳能电池的光电转换效率。目前已有采用有机相制备并分散的有机/无机杂化太阳能电池相关研究和报道,但由于有机溶剂的易挥发性、毒性和憎水性,材料制备过程复杂,实验条件要求较高,因而使得有机/无机杂化电池器件的加工和材料的选择范围受到了很大的限制。
发明内容
本发明的目的就是提供一种采用全水相合成的聚合物和纳米晶来制备有机/无机杂化太阳能电池的方法。采用这种方法制备太阳能电池,材料来源广泛,成本低廉,加工过程简洁快速,实验条件环保无污染,从而开辟了一条制备高效、绿色太阳能电池的新途径。
本发明采用全水相合成的半导体纳米晶【如:碲化镉(CdTe)、硒化镉(CdSe)、硫化镉(CdS)纳米晶等】与水相合成的导电聚合物前躯体【聚苯乙烯撑(PPV)及其衍生物等】杂化为光活性材料进而制备体相结构的太阳能电池。
本发明包括以下步骤:1,制备水相的高质量半导体纳米晶;2,制备水相的PPV前驱体;3,以半导体纳米晶和PPV前驱体的混合溶液涂膜制备太阳能电池。
具体来说,本发明步骤如下:
1、水相制备CdTe、CdSe或CdS半导体纳米晶水溶液
将金属镉源(CdCl2或Cd(Ac)2·2H2O等)与巯基乙胺配体加入到水溶液中,Cd2+的浓度为1.0×10-3M~3.0×10-2M,Cd2+与巯基乙胺的物质的量的比例为1∶1.2~1∶3.0,用浓度0.1M~1M的NaOH溶液或HCl溶液调节反应体系的pH值到中性或弱碱性,通N2气10~30分钟以除去溶液中的氧;然后将NaHTe水溶液快速加入到CdCl2和巯基乙胺的混合溶液中,Cd2+与NaHTe的物质的量的比例为1∶0.01~1∶0.5;最后将新制备的混合溶液在80~100℃温度下回流0.5~48小时,随着回流时间的延长,不同阶段取样能够得到荧光从绿光到红光(360nm光照条件下)的粒径(直径)从2.2nm到3.8nm的CdTe纳米晶溶液。
本发明所述方法同样可用于制备CdSe或CdS等各种半导体纳米晶,不同之处在于制备CdSe纳米晶时采用同样浓度的NaHSe代替NaHTe;制备CdS时采用连续通H2S气体(向反应体系中通30分钟~24小时H2S气体)代替NaHTe溶液,所得CdSe粒径为2.0nm~6.8nm,所得CdS粒径为2.0nm~7.0nm。
2、水相制备共轭聚合物前驱体溶液
在配置有搅拌器、冷凝管、温度计的三口烧瓶中加入摩尔比为1∶3的对二氯二甲基苯与四氢噻吩,以20~60ml甲醇为反应介质在50℃~60℃条件下油浴反应24h~48h,使甲醇中对二氯二甲基苯的浓度范围为8.57mM~25.7Mm。然后向反应液中加入125~375ml冷丙酮(0℃),将析出的白色沉淀物过滤后再用冷丙酮洗涤5~8次,最后将沉淀产物置于真空烘箱中于30~60℃条件下烘干至恒重,得到产物二硫盐,即a,a’二氯代对二甲苯四氢噻吩硫盐,其结构如下式所示。
Figure BSA00000220165600021
在配置有恒压滴液漏斗、搅拌器、N2气导入管与导出管的四口烧瓶中加入0.2~0.6M上述步骤制备的二硫盐的甲醇溶液和等摩尔量NaOH的水溶液,使溶液温度保持在0~10℃,反应0.5~2h后用0.1~1M的盐酸中和至pH值为6.5~7.5时终止反应;然后将反应物倒入渗析袋(MD36,截止分子量为8000~14000)中,用去离子水渗析一周除去过量的小分子,即得到聚苯乙烯撑(PPV)前驱体溶液。以固定质量的PPV前驱体溶液干燥并320℃聚合2小时所得产物计算PPV前驱体的浓度,得PPV前躯体溶液的固含量质量浓度为2%~5%。PPV的结构如下式所示。
Figure BSA00000220165600031
其中,n=392~980。
本发明所制备的PPV前躯体溶液可以采用冻干重新分散的方法分散于共轭聚合物良溶剂(水、甲醇、乙醇、异丙醇或以上溶剂的混合溶剂)中。
本发明所述方法同样可用于制备PPV衍生物聚(2,5-二烷氧基聚对苯乙烯撑)前驱体,不同之处在于用2,5-二烷氧基-1,4-对二氯二甲基苯取代对二氯二甲基苯,各实验参数不变。此过程所得双硫盐(a,a’二氯代-2,5-二烷氧基对二甲苯四氢噻吩硫盐)及聚合物的分子结构式分别如下式a)、b)所示。
Figure BSA00000220165600032
其中,n=392~980;R为CmH2m+1,m为1~8的整数。
上述共轭聚合物还可以是苯乙烯撑与2,5-二烷氧基对苯乙烯撑的共聚物。
3、纳米晶/导电聚合物杂化太阳能电池的制备
太阳能电池的结构依次为导电阳极/电子阻挡层/活性层/空穴阻挡层/金属阴极。首先,将CdTe、CdSe或CdS纳米晶水溶液加异丙醇并高速离心沉淀,得到纳米晶沉淀,然后将CdTe、CdSe或CdS纳米晶沉淀与PPV或聚(2,5-二烷氧基聚对苯乙烯撑)前驱体溶液按不同的质量比例(1∶1~10∶1)混合(优选的质量比例为1∶6~10∶1),再将混合溶液采用旋涂的方法在导电阳极表面或覆盖有电子阻挡层的导电阳极表面制备膜(20nm~500nm),待膜干燥后将其转移入充满氮气的手套箱中加热10~120min,在加热过程中,薄膜中残留的溶剂分子(水、异丙醇)挥发出去;同时,PPV或聚(2,5-二烷氧基聚对苯乙烯撑)前驱体发生缩合聚合形成PPV或聚(2,5-二烷氧基聚对苯乙烯撑),CdTe、CdSe或CdS纳米晶脱去表面巯基乙胺配体,并互相联结,从而形成含有PPV(或聚(2,5-二烷氧基聚对苯乙烯撑))和CdTe的互穿网络结构的活性层;最后,将器件转移入真空蒸镀器,在活性层上蒸镀或旋涂空穴阻挡层和金属阴极,从而制备得到本发明所述的太阳能电池。如图1所示。
