CN101939906B - 谐振体晶体管和振荡器 - Google Patents

谐振体晶体管和振荡器 Download PDF

Info

Publication number
CN101939906B
CN101939906B CN200880126205.7A CN200880126205A CN101939906B CN 101939906 B CN101939906 B CN 101939906B CN 200880126205 A CN200880126205 A CN 200880126205A CN 101939906 B CN101939906 B CN 101939906B
Authority
CN
China
Prior art keywords
resonant body
coupled
dielectric layer
resonant
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880126205.7A
Other languages
English (en)
Other versions
CN101939906A (zh
Inventor
D·温斯坦
S·A·巴韦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell University
Original Assignee
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell University filed Critical Cornell University
Publication of CN101939906A publication Critical patent/CN101939906A/zh
Application granted granted Critical
Publication of CN101939906B publication Critical patent/CN101939906B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02259Driving or detection means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2452Free-free beam resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2463Clamped-clamped beam resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02283Vibrating means
    • H03H2009/02291Beams
    • H03H2009/02314Beams forming part of a transistor structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane

Abstract

一种谐振体,具有反转栅极、积累栅极和中心区域。所述谐振体还具有耦合至所述中心区域的源极触点,以及耦合至所述中心区域的漏极触点。所述谐振体还具有耦合在所述反转栅极与所述中心区域之间的第一电介质层。所述谐振体还具有耦合在所述积累栅极与所述中心区域之间的第二电介质层。还公开了一种谐振体晶体管。所述谐振体晶体管具有反转栅极电极、积累栅极电极、源极电极、漏极电极以及多个锚梁。所述谐振体晶体管还具有谐振体,所述谐振体通过所述多个锚梁耦合至且悬挂于所述反转栅极电极、所述积累栅极电极、所述源极电极以及所述漏极电极。还公开了一种谐振体振荡器。

