CN101953801A - 可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法 - Google Patents

可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法 Download PDF

Info

Publication number
CN101953801A
CN101953801A CN2010105128145A CN201010512814A CN101953801A CN 101953801 A CN101953801 A CN 101953801A CN 2010105128145 A CN2010105128145 A CN 2010105128145A CN 201010512814 A CN201010512814 A CN 201010512814A CN 101953801 A CN101953801 A CN 101953801A
Authority
CN
China
Prior art keywords
preparation
shell structure
core
microgranule
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105128145A
Other languages
English (en)
Other versions
CN101953801B (zh
Inventor
王伯初
张溢琼
王亚洲
乔伟立
邵鹏宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN2010105128145A priority Critical patent/CN101953801B/zh
Publication of CN101953801A publication Critical patent/CN101953801A/zh
Application granted granted Critical
Publication of CN101953801B publication Critical patent/CN101953801B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,经(1)制备聚合物溶液;(2)制备载药的纳米粒;(3)制备电喷前驱液;(4)电喷制得核/壳结构的纳微粒制得,本发明与传统的纳微粒载药系统的制备方法相比,核层载药纳米粒的制备材料和制备方法选择多样,可以包封不同性质的药物,其粒径可控;电喷射技术制备纳微粒,所需设备简单,制备过程简便可控;核/壳结构纳微粒的粒径、形态和释放速率可以由核层纳米粒的粒径,电喷前驱液的浓度,以及电喷射的技术参数加以控制;制备的核/壳结构纳微粒可以同时装载至少两种药物并实现所载药物可程序性控制的差异性和时序性释放。