本发明所采用的金属阴极为Ca、Mg、Al、Mg/Ag或Ca/Al(两层电极结构);导电阳极为氧化铟锡(ITO)、掺杂氟的SnO2导电玻璃(FTO);电子阻挡层为聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT∶PSS)、三氧化钼(MoO3)、五氧化二钒(V2O5)或氧化钨(WO3);空穴阻挡层为2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲(BCP)、ZnO纳米晶或TiO2纳米晶或LiF。
附图说明
图1:采用本发明所制备的太阳能电池结构示意图;
其中,由上至下各层依次为1为金属阴极,具体材料如:Ca、Mg、Al、Mg/Ag或Ca/Al等,膜厚50nm到300nm;2为空穴阻挡层,具体材料如:2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲(BCP)(膜厚1~10nm)、ZnO纳米晶(膜厚20~40nm)、TiO2纳米晶(膜厚20~40nm)或LiF(厚0.1~3.0nm);3为活性层,具体材料如PPV∶CdTe复合膜(50~800nm),PPV∶CdSe复合膜(50~800nm),PPV∶CdS复合膜(50~800nm)等;4为电子阻挡层,具体材料如PEDOT∶PSS(膜厚20~50nm)、MoO3(膜厚1~10nm)、V2O5(膜厚1~10nm)或WO3(膜厚1~10nm);5为导电阳极,具体材料为氧化铟锡(ITO)、掺杂氟的SnO2导电玻璃(FTO)等;6为玻璃基底。
图2:本发明制备的CdTe纳米晶的透射电镜照片;
从图中可以看出,CdTe纳米晶尺寸分均匀,粒子平均尺寸为2.8nm。
图3:本发明制备的纯PPV膜加热(320℃、60min)前后的紫外可见吸收谱;
其中,黑色方块点线为加热前的吸收谱线,黑色圆环线条为加热后的吸收谱线。由图可知,加热前,PPV吸收峰位在328nm;加热后,吸收峰位红移至428nm。
图4:本发明方法制备的纯PPV膜加热(320℃、60min)前后的荧光光谱;
其中,黑色方块点线为加热前的吸收谱线,黑色圆环线条为加热后的吸收谱线。从图中可知,加热前,荧光峰较宽,峰位为475nm;加热后,PPV膜的荧光峰显著变窄,峰位为553nm;【参考文献:R.H.Friend,R.W.Gymer,et al,Nature 1999,397,121.】
图5:本发明制备的PPV∶CdTe复合薄膜(320℃加热60min)的透射电镜照片;
其中,CdTe浓度为30mg/ml,PPV 1.8mg/ml,纳米晶粒子平均尺寸为22nm。纳米晶平均尺寸的显著增长表明:纳米晶在加热过程中有明显的生长。
图6:PPV:CdTe复合膜的表面形貌;
其中,CdTe浓度为30mg/ml,PPV 1.8mg/ml。从中可以看出CdTe纳米晶聚集,薄膜表面平均粗糙度11.01nm。
图7:本发明所制备的太阳能电池在暗态和AM1.5模拟太阳光照射下的电流-电压特性曲线;
其中,黑色方块点线为光照条件下的电流-电压曲线,黑色圆环线条为电池在暗态下的电流-电压曲线。图中我们可以得到光照条件下电池的开路电压(0.50V),短路电流密度(8.79mA/cm2),计算出填充因子(0.40)以及电池的能量转换效率(1.76%)。具体计算公式如下:
PCE = P max P light = J SC · V OC · FF P light × 100 % ; FF = J max · V max J SC · V OC × 100 %
其中,PCE为能量转换效率,Jsc为短路电流密度,Voc为开路电压,FF为填充因子,Jmax·Vmax为电池最大电压与电流的乘积,Pmax为电池最大输出功率,Plight为入射光功率(100mW/cm2)。
具体实施方式
下面结合实施例对本发明做进一步的阐述,而不是要以此对本发明进行限制。
实施例1
1:CdTe纳米晶体的合成
首先将0.51g Te粉放入6ml去离子水中,然后加入0.34g NaBH4,用封口膜封好瓶口并插入针头,在冰水浴中搅拌。待溶液中气泡不再产生时停止反应,即可得到NaHTe溶液,其浓度为2/3M。
将0.280g巯基乙胺配体加入60ml去离子水中,搅拌混匀;然后加入9.4ml、0.1M的CdCl2水溶液,搅拌均匀后加入NaOH水溶液调节pH值至5.75;通N2气15分钟以除去溶液中的氧,然后在N2气保护下将0.28ml(浓度为2/3M)NaHTe溶液快速加入,溶液立刻由无色变成棕红色;然后将溶液在100℃下加热25min即可得到CdTe纳米晶,粒径为2.8nm,荧光为绿色,如图2所示。