Description

谐振体晶体管和振荡器
相关申请
本专利申请要求享有2007年12月11日提交的名为“RESONANTBODYTRANSISTORANDOSCILLATOR”的美国临时专利申请61/012,821的优先权。该临时专利申请61/012,821在这里全部引入作为参考。
技术领域
要求权利的发明涉及振荡器领域,更具体而言,涉及一种具有谐振体晶体管的振荡器。
背景技术
随着发展到深亚微米(DSM)技术,晶体管阈值频率增大,使得能够设计出用于高达67GHz的射频(RF)和毫米波应用的互补金属氧化物半导体(CMOS)电路。但是,这种高频CMOS晶体管具有有限的增益,由此导致不好的输出功率。因此,要想成功的过渡到DSM CMOS应用,需要以高频率工作的高Q、低功率部件。
DSM电路面临的另一个挑战是增加到高达1011个器件/cm2的器件密度。在这种密度下,时钟分布以及与之关联的功率损耗需要实施具有全局同步可能性的低功率本地时钟。
市场上当前存在着利用了声谐振器的高品质因数来尝试解决CMOS设计中的上述问题的机电谐振器和振荡器。性能最高的产品可以在SiTime(www.sitime.com)得到,但是这些产品只有范围在1-125MHz的有限频率。SiTime的产品是芯片外的,其大小约为1mm2。它们没有将晶体管作用引入谐振体内。
在1967年,Nathanson等人证明了谐振栅晶体管(在IEEE Trans.ElectronDevices第14卷第117-133页)在具有空气隙电容电极的导电黄金悬臂中驱动谐振。谐振栅晶体管(RGT)悬臂用作空气隙晶体管的栅极,其输出漏极电流则由悬臂谐振运动调制。证明谐振栅晶体管具有高达100kHz的频率。
在2003年,Leland Chang在其于加州大学伯克利分校的电气工程和计算机科学系的博士论文中引入了谐振体晶体管(RBT)的概念(L.Chang,“Nanoscale Thin-Body CMOS Devices,”加州大学伯克利分校电气工程和计算机科学博士论文第八章,2003年春)。如图1所示,Chang提出了一种由两个在两个锚点34、36耦合到一起的固支梁32形成的空气隙弯曲型RBT 30(双端固定音叉结构)。这种几何形状类似于具有两个鳍状物38、40的空气隙双栅极FinFET。其中一个鳍状物38被偏置成积累状态(accumulation),而另一个鳍状物40则被偏置成强反状态(strong inversion)。该器件是如下工作的:
(1)顶部鳍状物38被偏置成积累状态(-VGate)。没有电流流经该鳍状物38,但是来自激励Vin的电容式力(Fcap,ac~VGateVinCOX1/g)驱动谐振运动。
(2)机械振动将顶部鳍状物通过梁32的任一端上的锚点34、36耦合到底部。底部鳍状物40与顶部鳍状物38异相的情况下发生谐振。
(3)底部鳍状物40被偏置成强反状态(+VGate)。随着底部鳍状物40的移动,COX2将会改变,由此调制漏极电流IDrain
不幸的是,在将Chang的空气隙弯曲型RBT 30延伸用于大于10GHz的频率的方面存在着若干障碍,例如难以获得更小的空气隙以及难以防止静摩擦力。
因此,期望具有一种可被延伸在远高于10GHz范围的很高频率上使用并且实际可以制造的可靠的谐振体晶体管,以便能够设计出用于RF应用的深亚微米电路。
发明内容
公开了一种谐振体。所述谐振体具有反转栅极、积累栅极以及中心区域。所述谐振体还具有耦合到所述中心区域的源极触点以及耦合到所述中心区域的漏极触点。所述谐振体还具有耦合在所述反转栅极与所述中心区域之间的第一电介质层。所述谐振体还具有耦合在所述积累栅极与所述中心区域之间的第二电介质层。
还公开了一种谐振体晶体管。所述谐振体晶体管具有反转栅极电极、积累栅极电极、源极电极、漏极电极、以及多个锚梁。所述谐振体晶体管还具有谐振体,所述谐振体通过所述多个锚梁耦合至且悬挂于所述反转栅极电极、所述积累栅极电极、所述源极电极以及所述漏极电极。
还公开了一种谐振体振荡器。所述谐振体振荡器具有谐振体晶体管。所述振荡器的谐振体晶体管具有反转栅极电极、积累栅极电极、源极电极、漏极电极、以及多个锚梁。所述振荡器的谐振体晶体管还具有谐振体,所述谐振体通过所述多个锚梁耦合至且悬挂于所述反转栅极电极、所述积累栅极电极、所述源极电极以及所述漏极电极。所述谐振体振荡器还具有至少一个电容器,所述至少一个电容器在所述至少一个电容器的一端与所述积累栅极电极耦合,并且用于在所述至少一个电容器的第二端接收接地连接。所述反转栅极电极用于接收偏置电压。所述源极电极用于接收接地连接。所述漏极电极耦合至所述积累栅极电极,并且用于提供振荡器输出。
公开了一种制造谐振体晶体管的方法。对基底进行蚀刻以限定器件层。在所蚀刻的基底和器件层上形成牺牲掩膜。在所述牺牲掩膜上沉积电介质层。在所述电介质层上沉积导电层。对所形成的层进行平坦化,以暴露所述器件层或所述器件层上的所述牺牲掩膜。至少在所述导电层的某些部分上沉积经构图的牺牲掩膜。去除所述导电层和所述电介质层的被暴露的区域。去除所述牺牲掩膜以及经构图的牺牲掩膜。
附图说明
图1示意性示出了空气隙弯曲模式谐振体晶体管。
图2示意性示出了内部电介质体模式(bulk-mode)谐振体晶体管的一个实施例。
图3A示意性示出了电介质换能(transduced)自由-自由纵向体模式谐振器的实施例。
图3B示意性示出了施加至图3A中的谐振器的偏置电压。
图4示出了沿着谐振器长度改变电介质位置的内部换能纵向杆(longitudinal bar)的三次和九次谐波的动生阻抗(motional impedance)RX的一个示例。
图5示出了使用了内部电介质换能的体模式纵向谐振器的频率缩放的示例。
图6A-6G示出了用于制造谐振体晶体管的一个实施例的制造过程的一个实施例中的制造步骤。
图7A示出了实验性的RBT实施例的振型(mode shape)。
图7B示出了来自图7A中建模的实验性RBT实施例的扫描电子显微镜(SEM)的图片。
图8示意性示出了用于评估所实现的上述RBT的测试设置的一个实施例。
图9A和9B分别示出了3次和9次谐波的实验性谐振器的频率响应。
图10A示出了作为电介质电容换能器件和RBT换能器件的电介质间隙的函数的动生阻抗。
图10B示出了作为电介质电容换能器件和RBT换能器件的频率的函数的动生阻抗。
图11示意性示出了用于描述RBT工作的谐振体晶体管(RBT)的实施例。
图12示出了作为电介质电容换能器件和RBT换能器件的频率的函数的动生阻抗RX
图13示出了皮尔斯石英振荡器的一个实施例。
图14示意性示出了谐振体振荡器的一个实施例。
应该意识到,为了简明起见,在附图中重复使用参考标记来指示相应的特征部件,并且为了更好地示出这些特征部件,附图中的各元件未必是按比例绘制的。
符号定义