Description

可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法
技术领域
本发明涉及纳微颗粒药物传递系统的构建技术领域,具体是涉及能够同时装载至少两种药物、并能够实现所装载药物可程序性控制的差异性、时序性释放的给药系统的制备方法。
背景技术
基于静电纺丝技术的原理,通过电喷射技术制备的纳微颗粒,是一种良好的载药材料,它具有高比表面积、粒径分布均匀,具有的多孔、中空、多层等结构特性,能显著提高药物的载药量和稳定性,通过调节加工参数,可以控制药物的释放速率和释放周期,从而有效实现对药物的控制释放。随着电喷射技术的发展,具有核壳结构的纳微颗粒已被成功制备, BSA作为模型蛋白质药物被封装于PLGA微粒内部,包封率达60%,壳层部位提供了屏障保护作用,使药物实现良好的缓释效果。电喷后大部分蛋白质都能保持完整的次级结构,80%以上的蛋白质仍具有生物活性。疏水性抗癌药物紫杉醇也通过电喷射技术成功包封于生物可降解的聚合物(粒径范围为1-15微米)。电喷射技术有望成为将抗癌药物及抗生素、蛋白质、DNA片段等生物活性物质包埋于可降解的聚合物纳微粒中的有效方法。
然而这种纳微粒给药系统只关注于一种药物的包载和释放,而在生物医学领域应用多种药物并实现其时序性和差异性释放具有重要意义,如癌症治疗过程中,对于生长情况不同的肿瘤细胞交替应用周期特异性药物和细胞周期非特异性药物,分别杀灭不同增殖周期的细胞,能够达到较好的肿瘤抑制效果;组织工程中,先给予一种生长因子促进细胞的增殖,然后给予另一种生长因子促进细胞的分化和表达,从而促进软骨修复;伤口护理过程中,先后给予止痛药物和预防性抗生素对伤口进行止痛和抗感染处理。因此,理想的药物释放系统除能够实现药物的缓控制释放和靶向给药,提高药物的生物利用度、延长药效、减少给药频次、降低毒副作用之外,还要求能够同时包载多种药物,并且实现每一种药物的可控释放。
Su和Xu等采用乳液电纺的方法制备具有核/壳结构的纺丝纤维并将不同溶解性的药物分别包封于纤维的壳层和核层,从而控制药物的不同释放速率;Jo等将不同的药物包封于不同的聚合物粒子中然后通过电纺制成核/壳结构的纺丝纤维,通过控制聚合物粒子的理化性质实现药物的可控释放。
在此基础上,结合电喷射技术制备纳微粒的优点,可以将两种药物同时装载于不同的聚合物材料中,通过电喷射技术制备具有核/壳结构的纳微颗粒。
发明内容
本发明的目的是提供一种应用HPR在线监测控制SBR曝气历时实现短程硝化反硝化的方法。
本发明目的是这样实现的:
一种可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,按以下步骤进行:
(1)制备载药的纳米粒,将一种聚合物材料或无机材料B和待包埋的一种药物一起制备为载药的纳米粒;
(2)制备聚合物溶液,将聚合物材料A配制为质量浓度为1~5%的聚合物溶液;
(3)制备电喷前驱液,取步骤(1)所制备载药的纳米粒,分散后与另一种药物加入到步骤(2)所制备的聚合物溶液中,所取载药的载药纳米粒的量为聚合物溶液质量分数的25~75%,搅拌得到均一稳定的电喷前驱液;
(4)电喷制得核/壳结构的纳微粒,将步骤(3)制备的电喷前驱液注入到注射器中,调节微量注射泵流速为0.25~1.5mL/h,调节高压静电发生器电压为1000~30000v,调节接收器装置,使接收距离为5~30cm,电喷射得到核/壳结构的纳微粒。
上述聚合物材料A和合物材料B可以选用为天然聚合物或合成聚合物。
上述天然聚合物选用丝素、胶原、明胶、壳聚糖、海藻酸钠、醋酸纤维素。
上述合成的聚合物选用聚氨酯、聚己内酯、聚乙烯醇、聚乙烯吡咯烷酮、聚乳酸-羟基乙酸共聚物、聚乳酸及其上述聚合物的相关接枝共聚物、嵌段共聚物。
上述无机材料B选用碳纳米管、量子点,都可以实现。
在对聚合物材料A配制溶液的过程中,所涉及到的有机溶剂为三氯甲烷、甲醇、乙醇、四氢呋喃、二甲基亚砜、三氟乙醇、六氟异丙醇等单一溶剂或其混合溶剂;所涉及到的药物为小分子抗癌药物、抗生素、大分子蛋白质及DNA等。
载药的纳米粒根据现有技术选用复凝聚法、离子交联法、共价交联法、溶剂挥发法等制备方法。
上述步骤(3)中另一种药物在电喷前驱液中均匀分散或溶解,其质量分数为聚合物溶液的0.5~10%。
将上述所得的核/壳结构纳微粒置于PBS(pH7.4)的释放介质中释放,用双波长分光光度法检测药物在一定时间内的累积释放百分率。
与传统的纳微粒载药系统的制备方法相比,本发明的优点在于:
1.     核层载药纳米粒的制备材料和制备方法选择多样,可以包封不同性质的药物,其粒径可控;
2.     电喷射技术制备纳微粒,所需设备简单,制备过程简便可控;
3.     核/壳结构纳微粒的粒径、形态和释放速率可以由核层纳米粒的粒径,电喷前驱液的浓度,以及电喷射的技术参数加以控制;
4.     制备的核/壳结构纳微粒可以同时装载至少两种药物并实现所载药物可程序性控制的差异性和时序性释放。
附图说明
图1是核/壳结构纳微粒制备示意图;
图2是核/壳结构纳微粒光学显微镜(A)和荧光显微镜(B)照片;
图3是核/壳结构纳微粒扫描电镜照片;
图4是核/壳结构纳微粒装载的两种药物(包载罗丹明B的壳聚糖纳米粒位于核层,萘普生位于PVP壳层)在一定时间(72h)内的累积释放曲线;