2:水相PPV前驱体的制备
在配置有搅拌器、冷凝管、温度计的三口烧瓶中加入对二氯二甲基苯(17.1mM)与四氢噻吩(51.3mM),以40ml甲醇为反应介质在50℃条件下油浴反应24h;然后向反应液中加入250ml冷丙酮(0℃),析出白色沉淀物,过滤后将其用冷丙酮液洗涤5~8次,将产物置于真空烘箱中于45℃条件下烘干至恒重,得产物二硫盐(a,a’二氯代对二甲苯四氢噻吩硫盐)1.224g。
在配置有恒压滴液漏斗、搅拌器、N2气导入管与导出管的四口烧瓶中加入0.4M的上述二硫盐的甲醇溶液(11.06ml)与等摩尔量的NaOH(0.4M,11.06ml)水溶液,使溶液温度保持在0℃。反应1h后用0.5M的盐酸中和至pH值为7终止反应。然后将反应物倒入渗析袋(MD 36,分子量8000)中,用去离子水渗析一周除去过量的小分子,即得到PPV的前驱体,质量浓度为5%。如图3、图4所示。化合物结构式如前所述,其中n=784。
3:CdTe/PPV杂化太阳能电池的制备
在氧化铟锡(ITO)表面旋涂电子阻挡层PEDOT∶PSS(30nm),150℃热台加热30min使其充分干燥。将CdTe纳米晶水溶液加异丙醇并高速离心沉淀(15,000rpm,5min),得到纳米晶沉淀。将CdTe纳米晶沉淀与PPV前驱体的水溶液(质量浓度为5%)按质量比例10∶1混合,然后将混合溶液采用旋涂的方法在氧化铟锡(ITO)表面制膜,待膜干燥后将其转移入充满氮气的手套箱中320℃加热60min。所得活性层投射形貌和表面形貌如图5、图6所示。在活性层上旋涂ZnO(30nm),【ZnO纳米晶的合成参考文献:W.J.E.Beek,M.M.Wienk,et al,Journal of Physical Chemistry B 2005,109,9505.】然后,将器件转移入真空蒸镀器蒸镀金属铝(100nm)。得到的太阳能电池的性能参数为:开路电压0.50V,短路电流密度8.79mA/cm2,填充因子0.40,电池的能量转换效率1.76%,如图7所示。
实施例2
1:CdTe纳米晶的合成如实施例1所述
2:PPV衍生物聚(2,5-二烷氧基聚对苯乙烯撑)前驱体的制备
在配置有搅拌器、冷凝管、温度计的三口烧瓶中加入2,5-二烷氧基-1,4-对二氯二甲基苯(17.1mM)与四氢噻吩(51.3mM),以40ml甲醇为反应介质在50℃条件下油浴反应24h。向反应液中加入250ml冷丙酮(0℃),析出白色沉淀物,过滤后将白色沉淀物用冷丙酮液洗涤5~8次,然后将其置于真空烘箱中于45℃条件下烘干至恒重,得产物二硫盐(a,a’二氯代-2,5-二烷氧基对二甲苯四氢噻吩硫盐)1.504g。
在配置有恒压滴液漏斗、搅拌器、N2气导入管与导出管的四口烧瓶中加入0.4M的上述二硫盐的甲醇溶液(11.06ml)与等摩尔量的NaOH(0.4M,11.06ml)水溶液,使溶液温度保持在0℃。反应1h后用0.5M的盐酸中和至pH值为7终止反应。然后将反应物倒入渗析袋(MD 36,分子量8000)中,用去离子水渗析一周除去过量的小分子,即得到聚(2,5-二烷氧基聚对苯乙烯撑)的前驱体溶液,质量浓度为4.8%。【参考文献:Paul L.Burn,Amo Kraft,et al,J.Am.Chem.SOC.1993,115,10117.】,化合物结构式如前所述,其中n=784,m=1。
3:杂化太阳能电池的制备如实施例1所述
所得到的太阳能电池的性能参数为:开路电压0.37V,短路电流密度8.79mA/cm2,填充因子0.40,电池的能量转换效率1.30%。
实施例3
1:CdTe纳米晶的合成如实施例1所述
2:PPV前驱体的制备
在配置有搅拌器、冷凝管、温度计的三口烧瓶中加入对二氯二甲基苯(17.1mM)与四氢噻吩(51.3mM),以40ml甲醇为反应介质在50℃条件下油浴反应24h。然后再向反应液中加入250ml冷丙酮(0℃),析出白色沉淀物,过滤后将其用冷丙酮液洗涤5~8次,将产物置于真空烘箱中于45℃条件下烘干至恒重,得产物二硫盐1.224g。
在配置有恒压滴液漏斗、搅拌器、N2气导入管与导出管的四口烧瓶中加入0.4M的上述二硫盐的甲醇溶液(11.06ml)与等摩尔量的NaOH(0.4M,11.06ml)水溶液,使溶液温度保持在0℃。反应1h后用0.5M的盐酸中和至pH值为7终止反应。然后将反应物倒入渗析膜(MD 36,分子量8000),将得到的前聚体混合液用去离子水渗析一周,即得到PPV前驱体。将前驱体采用高真空冻干,然后将其同样浓度重新分散在乙醇相中。化合物结构式如前所述,其中n=784。
3:杂化太阳能电池的制备如实施例1所述
所得器件开路电压0.36V,短路电流密度10.5mA/cm2,填充因子0.40,电池的能量转换效率1.51%。
实施例4
1:CdTe纳米晶的合成如实施例1所述