  L   谐振器长度
  W   谐振器宽度
  h   谐振器高度
  Lg   栅极长度
  d   电介质与杆(bar)中心的距离
  g   电介质厚度
  n   谐波次数
  kn   波数=nπ/L
  Y   杨氏模量
  ρ   质量密度
  εf   电介质的介电常数
  μn   电子迁移率
  π110   切线压阻系数(110)
  Q   谐振品质因数
  U0   谐振时的振荡幅度
  x   沿着杆的位置(在中心处,x=0)
  VDC   偏置电压
  VD   漏极电压
  VG   栅极电压
  Vacc   积累栅极的电压
  VT   阈值电压
  ID   漏极电流
  vac   交流输入电压
iout 交流输出电流
为实施例假设的约束条件
  ε0   8.85x10-12m-3kg-1s4A2
  εf   7.ε0
  h   250nm
  W   800nm
  d   位移节点
  g   10nm
  n   3
  Y   170x109Pa
  ρ   2330.kg m-3
  μn   300x10-4Vm-2s-1
  π110   17x10-11Pa-1
  Q   5.x1013/f
  VDC   3V
  vac   0.1V
  VT   0.6V
  VG   3V
  Vacc   VD-VG
  VD   (VG-VT)+0.1V
具体实施方式
图2示意性示出了内部电介质体模式谐振体晶体管(RBT)42的一个实施例。RBT 42将感测晶体管44直接集成到了谐振体46中。RBT 42具有反转栅极电极48、源极电极50、漏极电极52以及积累(accumulation)栅极电极54。电极48、50、52和54可以用多晶硅或是适合传递电信号和电压的其他导电材料形成。这些电极还可以用非导电或半导电基底材料来支撑。谐振体46由锚梁56支撑并离开基底一个距离Z。锚梁56还可以为施加至电极或是从电极感测的电压提供信号传输路径,以便经由导电多晶硅材料到达谐振体46。结果,谐振体46具有反转栅极58、源极触点60、漏极触点62、以及积累栅极64。
谐振体46具有将反转栅极58与源极触点60以及漏极触点62隔开的第一电介质层66。谐振体46还具有将积累栅极64与源极触点60以及漏极触点62隔开的第二电介质层68。电介质层66、68可以由氧化物层或是本领域技术人员已知的其他适当的电介质材料来形成。在本实施例中,第一和第二电介质层66、68具有基本相等的厚度tox,但是,其他实施例可以使用具有不同厚度的第一和第二电介质层。谐振体还具有耦合在电介质层66、68之间并且将源极60和漏极62隔开的中心区域70。中心区域70可以由单晶硅形成,可以为了PMOS(p型MOS)操作或NMOS(n型MOS)操作而对所述中心区域70进行掺杂。在本实施例中,为了PMOS操作而对中心区域70进行了掺杂,其具有n型源极70NS、n型漏极70ND以及p型有源区域70P。源极70NS耦合至源极触点60,并且漏极70ND耦合至漏极触点62。有源区域70P介于源极70NS与漏极70ND之间。在其他实施例中,例如为了NMOS(n型MOS)操作,n型和p型区可以相反,或者可以不对p型区域进行掺杂。
反转栅极58可以用作驱动电极。可以将靠近反转栅极58的有源区域70P偏置成积累状态,使得很大的电容性力作用在第一电介质层66两端,从而在谐振体46中驱动谐振运动。因为积累电荷在源极70NS和漏极70ND中是少数载流子,其对漏极电流的贡献可以忽略。靠近栅极58的有源区域70P中随后的谐振运动将通过物理改变tox以及通过载流子迁移率的压电调制来调制漏极电流。与电容性检测机制相比,内部放大的RBT信号将会具有明显较小的输出阻抗,从而提高读取精度。
RBT的动生阻抗Rm.RBT=IDrain/Vin通过如下公式给出:
R m . RBT = 2 L CAP 2 w μ n V DC R m - - - ( 1 )
其中,Rm是相同几何形状的电容性换能谐振器的动生阻抗,LCAP是栅极长度,w是谐振角频率,VDC是栅极偏置电压,以及μn是有效载流子迁移率。实际上,这是假设漏极电流的调制仅由栅极氧化物66的厚度的物理改变导致的时候对改进的动生阻抗的一阶近似。其他的电流调制由压阻效应和单晶硅中的应变诱发的迁移率增强产生。
很重要的是,应该理解为RBT 42选择的几何形状之后的机电原理。图3A示意性示出了电介质换能自由-自由纵向体模式谐振器72的实施例。电介质薄膜74、76被引入到了谐振体78中,由此以静电的方式进行驱动和感测。谐振体78由锚梁80悬挂并耦合到锚状物82。谐振体78被偏置到VDC,并且以谐振频率将幅度VIN的谐波激励施加至驱动电极84。在本示例中,内部换能要求电介质薄膜74、76与体谐振器材料声学匹配,由此在没有降低品质因数的情况下保持谐振器72的振型和频率。利用该假设,跨越-L/2≤x≤L/2的自由-自由纵模杆的n次谐波具有如下位移
n为奇数    (2)
其中kn=nπ/L和U0是杆振动的最大幅度。图3B示出了该纵模的三次谐波。n次谐波的谐振频率是其中Y和ρ分别是杨氏模量和杆的质量密度。在谐振器中,厚度g的驱动电介质薄膜被放置在谐振器中x=d处。介电常数为εf的电介质两端的电容性力的AC成分是:
f ( x , t ) = ϵ f A g 2 V DC v in e i 2 π · f n t ∀ xs ∈ [ d - g 2 , d + g 2 ] - - - ( 3 )
考虑到杆中阻尼振动的运动等式,
ρA ∂ 2 u ( x , t ) ∂ t 2 - bA ∂ 2 u ( x , t ) ∂ t ∂ x 2 - YA ∂ 2 u ( x , t ) ∂ x 2 = ∂ f ( x , t ) ∂ x - - - ( 4 )
并且将等式2代入等式4,谐振频率处的振动幅度给出如下
U 0 = 2 Q ϵ f V DC v in n 2 π 2 Y L g 2 [ sin ( k n d - k n g 2 ) - sin ( k n d + k n g 2 ) ] - - - ( 5 )
其中Q是谐振器的品质因数。这种谐振是通过感测电介质薄膜上的振动引起的电容改变进行检测,
i out = V DC dC dt = V DC dC du du dt = ϵ f V DC A g 2 [ sin ( k n d - k n g 2 ) - sin ( k n d + k n g 2 ) · 2 π · f n U 0
= 2 Q ϵ f 2 V DC 2 A nπ Yρ g 4 [ sin ( k n d - k n g 2 ) - sin ( k n d + k n g 2 ) · 2 π · f n U 0 - - - ( 6 )