图5是核/壳结构纳微粒装载的两种药物(包载萘普生的PLGA纳米粒位于核层,罗丹明B位于PVP壳层)在一定时间(72h)内的累积释放曲线。
具体实施方式
实施例1
先采用离子交联法制备左氧氟沙星壳聚糖纳米粒:室温下将壳聚糖(CS)溶解于0.5%的醋酸溶液中,使CS最终浓度为2.0mg/mL,用0.45μm滤膜过滤使其纯化,加入一定量的左氧氟沙星,在磁力搅拌下(500r/min),将三聚磷酸钠(STPP)水溶液(0.7mg/mL)滴加到CS溶液中,比例为STPP溶液:CS溶液为2:5(V/V)。继续搅拌30min加以固定,得壳聚糖纳米粒的混悬液。将混悬液于4℃下高速离心(30000r/min)50min,收集沉淀物,冷冻干燥即得。
取制备的纳米粒100mg分散于2mL二甲基亚砜(DMSO)中,用NaOH调至pH>6.5,然后逐滴加入DMSO溶解的FITC溶液(5mg/mL)2mL,室温下避光搅拌3h。将反应后的物质转移到离心管中,30000r/min下离心20min,去离子水冲洗沉淀,用紫外分光光度计在480nm检测上清液,直至此波长下无吸收,将沉淀冷冻干燥,得到FITC标记的壳聚糖载药纳米粒。
配制聚己内酯(PCL)浓度为2%(质量体积比)的溶液,所用溶剂为三氯甲烷:甲醇(3:1),将质量比为1%(相对于PCL)的萘普生溶解于其中,搅拌均匀得到聚合物溶液。将0.5mg罗丹明B加入上述聚合物溶液,混匀,得到罗丹明B标记的PCL溶液;将步骤(2)制备的壳聚糖纳米粒用DMSO分散后加入到此聚合物溶液中,搅拌得到均一稳定的电喷前驱液。将电喷液注入注射器中,调节微量注射泵流速为1.0mL/h,调节高压静电发生器电压为12,000v,调节接收器装置使接收距离为13cm,电喷射得到核/壳结构纳微粒。图1是核/壳结构纳微粒制备示意图。
用普通光学显微镜和倒置荧光显微镜观察上述所得的核/壳结构纳微粒,观察核层纳米粒在壳层纳微粒中的包埋情况,以及核/壳结构纳微粒的粒径分布情况,用场发射环境扫描电子显微镜观察纳微粒的形貌,图2是核/壳结构纳微粒的光学显微镜(A)和荧光显微镜(B)照片,图3为其扫描电镜照片。从图2和图3中能非常明显的看见核/壳结构纳微粒。
实施例2
(1)采用离子交联法制备载有罗丹明B的壳聚糖纳米粒:室温下将壳聚糖CS溶解于0.5%的醋酸溶液中,使CS最终浓度为2.0mg/mL,用0.45μm滤膜过滤使其纯化,加入一定量的罗丹明B,在磁力搅拌下(500r/min),按STPP溶液:CS溶液为2:5(V/V)比例将STPP水溶液(0.7mg/mL)滴加到CS溶液中,继续搅拌30min加以固定,得壳聚糖纳米粒的混悬液。将混悬液于4℃下高速离心(30000r/min)50min,收集沉淀物,冷冻干燥即得载药壳聚糖纳米粒。
(2)配制聚乙烯吡咯烷酮(PVP)浓度为10%(质量体积比)的溶液,所用溶剂为乙醇,将质量比为1%(相对于PVP)的萘普生溶解于其中搅拌均匀得到聚合物溶液;将步骤(1)制备的壳聚糖纳米粒用DMSO分散后加入到此聚合物溶液中,搅拌得到均一稳定的电喷前驱液。将电喷液注入注射器中,调节微量注射泵流速为1.5mL/h,调节高压静电发生器电压为16,000v,调节接收器装置使接收距离为15cm,电喷射得到核/壳结构载药纳微粒。将核/壳结构纳微粒置于PBS(pH7.4)的释放介质中释放,用双波长分光光度法检测药物在一定时间内的累积释放百分率。图4是罗丹明B和萘普生一定时间内的累积释放曲线图。
实施例3
(1)采用W/O/W乳化溶剂挥发法制备载有萘普生的PLGA纳米粒:将20mg萘普生,600mg聚乳酸-羟基乙酸共聚物(PLGA)以及100mgSpan-80溶解于100mL二氯甲烷中作为油相(O),取100μL去离子水作为内水相(W1),混合O与W1,冰浴下探头超声10s,制成W/O初乳;配制1%的聚乙烯醇(PVA)水溶液50mL作为W2相,加入W/O初乳,冰浴下超声10s,形成W/O/W复乳;所得复乳用0.3%PVA水溶液稀释,室温下减压旋蒸除去有机溶剂,离心(30000r/ min)50min,收集沉淀物,用蒸馏水洗涤后冷冻干燥,即得载药PLGA纳米粒。
    (2)配制聚乙烯吡咯烷酮(PVP)浓度为12%(质量体积比)的溶液,所用溶剂为乙醇:水(4:1),将质量比为1%(相对于PVP)的罗丹明B溶解于其中搅拌均匀得到聚合物溶液;将步骤(1)制备的PLGA载药纳米粒用乙醇分散后加入到此聚合物溶液中,搅拌得到均一稳定的电喷前驱液。将电喷液注入注射器中,调节微量注射泵流速为1.8mL/h,调节高压静电发生器电压为16,000v,调节接收器装置使接收距离为15cm,电喷射得到核/壳结构载药纳微粒。将核/壳结构纳微粒置于PBS(pH7.4)的释放介质中释放,用双波长分光光度法检测药物在一定时间内的累积释放百分率。图5是萘普生和罗丹明B一定时间内的累积释放曲线图。
经过实验,同样将其他天然聚合物丝素、胶原、明胶、海藻酸钠、醋酸纤维素;合成的聚合物聚氨酯、聚己内酯、聚乙烯醇、聚乳酸及其上述聚合物的相关接枝共聚物、嵌段共聚物作为聚合物A或聚合物B,碳纳米管、量子点作为无机材料B制得的电喷前驱液注入到注射器中,调节微量注射泵流速为0.25~1.5mL/h,调节高压静电发生器电压为1000~30000v,调节接收器装置,使接收距离为5~30cm,电喷射都能得到核/壳结构的纳微粒。