2:水相PPV前驱体如实施例1所述
3:CdTe/PPV杂化太阳能电池的制备
在氧化铟锡(ITO)表面真空蒸镀5nm五氧化二钒(V2O5)。将CdTe纳米晶水溶液加异丙醇并高速离心沉淀(15,000rpm,5min),得到纳米晶沉淀。将CdTe纳米晶沉淀与PPV前驱体(质量浓度为5%)的水溶液按质量比例10∶1混合,然后将混合溶液采用旋涂的方法在镀有V2O5的氧化铟锡(ITO)表面制膜(200nm),待膜干燥后将其转移入充满氮气的手套箱中320℃加热60min。然后,将器件转移入真空蒸镀器,在活性层上旋涂ZnO(30nm)和金属铝(100nm)。所得器件开路电压0.44V,短路电流密度6.5mA/cm2,填充因子0.40,电池的能量转换效率1.14%。
实施例5
1:CdTe纳米晶的合成如实施例1所述
2:水相PPV前驱体如实施例1所述
3:CdTe/PPV杂化太阳能电池的制备
在氧化铟锡(ITO)表面旋涂电子阻挡层PEDOT∶PSS(30nm),150℃热台加热30min使其充分干燥。然后将CdTe纳米晶沉淀与PPV前驱体的水溶液按质量比例10∶1混合并将混合溶液采用旋涂的方法在氧化铟锡(ITO)表面制膜,待膜干燥后将其转移入充满氮气的手套箱中320℃加热60min。然后,在活性层表面真空蒸镀一层LiF(厚度约0.7nm,该层材料作为空穴层使用),最后,将器件转移入真空蒸镀器,100nm金属铝。所得器件开路电压0.52V,短路电流密度8.82mA/cm2,填充因子0.30,电池的能量转换效率1.38%。
实施例6
1:CdTe纳米晶的合成如实施例1所述
2:水相PPV前驱体如实施例1所述
3:CdTe/PPV杂化太阳能电池的制备
将CdTe纳米晶水溶液加异丙醇并高速离心沉淀(15,000rpm,5min),得到纳米晶沉淀。将CdTe纳米晶沉淀与PPV前驱体(浓度5%)的水溶液按质量比例10∶1混合,然后将混合溶液采用旋涂的方法在氧化铟锡(ITO)表面制膜(200nm),待膜干燥后将其转移入充满氮气的手套箱中320℃加热60min。在加热过程中,PPV前驱体发生缩合聚合形成PPV;同时,CdTe纳米晶脱去表面配体巯基乙胺,并互相联结,从而形成含有PPV和CdTe的互穿网络结构的活性层。然后,将器件转移入真空蒸镀器,然后,将器件转移入真空蒸镀器,在活性层上蒸镀0.7nm LiF和100nm金属铝。所得器件开路电压0.38V,短路电流密度11.2mA/cm2,填充因子0.30,电池的能量转换效率1.28%。
实施例7
1:CdTe纳米晶的合成如实施例1所述
2:水相PPV前驱体如实施例1所述
3:CdTe/PPV杂化太阳能电池的制备
将CdTe纳米晶水溶液加异丙醇并高速离心沉淀(15,000rpm,5min),得到纳米晶沉淀。将CdTe纳米晶沉淀与PPV前驱体(浓度5%)的水溶液按质量比例10∶1混合,然后将混合溶液采用旋涂的方法在氧化铟锡(ITO)表面制膜(200nm),待膜干燥后将其转移入充满氮气的手套箱中320℃加热60min。然后,将器件转移入真空蒸镀器,在活性层上旋涂ZnO(30nm)和金属铝(100nm)。得到的太阳能电池的性能参数为:开路电压0.36V,短路电流密度11.25mA/cm2,填充因子0.40,电池的能量转换效率1.62%。

Claims (9)

1.一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其步骤如下:
(1)水相制备半导体纳米晶水溶液;
(2)水相制备共轭聚合物前驱体溶液;
(3)纳米晶/导电聚合物杂化太阳能电池的制备
首先,将半导体纳米晶水溶液加异丙醇并高速离心沉淀,得到纳米晶沉淀;然后将半导体纳米晶沉淀与共轭聚合物前驱体溶液按质量比1∶1~10∶1的比例混合,再将混合溶液采用旋涂的方法在导电阳极表面或覆盖有电子阻挡层的导电阳极表面制备膜,膜厚为20nm~500nm,待膜干燥后将其转移入充满氮气的手套箱中加热10~120min,从而形成含有共轭聚合物和半导体纳米晶的互穿网络结构的活性层;最后,将器件转移入真空蒸镀器,在活性层上依次蒸镀或旋涂空穴阻挡层和金属阴极,从而制备得到纳米晶/导电聚合物杂化太阳能电池。
2.如权利要求1所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:共轭聚合物为聚苯乙烯撑、聚(2,5-二烷氧基对苯乙烯撑)或苯乙烯撑与2,5-二烷氧基对苯乙烯撑的共聚物。
3.如权利要求3所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:聚苯乙烯撑前驱体溶液的制备步骤为,
(1)在配置有搅拌器、冷凝管、温度计的三口烧瓶中加入摩尔比为1∶3的对二氯二甲基苯与四氢噻吩,以20~60ml甲醇为反应介质在50℃~60℃条件下油浴反应24h~48h,使甲醇中对二氯二甲基苯的浓度范围为8.57mM~25.7Mm;然后向反应液中加入125~375ml、0℃冷丙酮,将析出的白色沉淀物过滤后再用冷丙酮洗涤5~8次,最后将沉淀产物置于真空烘箱中于30~60℃条件下烘干至恒重,得到a,a’二氯代对二甲苯四氢噻吩硫盐,其结构如下式所示;