由此导致动生阻抗
R x = v in i out = nπ Yρ g 4 2 QA ϵ f 2 V DC 2 [ sin ( k n d - k n g 2 ) - sin ( k n d + k n g 2 ) ] 2 - - - ( 7 )
简化为
R x = nπ Yρ g 4 8 QA ϵ f 2 V DC 2 cos 2 ( k n d ) sin 2 ( k n g / 2 ) - - - ( 8 )
等式8在使用内部电介质换能来设计最优的体模式谐振器方面提供了大量建议。如所预期的那样,动生阻抗对于电介质厚度的四次依赖性需要尽可能薄的电介质。这个厚度通常是由制造和材料属性的限制限定的。此外,动生阻抗的这种形式与空气隙换能的主要不同点在于分母中的三角项,表明驱动和感测电介质薄膜的位置优选应该基本以位移最小或应变最大为中心。其他实施例同样能够利用不同位置的电介质薄膜工作,其中所述位置是由系统需要确定的。在本实施例中,电介质薄膜位置的选择设置cos2(knd)=1,由此使Rx相对于d最小化。
等式8分母中的sin2项源于电介质体谐振器接口处的模式位移(modaldisplacement)。该因数在很低的频率时极大降低谐振器的性能,其中声波长λ>>g。但是,随着谐振器延伸到更高的频率,并且λ/2→g,分母中的sin2项将会趋于一,由此减小动生阻抗。因此,对于由制造限制所确定的固定电介质厚度g来说,声波长λ=2g时的工作频率是最优的。
图4示出了内部换能纵向杆的三次和九次谐波的动生阻抗Rx的一个示例,沿着谐振器的长度而改变电介质的位置。在本示例中,三次和九次谐波使用的是大小为5000的常数Q。虽然在用没有缺陷的单晶材料制成的理想的绝缘谐振器中,品质因数会缩放为Q∞1/f,然而硅谐振器尚未达到这个缩放限制,近年来表明仅仅是增长的f·Q。由于这些硅谐振器的Q显现出强烈依赖于众多设计参数,因此为了简单起见,在本示例中将其设想成是恒定的。
如图4所示,动生阻抗的最小值出现在最大应变点(最小位移)。尽管存在未对准容限,接近于RX很低的位移最小值的大空间范围允许可靠器件的制造。在2/3的分数电介质位置,三次谐波和九次谐波的位移最小值的一致性允许在相同器件中以最优的方式激励这两种模式。这对多频率应用来说是非常有益的。但是,如果不希望多个模式,那么可以通过将电介质放置在2/9或4/9的分数电介质位置、接近三次谐波的位移最大值来抑制三次谐波,同时仍旧在最大应变处驱动九次谐波。其他的实施例可以利用不同的谐波,这取决于谐振器的几何形状设计和/或所使用的频率。对于固定频率来说,通常期望可能最低谐波。对于固定的谐振器大小来说,希望具有更高的谐波来实现更高的频率。
在图5中示出了使用内部电介质换能的体模式纵向谐振器的频率缩放(frequency scaling)的示例。归一化至谐振器的横截面的动生阻抗RX会随着频率的增加而急剧减小,由此在60GHz实现kΩμm2的阻抗。同样,为了简单起见,并且由于Q强烈依赖于设计参数,因此在这里假设常数Q的大小是5000(图5中的实线)。图5中的虚线代表的是用于Q∞1/f换能的频率缩放,其中在I GHZ,Q的大小是5000。图5的频率缩放结果会收敛至类似于FBAR的谐振器或是用于固态安装的BA W谐振器的Bragg反射器,在相同厚度的导电层之间堆叠了多个厚度为λ/2的电介质。近来,该器件已经在10GHz范围中得到了成功论证。
对二氧化硅(κ~3.9)和氮化硅(κ~7)之类的常见电介质来说,其在厚度为数纳米的薄膜中的性能是很可靠的。对这种换能薄膜厚度来说,动生阻抗在>50GHz处最小化,但是对于工作在1-10GHz来说可能太高。在无线电和微波频率范围中,低阻抗的谐振器可以通过使用高κ电介质材料来实现,例如钛酸钡锶(BST)。虽然BST薄膜在低于~200nm的时候在电学上并不可靠,但是它们在超出300的时候通常会显现出很高的介电常数。一般来说,任何κ高于氮化物的材料都将是高介电常数的材料,例如二氧化铪(κ=28)。这种高介电常数的电介质通常可以在很低的GHz频率处获得低阻抗的内部换能谐振器方面提供极大优点。一些实施例可能仅仅关注的是更高的GHz频率,并且由此可能能够使用较低的介电常数电介质。在一些实施例中,期望具有电致伸缩性很强的电介质。此外对一些实施例来说,选择在声学方面与谐振体材料紧密匹配的电介质是非常有益的。
作为一个示例,相对于200nm电介质薄膜的谐振频率来最小化等式8,可以获得10.7GHz处的最优工作频率。假设Q的大小是5000并且偏置电压是20V,该结构在三次谐波谐振上具有10kΩμm2的阻抗。例如,10GHz处50Ω的BST谐振器可以通过垂直堆叠具有10μm×20μm覆盖区域(footprint)的体/电介质层(厚度延伸模式)来获得,或者通过形成近似半径约为16um的2μm厚的延伸环[8]来获得。
设计纵向杆谐振器的实施例并且用硅来制造,以论证上述理论的可行性。到本申请提交时为止,认为在硅谐振器中测量的最高的声频记录为4.51GHz。实验的一个目的是验证纵向体模式MEMS谐振器的“内部电介质换能”的最优设计。由于电介质厚度趋于硅中的声学半波长,因此,这种换能机制的效率得到了提升。对在谐振器中最大应变(最小位移)位置的电介质薄膜来说,4.51GHz的谐振器被证明相对于其在1.53GHz处的性能具有9.8dB的信号增强。分析和较高频率处的改进谐振器性能的实验验证可以允许将MEMS谐振器缩放至先前无法达到的频率。
电介质换能优化:例如如图3的实施例所示,纵向模式杆谐振器是用很薄的垂直电介质层驱动并以静电方式感测的。谐振体被偏置为VDC,并且以谐振频率为驱动电极施加幅度为Vin的谐波激励。对谐振器的n次谐波来说,2端口动生阻抗RX≡vin/iout是由等式8给出的:
R X = nπ Yρ g 4 8 QA ϵ f 2 V DC 2 cos 2 ( k n d ) sin 2 ( k n g / 2 )
其中,Y和ρ分别是杨氏模量以及谐振器的质量密度。在这里,εf是电介质介电常数,g是电介质厚度,d是电介质沿杆上的位置,A是换能面积,并且kn=nπ/L是谐振波数。如先前所述,图4给出的是内部换能纵向杆的三次和九次谐波的分析性动生阻抗RX,沿着谐振器的长度改变电介质的位置。如图4所示,动生阻抗的最小值出现在最大应变点(最小位移)。尽管在制造过程中存在未对准容限,靠近于RX很低的位移最小值的大的空间范围允许可靠器件的制造。
RX对电介质厚度的四次依赖性表明:为了将RX最小化,应该使用尽可能薄的电介质薄膜。较高谐波中的振动频率的增大(由此波数kn增大)意味着:随着声学半波长趋于g,上述等式分母中的sin2项趋于1,由此减小RX。这种效果胜过动生阻抗对于谐波次数的线性依赖性,由此导致较高谐波的RX的全面减小。