Claims (7)

1.一种可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,按以下步骤进行:
(1)制备载药的纳米粒,将一种聚合物材料或无机材料B和待包埋的一种药物一起制备为载药的纳米粒;
(2)制备聚合物溶液,将聚合物材料A配制为质量浓度为1~5%的聚合物溶液;
(3)制备电喷前驱液,取步骤(1)所制备载药的纳米粒,分散后与另一种药物加入到步骤(2)所制备的聚合物溶液中,所取载药纳米粒的量为聚合物溶液质量分数的25~75%,搅拌得到均一稳定的电喷前驱液;
(4)电喷制得核/壳结构的纳微粒,将步骤(3)制备的电喷前驱液注入到注射器中,调节微量注射泵流速为0.25~1.5mL/h,调节高压静电发生器电压为1000~30000v,调节接收器装置,使接收距离为5~30cm,电喷射得到核/壳结构的纳微粒。
2.根据权利要求1所述可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,其特征在于:所述聚合物材料A与合物材料B为天然聚合物或合成聚合物。
3.根据权利要求2所述可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,其特征在于:所述天然聚合物为丝素、胶原、明胶、壳聚糖、海藻酸钠、醋酸纤维素。
4.根据权利要求3述可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,其特征在于:所述合成的聚合物为聚氨酯、聚己内酯、聚乙烯醇、聚乙烯吡咯烷酮、聚乳酸-羟基乙酸共聚物、聚乳酸及其上述聚合物的相关接枝共聚物、嵌段共聚物。
5.根据权利要求1所述可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,其特征在于:所述无机材料B为碳纳米管、量子点。
6.根据权利要求1所述可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,其特征在于:所述步骤(3)中另一种药物在电喷前驱液中均匀分散或溶解,其质量分数为聚合物溶液的0.5~10%。
7.根据权利要求1所述可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法,其特征在于:所述核/壳结构纳微粒给药途径为口服、静脉注射或经皮给药。
CN2010105128145A 2010-10-20 2010-10-20 可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法 Expired - Fee Related CN101953801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105128145A CN101953801B (zh) 2010-10-20 2010-10-20 可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105128145A CN101953801B (zh) 2010-10-20 2010-10-20 可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法

Publications (2)

Publication Number Publication Date
CN101953801A true CN101953801A (zh) 2011-01-26
CN101953801B CN101953801B (zh) 2012-07-04

Family

ID=43481561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105128145A Expired - Fee Related CN101953801B (zh) 2010-10-20 2010-10-20 可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法

Country Status (1)