Figure FSA00000220165500011
(2)在配置有恒压滴液漏斗、搅拌器、N2气导入管与导出管的四口烧瓶中加入0.2~0.6M a,a’二氯代对二甲苯四氢噻吩硫盐的甲醇溶液和等摩尔量NaOH的水溶液,使溶液温度保持在0~10℃,反应0.5~2h后用0.1~1M的盐酸中和至pH值为6.5~7.5时终止反应;然后将反应物倒入截止分子量为8000~14000的渗析袋中,用去离子水渗析一周除去过量的小分子,即得到聚苯乙烯撑前驱体溶液,质量浓度为2%~5%,聚苯乙烯撑的结构如下式所示,
其中,n为392~980的整数。
4.如权利要求3所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:聚(2,5-二烷氧基聚对苯乙烯撑)前驱体溶液的制备步骤为,
(1)在配置有搅拌器、冷凝管、温度计的三口烧瓶中加入摩尔比为1∶3的2,5-二烷氧基-1,4-对二氯二甲基苯与四氢噻吩,以20~60ml甲醇反应介质在50℃~60℃条件下油浴反应24h~48h,使甲醇中2,5-二烷氧基-1,4-对二氯二甲基苯的浓度范围为8.57mM~25.7Mm;然后向反应液中加入125~375ml、0℃冷丙酮,将析出的白色沉淀物过滤后再用冷丙酮洗涤5~8次,最后将沉淀产物置于真空烘箱中于30~60℃条件下烘干至恒重,得到a,a’二氯代-2,5-二烷氧基对二甲苯四氢噻吩硫盐,其结构如下式所示,
(2)在配置有恒压滴液漏斗、搅拌器、N2气导入管与导出管的四口烧瓶中加入0.2~0.6M上述步骤制备的a,a’二氯代-2,5-二烷氧基对二甲苯四氢噻吩硫盐的甲醇溶液和等摩尔量NaOH的水溶液,使溶液温度保持在0~10℃,反应0.5~2h后用0.1~1M的盐酸中和至pH值为6.5~7.5时终止反应;然后将反应物倒入截止分子量为8000~14000的渗析袋中,用去离子水渗析一周除去过量的小分子,即得到聚(2,5-二烷氧基聚对苯乙烯撑)前驱体溶液,质量浓度为2%~5%,a,a’二氯代-2,5-二烷氧基对二甲苯四氢噻吩硫盐和聚(2,5-二烷氧基聚对苯乙烯撑)的结构如下式所示,
Figure FSA00000220165500031
其中,n为392~980的整数;R为CmH2m+1,m为1~8的整数。
5.如权利要求1所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:半导体纳米晶为碲化镉CdTe、硒化镉CdSe或硫化镉CdS。
6.如权利要求1所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:金属阴极的材料为Ca、Mg、Al、Mg/Ag或Ca/Al。
7.如权利要求1所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:导电阳极的材料为氧化铟锡或掺杂氟的SnO2导电玻璃。
8.如权利要求1所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:电子阻挡层的材料为聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸、三氧化钼、五氧化二钒或氧化钨。
9.如权利要求1所述的一种全水相纳米晶/导电聚合物杂化太阳能电池的制备方法,其特征在于:空穴阻挡层的材料为2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲、ZnO纳米晶、TiO2纳米晶或LiF。
CN2010102474381A 2010-08-09 2010-08-09 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法 Active CN101969102B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010102474381A CN101969102B (zh) 2010-08-09 2010-08-09 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法
US13/813,628 US9634273B2 (en) 2010-08-09 2011-05-13 Method for producing fully aqueous phase-synthesized nanocrystals/conducting polymer hybrid solar cell