电介质的位置可以用来设计优先激励较高谐波的谐振器。例如,如果将电介质薄膜放置在靠近谐振器中心的九次谐波的位移节点,那么较低谐波的动生阻抗将会过大,以至于无法激励振动,并且寄生模式(spuriousmode)将被最小化。在该研究中,电介质被放置在了三次和九次谐波的位移节点的重合点,优化了这两种模式的换能。
图6A-6G示出了用于制造谐振体晶体管的一个实施例的制造过程的一个实施例中的制造步骤,其中所述谐振体晶体管用于实验验证。如图6A所示,对基底86进行刻蚀,例如通过使用深反应离子刻蚀(DRIE)工艺以定义一个或多个器件结构88。基底86和随后的器件结构88可以用硅或其他适当的半导体或可掺杂材料制成。然后,对基底86和器件层88进行氧化,以形成牺牲氧化物掩膜90。如图6B所示,电介质层92沉积在氧化物掩膜90上。在所进行的实验中,形成15nm的氮化硅电介质层92,但是在其他实施例中可以使用其他电介质材料和/或厚度。如图6C所示,沉积导电多晶硅层94。多晶硅层94形成电极迹线,所述电极迹线可以接收用于施加至将形成的谐振体晶体管的偏置电压。如图6D所示,对组合结构的顶侧进行抛光,例如通过化学机械抛光对其进行抛光。所述抛光去除多晶硅层94和电介质层92中的一部分,直至暴露出器件层88或器件层88上的牺牲掩膜90。如图6E所示,至少在多晶硅94的区域上沉积经构图的牺牲氧化物掩膜96,其中该区域将被保护免受后续步骤的影响。如图6F所示,去除暴露的多晶硅区域以及后续暴露的电介质区域,例如通过DRIE,以便保留经构图的多晶硅98以及经构图的电介质层100。在对多晶硅层进行蚀刻之后并且在去除多晶硅顶部上的硬氧化块之前还可以进行掺杂。所述硬氧化物掩膜用作晶体管中的有源区的自对准掺杂掩膜,同时允许对源极和漏极进行掺杂。然后,如图6G所示,去除牺牲氧化物层90,例如通过氟化氢(HF)释放处理。还可以执行临界点干燥处理(CPD)。CPD会使沉浸了所释放的谐振器的液体(通常是异丙醇或甲醇)达到其临界点(通过改变温度和压力),使得液体蒸发,而不会在谐振器上形成弯月面,以免出现吸合和静摩擦。
在所进行的试验中,谐振器是通过将用于换能的15nm的氮化硅薄膜组合SOI-多晶体硅处理中来制造。谐振器的悬挂梁被设计成处于四分之一波长,以便最小化三次和九次谐波的锚损耗(anchor losses),从而抑制寄生模式。图7A示出了实验性谐振器实施例的振型。这种非理想的布线梁(routingbeam)会导致纵向振型失真。但是,沿着电介质薄膜的纵向变形将会得到防护。图7B示出了一个电介质换能硅杆谐振器(长8.5μm×宽40μm×高2.5μm)的扫描电子显微照片(SEM)。插入的图像示出了介于谐振器的多晶硅与单晶区域之间的薄的氮化物间隙。通过在HF释放步骤中去除氮化物的外边缘,氮化物将会保留在大部分的换能区域中,这一点可以通过电容测量来证明。
图8示意性示出了用于评估所实施的上述电容换能测试设置的一个实施例。执行使用Agilent的参数网络分析器(PNA)102的标量混合测量(scalar mixing measurement),以获得被测试的谐振器104的频率响应。实施通常用以表征RF混合器的标量混合器校准技术,以便测量高频谐振器的性能(其表现的与无源MEMS混合器一样)。本地振荡器(LO)信号生成器106提供LO频率信号108,并且DC电源110提供了DC偏置电压112。在bias-T 114(电流注入器),DC偏置电压112与LO频率信号结合。结合的DC偏置电压和LO频率信号116耦合到谐振器104主体的中心。RF输入118施加至谐振器104的驱动栅极,并且RF-LO信号120是从谐振器104的感测栅极拾取并反馈给PNA 102的。这种方法消除了三端口MEMS器件的布线和探针焊盘中的损耗和寄生传输线谐振,并且在高于1GHz的频率上提供对机械Q的精确测量。谐振器是在Lakeshore真空探测站测试的,施加了5V的偏压,-10dBm的LO以及0dBm的RF输入。图9A和9B分别示出了三次和九次谐波的实验性谐振器频率响应。器件的LO泄露(灰色迹线122和124)通过将偏置电压设置成0V来获得。声谐振是在施加5V偏压的时候激励的(黑色迹线126和128)。与Q的大小仅仅为1,700的三次谐波132相比,Q的大小为11,200的九次谐波130示出了9.8dB的信号改进。
等式2中的动生阻抗与Q成反比。为了提取换能器效率与频率缩放的关系,通过谐波的Q归一化了谐振处的标量换能损失。考虑到这一点,4.51GHz的归一化信号相对于1.53GHz的归一化响应改进了2dB。分析模型预测在三次与九次谐波之间存在~3x的动生阻抗改进,由此可以换能成4.7dB的信号改进。这种差异可能归因于很小的偏差(<200nm)以及纵向模式的宽度失真效应(先前在图7A中示出)。
实验结论:论证了4.51GHz的纵向杆谐振器,标记了迄今为止在硅中测得的最高频率。纵向振动的三次和九次谐波是在硅杆谐振器中激励的,从而在信号强度方面显现出9.8dB的绝对改进,并且在换能中显现出2dB(归一化的Q)的增强,相对于三次谐波(1.53GHz)来说,九次谐波(4.51GHz)的效率更高。这些结果表明随着频率增大而改进的谐振器性能,由此提供一种用于将MEMS谐振器延伸至先前在硅中无法达到的频率的设计。
纵向模式内部电介质RBT
用于RBT换能的最低次数的现实纵向模式是n=2,具有位于中心且用于布线晶体管源极和漏极的位移节点。在图10A和10B中给出了二次谐波纵向模式谐振器的电容与RBT换能之间的定量比较,其中为了简单起见假设了恒定的载流子迁移率以及大小为1000的恒定品质因数Q。AC输入电压vin=0.1V叠加在偏置电压VDC=10V上。由于电子束光刻分辨率在高频上存在限制(在60GHz,L=71nm),因此,谐振器的宽度(等于栅极长度)仅是谐振器长度的1/3。所要求的这个比值可能导致明显的短沟道效应,但是可以通过近似位于谐振器中心的可选小孔对电流进行转向并且由此有效阻止非期望的体电流来补偿。谐振器高度恒定保持在200nm,其受限于DRIE纵横比限制。
图10A示出了作为电介质电容换能器件与RBT换能器件的电介质间隙的函数的动生阻抗RX。类似地,图10B示出了作为电介质电容换能器件和RBT换能器件的频率的函数的动生阻抗RX。图10A和10B论证了内部信号放大在检测纳米级结构的高频机械谐振中的重要性。电容谐振器显现出1MΩ等级的动生阻抗,由此禁止将其集成到宏观系统中。另一方面,RBT可以在60GHz处实现~100Ω的动生阻抗,并且可以在200-500GHz处缩放至更低的阻抗。
谐振体晶体管(RBT)的操作