Country Link
CN (1) CN101953801B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198102A (zh) * 2011-05-30 2011-09-28 东华大学 一种载药微球的制备方法
CN106074443A (zh) * 2016-06-15 2016-11-09 华侨大学 一种生物活性微包纳胶囊及其制备方法
CN111317861A (zh) * 2020-03-20 2020-06-23 西安理工大学 一种可控释抗生素膨胀丙烯酸骨水泥及其制备方法
CN114507915A (zh) * 2022-01-25 2022-05-17 中国科学院苏州纳米技术与纳米仿生研究所 一种荧光复合纤维及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509154A (zh) * 2009-03-23 2009-08-19 东华大学 以乳液静电纺丝技术制备壳-芯结构药物纳米纤维的方法
CN101586256A (zh) * 2009-07-06 2009-11-25 江苏泰灵生物科技有限公司 多孔性电纺纤维的制备方法
WO2010015709A2 (de) * 2008-08-08 2010-02-11 Basf Se Wirkstoffhaltige fasernflächengebilde mit einstellbarer wirkstofffreisetzung, ihre anwendungen und verfahren zu ihrer herstellung
CN101785760A (zh) * 2010-03-25 2010-07-28 东华大学 一种自组装壳聚糖载药纳米粒及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015709A2 (de) * 2008-08-08 2010-02-11 Basf Se Wirkstoffhaltige fasernflächengebilde mit einstellbarer wirkstofffreisetzung, ihre anwendungen und verfahren zu ihrer herstellung
CN101509154A (zh) * 2009-03-23 2009-08-19 东华大学 以乳液静电纺丝技术制备壳-芯结构药物纳米纤维的方法
CN101586256A (zh) * 2009-07-06 2009-11-25 江苏泰灵生物科技有限公司 多孔性电纺纤维的制备方法
CN101785760A (zh) * 2010-03-25 2010-07-28 东华大学 一种自组装壳聚糖载药纳米粒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《药物生物技术》 20091231 张鋆等 一种5-氟尿嘧啶的丝素蛋白-壳聚糖微囊的制备 第16卷, 第6期 2 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198102A (zh) * 2011-05-30 2011-09-28 东华大学 一种载药微球的制备方法
CN102198102B (zh) * 2011-05-30 2013-01-02 东华大学 一种载药微球的制备方法
CN106074443A (zh) * 2016-06-15 2016-11-09 华侨大学 一种生物活性微包纳胶囊及其制备方法
CN111317861A (zh) * 2020-03-20 2020-06-23 西安理工大学 一种可控释抗生素膨胀丙烯酸骨水泥及其制备方法
CN111317861B (zh) * 2020-03-20 2022-02-18 西安理工大学 一种可控释抗生素膨胀丙烯酸骨水泥及其制备方法
CN114507915A (zh) * 2022-01-25 2022-05-17 中国科学院苏州纳米技术与纳米仿生研究所 一种荧光复合纤维及其制备方法和应用
CN114507915B (zh) * 2022-01-25 2024-03-19 中国科学院苏州纳米技术与纳米仿生研究所 一种荧光复合纤维及其制备方法和应用

Also Published As

Publication number Publication date
CN101953801B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
Fernando et al. Alginate-based nanomaterials: Fabrication techniques, properties, and applications
Wang et al. Progress of electrospun nanofibrous carriers for modifications to drug release profiles
Chang et al. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning
Zhao et al. Electrospun nanofibers for periodontal treatment: A recent progress
Campardelli et al. Supercritical fluids applications in nanomedicine
Sharifi et al. Fiber based approaches as medicine delivery systems
Jiang et al. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents
Gholamali et al. Bio-nanocomposite polymer hydrogels containing nanoparticles for drug delivery: a review
Qi et al. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment
Wang et al. A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles
Lai et al. Multicompartment microgel beads for co-delivery of multiple drugs at individual release rates
Cao et al. Dual drug release from core–shell nanoparticles with distinct release profiles
CN103751851A (zh) 一种无机/有机多药物控释复合纳米纤维支架的制备方法
Altobelli et al. Micro-and nanocarriers by electrofludodynamic technologies for cell and molecular therapies
CN101953801B (zh) 可程序性控制给药的核/壳结构纳微粒多药给药系统的制备方法
Zamani et al. Nanofibrous and nanoparticle materials as drug-delivery systems
Stack et al. Electrospun nanofibers for drug delivery
Patel et al. A review on electrospun nanofibers for multiple biomedical applications
Saravanabhavan et al. Fabrication of polysulphone/hydroxyapatite nanofiber composite implant and evaluation of their in vitro bioactivity and biocompatibility towards the post-surgical therapy of gastric cancer
Zare et al. Current progress of electrospun nanocarriers for drug delivery applications
Liu et al. Electrospun multi‐chamber core–shell nanofibers and their controlled release behaviors: A review
Bishnoi et al. Elecrospun nanofibers: The versatile platform as a drug delivery systems in healthcare
Ozkizilcik et al. Nanocarriers as CNS drug delivery systems for enhanced neuroprotection
Ranjbar et al. Preparation of polyacrylamide/polylactic acid co-assembled core/shell nanofibers as designed beads for dapsone in vitro efficient delivery
Naveenkumar et al. A Review on the Recent Developments in Electrospinned Nanofibers for Drug Delivery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20121020