PCT/CN2011/074038 WO2012019472A1 (en) 2010-08-09 2011-05-13 Method for producing fully aqueous phase-synthesized nanocrystals/conducting polymer hybrid solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102474381A CN101969102B (zh) 2010-08-09 2010-08-09 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN101969102A true CN101969102A (zh) 2011-02-09
CN101969102B CN101969102B (zh) 2012-05-23

Family

ID=43548222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102474381A Active CN101969102B (zh) 2010-08-09 2010-08-09 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法

Country Status (3)

Country Link
US (1) US9634273B2 (zh)
CN (1) CN101969102B (zh)
WO (1) WO2012019472A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019472A1 (en) * 2010-08-09 2012-02-16 Jilin University Method for producing fully aqueous phase-synthesized nanocrystals/conducting polymer hybrid solar cell
CN102881829A (zh) * 2012-10-15 2013-01-16 吉林大学 反式结构的水相无机有机杂化太阳能电池及其制备方法
WO2013078585A1 (zh) * 2011-11-28 2013-06-06 海洋王照明科技股份有限公司 聚合物电致发光器件及其制备方法
CN109449299A (zh) * 2018-09-30 2019-03-08 中北大学 光电活性层以及在柔性光电-压电混合能源电池中的应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842677B (zh) * 2012-08-31 2015-06-24 吉林大学 有源层掺杂PVP包覆NaYF4纳米颗粒的太阳能电池及其制备方法
US11036192B2 (en) 2016-06-08 2021-06-15 SaLisa Berrien COI optimizer
CN110265542B (zh) * 2019-07-09 2021-02-09 山东光韵智能科技有限公司 一种高危区域防辐射用高能光线吸收转换材料及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216892A1 (en) * 2001-11-30 2008-09-11 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
WO2008132455A1 (en) * 2007-04-25 2008-11-06 Nanoco Technologies Limited Hybrid photovoltaic cells and related methods
WO2009083748A1 (en) * 2007-12-28 2009-07-09 Universite De La Mediterrane Aix-Marseille Ii Hybrid nanocomposite
CN101640133A (zh) * 2009-08-24 2010-02-03 中国科学院长春应用化学研究所 一种聚合物/无机纳米晶杂化太阳能电池及其制法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040115448A1 (en) * 2002-12-17 2004-06-17 Bibber John W. Corrosion resistant magnesium and magnesium alloy and method of producing same
CN1743361A (zh) 2005-09-22 2006-03-08 复旦大学 一种无机半导体纳米晶与共轭聚合物杂化材料及其制备方法
JP5309521B2 (ja) * 2006-10-11 2013-10-09 三菱マテリアル株式会社 電極形成用組成物及びその製造方法並びに該組成物を用いた電極の形成方法