图11示意性示出了谐振体晶体管(RBT)134的实施例,以便描述RBT的操作。如在上述实施例中描述的那样,RBT 134的几何形状类似于纵向模式内部电介质换能谐振器,其不同之处在于对谐振器的中心进行了掺杂,这实现了谐振体内的积累层136和反转层138。如图11所示,对RBT进行偏置。将反转栅极电压VGinv(受电介质击穿电压限制)施加至一个栅极140,产生反转层138。源极142与接地相连,而漏极144被偏置为VD>VGinv-VT,以便在饱和状态下驱动晶体管。DC饱和状态漏极电流ID是如下给出的:
I D = 1 2 u n ϵ f g h L gate ( V G - V T ) 2 - - - ( 9 )
在积累栅极146处施加具有AC激励电压vac的积累电压Vacc,驱动谐振。Vacc受电介质两端的击穿电压的限制,因此Vacc>VD-VG。对于大小为3V的击穿电压来说,VG=3V,VD>2.4V=2.5V,Vacc=-0.5V,因此,从积累栅极到漏极的压降是3V。用于启动的静电力分布在三个区域中。由于电介质两端的压降很大,因此积累栅极与漏极区域之间的力148是最大的。在积累栅极与源极之间,力150最小。纵向谐振的振动幅度是:
U 0 | RBT = U 0 | Cap [ 1 V DC W [ ( W 2 - L gate 2 ) ( V D - V acc ) - ( W 2 - L gate 2 ) V acc + L gate 2 ( V D - V acc ) ] ] - - - ( 10 )
其中U0|Cap是在等式5中给出。在谐振器中导致的张力以压阻的方式调制流经反转层138的漏极电流ID。假设以与沿着110的弹性波前的法线垂直的方式传播的电流具有压阻系数π110,则迁移率的变化是如下给出的:
d μ n μ n = π 110 Y ∂ u ∂ x | inversion - - - ( 11 )
= π 110 Yk n U 0 | RBT cos ( k n g 2 )
等式11的压阻性迁移率调制产生了线性依赖于漏极电流的AC电流:
i out | RBT = I D ( d μ n μ n + 2 U 0 | RBT sin ( k n g 2 ) g ) - - - ( 12 )
= I D d μ n μ n
等式12中的第二项归因于栅极电容随着杆的延伸和缩短而发生的变化。但是与压电电阻相比,其对电流调制的作用要比压阻小一个以上的数量级。最终的动生阻抗是:
R x , RBT = 2 nπw L gate g 3 csc ( k n g 2 ) Qh π 110 u n ϵ f 2 ( V G - V T ) 2 ( w ( 2 V G - V D ) - L gate ( V G - V D ) ) - - - ( 13 )
与等式1中提出的模型相比,该阻抗甚至更具有预见性,这是因为它使得压阻效应对输出信号起作用。图12示出了作为基于图13的模型的电介质电容换能器件和RBT换能器件的频率的函数的动生阻抗RX
谐振体振荡器
图13示出了皮尔斯晶体振荡器152的一个实施例。在晶体154的输出端153与接地156之间耦合了并联电容器(shunt capacitor)C2。晶体154的输出端153还耦合到FET晶体管160的栅极158。晶体管160的源极162耦合到接地156。晶体管160的漏极164耦合到振荡器输出端166。振荡器输出端166还被反馈并且耦合到晶体154的输入端168。在振荡器输出端166与接地156之间耦合了反馈电容器C1,以便控制反馈。电容器C2帮助调整晶体154的谐振频率。各电容器产生180度的相移,而晶体管160提供关闭反馈回路所必需的增益。晶体管160具有接近无限的输入阻抗以及接近于零的输出阻抗。因此,晶体管尝试迫使输出端158与输入端166相等。利用输入端与输出端之间的180度相移,则输出电压将结束振荡。
图14示意性示出了谐振体振荡器170的一个实施例。所述谐振体振荡器的核心是谐振体晶体管(RBT)172。RBT 172的源极174与接地176耦合。RBT 172的漏极178与振荡器输出端180耦合。振荡器输出端180还反馈并且耦合到RBT 172的积累栅极182。在振荡器输出端180与接地176之间耦合了反馈电容器C1,以便控制反馈。在本实施例中,电容器C2同样是与输出端180和接地176并联并与C1结合,有助于产生与RBT 172产生的相移谐振的相移,以使输出电压振荡。由于C1和C2并联在振荡器输出端180与接地176之间,在其他实施例中可以使用与C1和C2的总和相等的单个电容器来替换这两个电容器。在本实施例中没有示出的是RBT172的反转栅极。由于施加至反转栅极的偏置电压能使漏极电流流动,因此,所述反转栅极需要连接到适当的偏置电压,以使谐振体振荡器有源。
谐振体振荡器具有很多益处。诸如皮尔斯振荡器之类的振荡器所需要的晶体和晶体管可以由单个RBT取代,所述RBT可以被设计成引入所需要的一个或多个并联电容器。因此如图14所示,整个振荡器可以由单个谐振体振荡器形成,其中覆盖区域<1μm2。图14中代表谐振体振荡器172的新符号表明将晶体和晶体管集成到单个部件中。由于RBT的高Q和高谐振频率引起的振荡器的低相位噪声将会产生高灵敏度、低功率的谐振体振荡器(RBO)。
在这里讨论了谐振体晶体管和振荡器的优点。在说明书中,通过示例的方式描述了论述的实施例。对于本领域技术人员来说显而易见的是上述具体公开仅是旨在作为示例,而不是进行限制。上述RBT实施例具有纵向延伸杆谐振器。但是,RBT可以形成有多个体声波谐振模式。这些模式包括但不局限于厚度剪切(thickness shear)模式、宽度延伸模式、以及厚度延伸模式。此外,所示出的RBT是矩形,但是其他实施例可以呈现多种不同的形状,以便适应不同的谐振模式或是优化晶体管的几何形状和布线。
上述RBT实施例采用分离栅极配置的两个栅极。一个栅极用来将区域偏置成积累状态,以便驱动声谐振。另一栅极则保持在恒定电压,从而将区域偏置成强反状态。但是,在其他实施例中,利用两个栅极上的DC+AC电压可以将整个沟道区域偏置成强反状态。在这种配置中,AC力仍旧可以驱动声谐振,并且相同的原理在分离栅极的实施例中也是成立的。因此,栅极不需要单独驱动。
上述RBT实施例是从支撑基底释放(release)并由支撑梁(其也用作布线梁)进行悬挂。执行这种处理以使得进入基底的声损耗最小化。但是,在其他实施例中,器件可以在未被释放的情况下使用,或者完全被覆层材料所包围。虽然因为RBT的物理边界条件发生变化而有可能出现某些损耗,但在该模式中仍旧可以工作。
虽然没有在这里明确指出,但是本领域技术人员将会想到并设计出其他不同的替换、改进和变型。这些替换、改进和变型在这里得到了暗示,并且在要求保护的发明的精神和范围内。此外,除非在权利要求中加以规定,否则所描述的处理元件或序列的顺序,或是数字、字母或其他标记的使用顺序不会将权利要求局限于任何顺序。因此,本发明仅限于所附权利要求及其等价物。

Claims (40)

1.一种谐振体,包括:
反转栅极;
积累栅极;
中心区域;
耦合至所述中心区域的源极触点;
耦合至所述中心区域的漏极触点;
耦合在所述反转栅极与所述中心区域之间的第一电介质层;以及
耦合在所述积累栅极与所述中心区域之间的第二电介质层,
其中,所述谐振体包括从由矩形、椭圆形、圆形、以及六边形构成的组中选择的形状,并且所述谐振体通过多个锚梁耦合至且悬挂于反转栅极电极、积累栅极电极、源极电极以及漏极电极。
2.根据权利要求1所述的谐振体,其中,所述中心区域包括:
耦合至所述反转栅极和所述积累栅极的有源区域;
耦合至所述源极触点的源极;以及
耦合至所述漏极触点的漏极。
3.根据权利要求2所述的谐振体,其中,所述有源区域包括p型掺杂物。
4.根据权利要求2所述的谐振体,其中,所述有源区域包括n型掺杂物。
5.根据权利要求2所述的谐振体,其中,所述源极和所述漏极包括p型掺杂物。
6.根据权利要求2所述的谐振体,其中,所述源极和所述漏极包括n型掺杂物。
7.根据权利要求2所述的谐振体,其中,所述反转栅极至少延伸与所述有源区域的长度一样的长度。
8.根据权利要求2所述的谐振体,其中,所述积累栅极至少延伸与所述有源区域的长度一样的长度。
9.根据权利要求1所述的谐振体,其中,所述第一电介质层从由氧化物、二氧化硅、氮化硅、钛酸钡锶以及二氧化铪构成的组中选择。
10.根据权利要求1所述的谐振体,其中,所述第二电介质层从由氧化物、二氧化硅、氮化硅、钛酸钡锶以及二氧化铪构成的组中选择。
11.根据权利要求1所述的谐振体,其中,所述第一电介质层和所述第二电介质层具有基本相同的厚度。
12.根据权利要求1所述的谐振体,还包括耦合至源极的至少一个反馈电容器。
13.根据权利要求1所述的谐振体,其中,所述谐振体包括从由纵向延伸杆模式、厚度剪切模式、宽度延伸模式、以及厚度延伸模式构成的组中选择的谐振器模式。
14.根据权利要求1所述的谐振体,其中,所述第一电介质层和所述第二电介质层基本以应变最大点为中心。
15.根据权利要求1所述的谐振体,其中,所述谐振体为方形。
16.一种谐振体晶体管,包括:
反转栅极电极;
积累栅极电极;
源极电极;
漏极电极;
多个锚梁;以及
谐振体,所述谐振体通过所述多个锚梁耦合至且悬挂于所述反转栅极电极、所述积累栅极电极、所述源极电极以及所述漏极电极。
17.根据权利要求16所述的谐振体晶体管,其中,所述谐振体包括:
耦合至所述反转栅极电极的反转栅极;
耦合至所述积累栅极电极的积累栅极;
中心区域;
耦合至所述中心区域及所述源极电极的源极触点;
耦合至所述中心区域及所述漏极电极的漏极触点;
耦合在所述反转栅极和所述中心区域之间的第一电介质层;以及
耦合在所述积累栅极和所述中心区域之间的第二电介质层。
18.根据权利要求17所述的谐振体晶体管,其中,所述中心区域包括:
耦合至所述反转栅极和所述积累栅极的有源区域;
耦合至所述源极触点的源极;以及
耦合至所述漏极触点的漏极。
19.根据权利要求18所述的谐振体晶体管,其中,所述有源区域包括p型掺杂物。
20.根据权利要求18所述的谐振体晶体管,其中,所述有源区域包括n型掺杂物。
21.根据权利要求18所述的谐振体晶体管,其中,所述源极和所述漏极包括p型掺杂物。
22.根据权利要求18所述的谐振体晶体管,其中,所述源极和所述漏极包括n型掺杂物。
23.根据权利要求18所述的谐振体晶体管,其中,所述反转栅极至少延伸与所述有源区域的长度一样的长度。
24.根据权利要求18所述的谐振体晶体管,其中,所述积累栅极至少延伸与所述有源区域的长度一样的长度。
25.根据权利要求17所述的谐振体晶体管,其中,所述第一电介质层从由氧化物、二氧化硅、氮化硅、钛酸钡锶以及二氧化铪构成的组中选择。
26.根据权利要求17所述的谐振体晶体管,其中,所述第二电介质层从由氧化物、二氧化硅、氮化硅、钛酸钡锶以及二氧化铪构成的组中选择。
27.根据权利要求17所述的谐振体晶体管,其中,所述第一电介质层和所述第二电介质层具有基本相同的厚度。
28.根据权利要求17所述的谐振体晶体管,还包括耦合至所述源极的至少一个反馈电容器。
29.根据权利要求16所述的谐振体晶体管,其中,所述谐振体包括从由纵向延伸杆模式、厚度剪切模式、宽度延伸模式、以及厚度延伸模式构成的组中选择的谐振器模式。
30.根据权利要求16所述的谐振体晶体管,其中,所述谐振体包括从由矩形、方形、椭圆形、圆形、以及六边形构成的组中选择的形状。
31.根据权利要求16所述的谐振体晶体管,其中,所述反转栅极电极耦合至所述积累栅极电极。
32.根据权利要求17所述的谐振体晶体管,其中,所述反转栅极和所述积累栅极是相同的器件。
33.一种谐振体振荡器,包括:
a)谐振体晶体管,包括:
1)反转栅极电极;
2)积累栅极电极;
3)源极电极;
4)漏极电极;
5)多个锚梁;以及
6)谐振体,所述谐振体通过所述多个锚梁耦合至且悬挂于所述反转栅极电极、所述积累栅极电极、所述源极电极以及所述漏极电极;以及
b)至少一个电容器,所述至少一个电容器的一端耦合至所述积累栅极电极,并且所述至少一个电容器用于在所述至少一个电容器的第二端接收接地的连接;以及
c)其中:
1)所述反转栅极电极用于接收偏置电压;
2)所述源极电极用于接收接地的连接;以及
3)所述漏极电极耦合至所述积累栅极电极,并且用于提供振荡器输出。
34.一种制造根据权利要求16所述的谐振体晶体管的方法,包括:
蚀刻基底以限定器件层,限定器件层包括:限定所述谐振体晶体管的中心区域;
在所蚀刻的基底和所述器件层上形成牺牲掩膜;
在所述牺牲掩膜上沉积电介质层;
在所述电介质层上沉积导电层;
对所形成的层进行平坦化,以暴露所述器件层或所述器件层上的所述牺牲掩膜;
至少在所述导电层的某些部分上沉积经构图的牺牲掩膜;
去除所述导电层和所述电介质层的暴露区域;以及
去除所述牺牲掩膜和所述经构图的牺牲掩膜。
35.根据权利要求34所述的方法,其中,蚀刻基底以限定器件层包括深反应离子刻蚀(DRIE)处理。
36.根据权利要求34所述的方法,其中,在所蚀刻的基底和所述器件层上形成牺牲掩膜包括形成氧化物。
37.根据权利要求34所述的方法,其中,在所述牺牲掩膜上沉积电介质层包括沉积从由氧化物、二氧化硅、氮化硅、钛酸钡锶以及二氧化铪构成的组中选择的材料。
38.根据权利要求34所述的方法,其中,在所述电介质层上沉积导电层包括沉积多晶硅层。
39.根据权利要求34所述的方法,其中,去除所述导电层和所述电介质层的暴露区域包括使用DRIE处理。
40.根据权利要求34所述的方法,其中,去除所述牺牲掩模和所述经构图的牺牲掩膜包括氟化氢(HF)释放处理。
CN200880126205.7A 2007-12-11 2008-12-11 谐振体晶体管和振荡器 Expired - Fee Related CN101939906B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1282107P 2007-12-11 2007-12-11
US61/012,821 2007-12-11
PCT/US2008/086439 WO2009076534A1 (en) 2007-12-11 2008-12-11 Resonant body transistor and oscillator

Publications (2)

Publication Number Publication Date
CN101939906A CN101939906A (zh) 2011-01-05
CN101939906B true CN101939906B (zh) 2014-10-29

Family

ID=40755884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880126205.7A Expired - Fee Related CN101939906B (zh) 2007-12-11 2008-12-11 谐振体晶体管和振荡器

Country Status (4)

Country Link
US (1) US8624337B2 (zh)
EP (1) EP2229723A1 (zh)
CN (1) CN101939906B (zh)
WO (1) WO2009076534A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171569A1 (en) 2008-11-18 2010-07-08 Ecole Polytechnique Federale De Lausanne (Epfl) Active double or multi gate micro-electro-mechanical device with built-in transistor
CN109148425B (zh) * 2010-08-23 2022-10-04 L·皮尔·德罗什蒙 具有谐振晶体管栅极的功率场效应晶体管
US9041492B2 (en) 2011-04-29 2015-05-26 Massachusetts Institute Of Technology Unreleased mems resonator and method of forming same
CN102946236B (zh) * 2012-10-22 2016-04-20 华中科技大学 一种可调薄膜体声波谐振器及其制备方法
CN103036527B (zh) * 2012-12-10 2016-08-17 电子科技大学 一种方块式微机械谐振器
CN103905009A (zh) * 2012-12-27 2014-07-02 精工爱普生株式会社 振子、振荡器、电子设备、移动体和振子的制造方法
TWI566446B (zh) 2013-11-20 2017-01-11 財團法人工業技術研究院 表面彈性波產生裝置、收發裝置及其產生方法
CN103716009B (zh) * 2013-12-23 2017-06-23 汇隆电子(金华)有限公司 Mems谐振器
CN105871350B (zh) * 2016-03-22 2019-02-15 电子科技大学 一种双窄支撑梁高品质因数的压电谐振器
CN105871351B (zh) * 2016-03-22 2019-02-15 电子科技大学 一种窄支撑梁高品质因数的压电谐振器
CN106992768B (zh) * 2017-03-23 2020-01-14 电子科技大学 一种具有多对驱动感应电极的电容式mems谐振器
US20200162024A1 (en) * 2018-11-16 2020-05-21 Intel Corporation Piezoresistive self-oscillator
US11323070B1 (en) * 2021-04-16 2022-05-03 Apple Inc. Oscillator with fin field-effect transistor (FinFET) resonator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174960A (ja) * 2003-12-05 2005-06-30 National Institute Of Advanced Industrial & Technology 二重ゲート電界効果トランジスタ
US7061055B2 (en) * 2001-03-13 2006-06-13 National Institute Of Advanced Industrial Science And Technology Double-gate field-effect transistor, integrated circuit using the transistor and method of manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075641A (en) * 1990-12-04 1991-12-24 Iowa State University Research Foundation, Inc. High frequency oscillator comprising cointegrated thin film resonator and active device
US5198716A (en) * 1991-12-09 1993-03-30 The United States Of America As Represented By The United States Department Of Energy Micro-machined resonator
US6600252B2 (en) * 1999-01-14 2003-07-29 The Regents Of The University Of Michigan Method and subsystem for processing signals utilizing a plurality of vibrating micromechanical devices
US6569754B2 (en) * 2000-08-24 2003-05-27 The Regents Of The University Of Michigan Method for making a module including a microplatform
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US7943412B2 (en) * 2001-12-10 2011-05-17 International Business Machines Corporation Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters
WO2004013893A2 (en) * 2002-08-01 2004-02-12 Georgia Tech Research Corporation Piezo electric on seminconductor on- insulator resonator
WO2005017967A2 (en) * 2003-08-13 2005-02-24 Nantero, Inc. Nanotube device structure and methods of fabrication
US7101761B2 (en) * 2003-12-23 2006-09-05 Intel Corporation Method of fabricating semiconductor devices with replacement, coaxial gate structure
EP1866531A2 (en) * 2005-03-09 2007-12-19 Zajac Optimum Output Motors, Inc. Internal combustion engine and method with improved combustion chamber
US7248131B2 (en) * 2005-03-14 2007-07-24 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Monolithic vertical integration of an acoustic resonator and electronic circuitry
KR100711000B1 (ko) 2005-11-28 2007-04-24 동부일렉트로닉스 주식회사 이중 게이트를 구비한 모스트랜지스터 및 그 제조방법
FR2901263B1 (fr) * 2006-05-18 2008-10-03 Commissariat Energie Atomique Dispositif sensible a un mouvement comportant au moins un transistor
FR2906238B1 (fr) * 2006-09-27 2008-12-19 Commissariat Energie Atomique Procede de realisation d'un composant electromecanique sur un substrat plan
US7863697B2 (en) * 2006-12-05 2011-01-04 Miradia Inc. Method and apparatus for MEMS oscillator
US7868403B1 (en) * 2007-03-01 2011-01-11 Rf Micro Devices, Inc. Integrated MEMS resonator device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061055B2 (en) * 2001-03-13 2006-06-13 National Institute Of Advanced Industrial Science And Technology Double-gate field-effect transistor, integrated circuit using the transistor and method of manufacturing the same
JP2005174960A (ja) * 2003-12-05 2005-06-30 National Institute Of Advanced Industrial & Technology 二重ゲート電界効果トランジスタ

Also Published As

Publication number Publication date
WO2009076534A1 (en) 2009-06-18
CN101939906A (zh) 2011-01-05
US8624337B2 (en) 2014-01-07
EP2229723A1 (en) 2010-09-22
US20110024812A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
CN101939906B (zh) 谐振体晶体管和振荡器
US9712136B2 (en) Nano- and microelectromechanical resonators
Rinaldi et al. 5-10 GHz AlN contour-mode nanoelectromechanical resonators
Zuo et al. Very high frequency channel-select MEMS filters based on self-coupled piezoelectric AlN contour-mode resonators
US20040021403A1 (en) Piezoelectric on semiconductor-on-insulator microelectromechanical resonators and methods of fabrication
EP1743381B1 (en) Electromechanical electron transfer devices
JPWO2006013741A1 (ja) 捩り共振器およびこれを用いたフィルタ
JP2008526079A (ja) 電荷バイアス方式のmem共振器
Bahr et al. 32GHz resonant-fin transistors in 14nm FinFET technology
Zuo et al. Multi-frequency pierce oscillators based on piezoelectric AlN contour-mode MEMS resonators
US9917244B2 (en) Resonant body high electron mobility transistor
EP1777815A1 (en) Flap resonator, method of manufacturing a flap resonator, and integrated circuit including the flap resonator
Huang et al. $ S $-Band Micromechanical Resonant Impedance Transformers Based on Aluminum Nitride FBARs
Hwang et al. PN-diode transduced 3.7-GHZ silicon resonator
KR20090081218A (ko) 와이어를 이용하는 공진 구조체와 공진 터널링 트랜지스터및 공진 구조체 제조 방법
EP1585219A1 (en) A micro-flap type nano/micro mechanical device and fabrication method thereof
US8026779B2 (en) Vibrator, resonator using the same and electromechanical filter using the same
US20120194282A1 (en) Internally transduced pn-diode-based ultra high frequency micromechanical resonator
US9017561B2 (en) Piezo-resistive MEMS resonator
He et al. A ferroelectric capacitor (FECAP) based unreleased resonator
Zhu et al. Zinc oxide nanowire electromechanical oscillator
Siddiqi et al. Effect of curvature and electrode coverage on the quality factor of biconvex ALN-on-Si MEMS resonators
Rguiti et al. Elaboration and characterization of a low frequency and wideband piezoceramic generator for energy harvesting
Wang et al. An unreleased mm-wave resonant body transistor
Weinstein et al. Frequency scaling and transducer efficiency in internal dielectrically transduced silicon bar resonators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

Termination date: 20201211