US20100116326A1 (en) * 2006-10-19 2010-05-13 The Regents Of The University Of California Hybrid Solar Cells with 3-Dimensional Hyperbranched Nanocrystals
WO2011162366A1 (ja) * 2010-06-25 2011-12-29 東レ株式会社 水溶性ポリマー及び水溶性ナノ粒子複合体
CN101969102B (zh) * 2010-08-09 2012-05-23 吉林大学 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216892A1 (en) * 2001-11-30 2008-09-11 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
WO2008132455A1 (en) * 2007-04-25 2008-11-06 Nanoco Technologies Limited Hybrid photovoltaic cells and related methods
WO2009083748A1 (en) * 2007-12-28 2009-07-09 Universite De La Mediterrane Aix-Marseille Ii Hybrid nanocomposite
CN101640133A (zh) * 2009-08-24 2010-02-03 中国科学院长春应用化学研究所 一种聚合物/无机纳米晶杂化太阳能电池及其制法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019472A1 (en) * 2010-08-09 2012-02-16 Jilin University Method for producing fully aqueous phase-synthesized nanocrystals/conducting polymer hybrid solar cell
US9634273B2 (en) 2010-08-09 2017-04-25 Jilin University Method for producing fully aqueous phase-synthesized nanocrystals/conducting polymer hybrid solar cell
WO2013078585A1 (zh) * 2011-11-28 2013-06-06 海洋王照明科技股份有限公司 聚合物电致发光器件及其制备方法
CN104012179A (zh) * 2011-11-28 2014-08-27 海洋王照明科技股份有限公司 聚合物电致发光器件及其制备方法
CN102881829A (zh) * 2012-10-15 2013-01-16 吉林大学 反式结构的水相无机有机杂化太阳能电池及其制备方法
CN109449299A (zh) * 2018-09-30 2019-03-08 中北大学 光电活性层以及在柔性光电-压电混合能源电池中的应用
CN109449299B (zh) * 2018-09-30 2022-06-14 中北大学 光电活性层以及在柔性光电-压电混合能源电池中的应用

Also Published As

Publication number Publication date
US9634273B2 (en) 2017-04-25
WO2012019472A1 (en) 2012-02-16
US20130164881A1 (en) 2013-06-27
CN101969102B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
Chen et al. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress
Balis et al. Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells
Zhang et al. Enhanced performance of planar perovskite solar cell by graphene quantum dot modification
Zhong et al. Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification
CN101969102B (zh) 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法
Zhang et al. Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells
Boucle et al. Solid‐state dye‐sensitized and bulk heterojunction solar cells using TiO2 and ZnO nanostructures: recent progress and new concepts at the borderline
Tian et al. Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells
Jin et al. Solution processed NiOx hole-transporting material for all-inorganic planar heterojunction Sb2S3 solar cells
CN101661994B (zh) 一种无需真空过程制备有机聚合物太阳能电池的方法
Xie Enhanced photovoltaic performance of hybrid solar cell using highly oriented CdS/CdSe-modified TiO2 nanorods
Bhongale et al. Efficient hybrid polymer/titania solar cells sensitized with carboxylated polymer dye
Sun et al. PbS quantum dots capped with amorphous ZnS for bulk heterojunction solar cells: the solvent effect
Xia et al. Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells
Yao et al. Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots
Pareek et al. Graphitic carbon nitride quantum dots (g-C3N4) to improve photovoltaic performance of polymer solar cell by combining Förster resonance energy transfer (FRET) and morphological effects
Wu et al. Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells
Yin et al. Growth-Dynamic-Controllable Rapid Crystallization Boosts the Perovskite Photovoltaics’ Robust Preparation: From Blade Coating to Painting
Xi et al. Growth of single-crystalline rutile TiO 2 nanorods on fluorine-doped tin oxide glass for organic–inorganic hybrid solar cells
Chen et al. Growth of compact CH3NH3PbI3 thin films governed by the crystallization in PbI2 matrix for efficient planar perovskite solar cells
Park et al. Multifunctional Organized Mesoporous Tin Oxide Films Templated by Graft Copolymers for Dye‐Sensitized Solar Cells
Kurukavak et al. Improved performance with boron-doped carbon quantum dots in perovskite solar cells
CN102856499B (zh) 一种SnO2与P3HT杂化异质结薄膜太阳能电池的制备方法
Peng et al. Managing the Double-Edged Sword of Ni3+ in Sputter-Deposited NiO x by Interfacial Redox Reactions for Efficient Perovskite Solar Cells
Cui et al. Combining ZnO and Organosilica Nanodots as a Thick Cathode Interlayer for Highly Efficient and Stable Inverted Polymer Solar Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant