CN101924151A - 纳米结构太阳能电池 - Google Patents

纳米结构太阳能电池 Download PDF

Info

Publication number
CN101924151A
CN101924151A CN2010102418822A CN201010241882A CN101924151A CN 101924151 A CN101924151 A CN 101924151A CN 2010102418822 A CN2010102418822 A CN 2010102418822A CN 201010241882 A CN201010241882 A CN 201010241882A CN 101924151 A CN101924151 A CN 101924151A
Authority
CN
China
Prior art keywords
nano
electrode
solar cell
hole
conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102418822A
Other languages
English (en)
Inventor
J·D·祖克
M·S·马库斯
Y·刘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of CN101924151A publication Critical patent/CN101924151A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2054Light-sensitive devices comprising a semiconductor electrode comprising AII-BVI compounds, e.g. CdTe, CdSe, ZnTe, ZnSe, with or without impurities, e.g. doping materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种纳米结构太阳能电池(100),其包括第一电极(110)和电耦合到第一电极(110)并被第一电极(110)支撑的规则的电子导电纳米结构膜(115)阵列。多个量子点吸收体(120)附着到导电纳米结构膜(115)。空穴导电材料(125)扩散在电子导电纳米结构膜(115)之间,并且第二电极(130)电耦合到空穴导电材料(125)。

Description

纳米结构太阳能电池
背景技术
透明带孔膜(例如TiO2纳米粒子(NP)膜)作为电子导体已经在例如染料敏化太阳能电池的装置中起着重要的作用。然而,从光吸收感光剂注入的电子沿着随机的、曲折的传输路径在众多粒子边界处遭受损耗。其他采用纳米结构的太阳能电池装置同样遭受电子传输路径中的低效。吸收体(即电子导体和空穴导体界面)处的重组损耗会限制现有技术的纳米使能太阳能电池的全部效用。
附图说明
图1是根据示例实施例的纳米结构太阳能电池的截面简图。
图2是用于制造根据示例实施例的纳米结构太阳能电池的方法的流程说明图。
发明内容
在以下说明书中,对构成本说明书一部分的附图进行参考,并且在附图中通过举例说明的方式示出可以实施的详细实施例。这些实施例被描述得足够详细以使本领域技术人员能够实施本发明,并且应当理解的是,可以利用其他的实施例以及在不脱离本发明范围的情况下可以做出结构上的、逻辑上的、电气上的改变。因此,对示例实施例的如下说明不应当被认为是限定的意思,并且本发明的范围由所附权利要求限定。
图1是纳米结构太阳能电池100的截面框图表示。在一个实施例中,太阳能电池100具有第一电极110。导电纳米结构膜115阵列电耦合到第一电极110并由第一电极110支撑。在一个实施例中,纳米结构膜115包括纳米线、纳米管,或两者的组合。可以诸如以行和列来安排膜,或者在不同的实施例中可以是具有平均间距的稍微随机排列。将多个纳米晶体吸收体120(仅仅一个用附图标记120示出)附着到电子导电纳米结构膜115。纳米晶体光吸收体的例子包括,但不限于:半导体量子点,连续半导体薄膜和非连续半导体薄膜。空穴导电材料125被配置或扩散在电子导电纳米结构膜115之间。在一实施例中纳米结构膜115提供高度纹理化的表面,从而使得膜的表面面积大大增大。空穴导电材料125因此渗入到膜的纹理化表面之间和之内。第二电极130电耦合到空穴导电材料125。
在一实施例中,第一电极110可以是透明的,并且组成阳极,而第二电极130组成阴极。第一电极110可以采用涂敷在柔性基板上的氧化氟锡(fluorinated tin oxide)或氧化铟锡来形成。在另一实施例中,基板可以由玻璃制成,具有电耦合到纳米结构膜115的导电顶层。在一实施例中,第二电极由具有一定钛的铂形成。
在一实施例中,第二电极可具有反射性,从而使得通过第一电极110进入的光可以被纳米晶体吸收体120吸收以生成电子空穴对,并且未被这样吸收的光通过膜115被反射回,其中一些也被纳米晶体吸收体120吸收以生成另外的电子空穴对。
在一实施例中,膜115包括具有部分均匀的纳米孔结构的纳米管和/或纳米线的规则阵列,部分均匀的纳米孔结构允许纳米晶体光吸收材料的生长路径或附着路径以及空穴导电媒介的更好的渗透。可以采用溶液生长或阳极电镀工艺以自组装的方式在第一电极110上形成纳米线或纳米管。在不同的实施例中可以采用诸如TiO2或ZnO的明显透明的宽带隙半导体来形成膜115。膜115提供大表面面积的带孔电子导电表面。在一实施例中,该膜具有大约0.5到10μm的厚度。
然后纳米晶体光吸收体可以通过化学浴沉积(CBD)、选择性离子层吸附和反应(SIL AR)、化学气相沉积工艺或通过自组装直接生长或形成在膜115上。通过在电子导电膜结构上直接形成或生长光吸收体,纳米晶体光吸收体120变得附着在电子导电结构的表面并且形成有效的电子导电路径,从而允许没有显著重组的传输。限制电子重组增强了设备的性能和效用。
在一实施例中,空穴导电材料125包括具有开放的孔的带孔材料和空穴导电流体。在多种实施例中空穴导电流体包括含水电解质、离子液、凝胶电解质和聚合物中的至少一种。带孔材料是规则的导电纳米结构膜阵列的一部分并且可以对纳米线和纳米管的至少之一提供支撑。空穴导电材料125和第二电极130提供空穴导电路径。
这种纳米线或纳米管膜115提供了用作电子导体的规则纳米结构。在一些实施例中,纳米结构具有更连续和整齐的晶体结构,从而为电子传输提供了直接的路径。这种纳米结构也可以提供相对于平面膜而言反向的孔结构。这种孔结构使空穴导电材料更容易渗透,因此为空穴和空穴导电材料的施加提供了同样有效的传输路径。
在图2中的200处大体上示出了用于制造纳米结构太阳能电池100的方法。在210,在透明的导电电极上合成规则的导电纳米结构阵列。在220,在该规则的导电纳米晶体阵列上生长光吸收纳米晶体结构(例如量子点)。步骤220也可以包括将预生长的光吸收材料附着到在步骤210合成的纳米结构电子导体。步骤220也可以包括具有保护光吸收体或电子导体功能的附加薄层的沉积。步骤220也可以包括具有提高器件性能的功能的附加薄层的沉积,其中通过限制重组或增强材料与在步骤210合成的电子导体相结合的能力来提高器件性能。在230添加空穴导电材料,从而使得空穴导电材料渗入纳米结构阵列。在240,提供反射性导电电极,使其电耦合到空穴导电材料。
在各种实施例中,纳米结构阵列可以通过使用化学气相沉积或热液工艺来合成,并且可以由氧化锌或二氧化钛制成。光吸收纳米结构可以使用基于溶液的工艺(诸如化学浴沉积或连续离子层吸附反应(SILAR))直接生长在规则的或稍微随机的电子导电纳米结构阵列上。
在一实施例中,可以调整吸收材料的成分和几何形状来控制能带的排列以保证有效的电子注入。一般地,在半导体中将电子载流子限制到纳米大小的尺寸改变了材料的光学和电学性能。例如,带隙、价带和导带能量可以通过改变材料的尺寸来调节。调节这些能量可以提高太阳能电池装置的性能和效用。可以通过在光吸收体的合成期间改变众多生长参数中的一个来改变材料的尺寸和几何形状。控制纳米晶体光吸收体的尺寸和几何形状的参数的例子包括生长时间、pH值、坐标溶剂和非坐标溶剂、生长材料的相对浓度和生长温度。纳米晶体光吸收体的不同生长机制(诸如溶液、气相和等离子)可能具有改变材料的尺寸和几何形状的不同机制。
在一实施例中,光吸收材料包括铅镉硫族化合物以及ZnS中的至少一种。在另外一实施例中,光吸收材料包括无毒基板。无毒纳米晶体吸收体的例子包括硅和铟、镓、磷成分。采用这些材料可以有效地跨越可见光区。将ZnS层添加到纳米结构的暴露表面可以有助于防止俘获状态,从而通过减少重组来增大太阳能电池装置的效率。
提供摘要以符合37C.F.R§1.72(b),以便让读者快速理解本技术公开的实质和要点。摘要应理解为其并不用于解释或限制权利要求的范围或含义。

Claims (10)

1.一种太阳能电池(100),包括:
第一电极(110);
电耦合到第一电极(110)并被其支撑的电子导电纳米结构膜(115)阵列;
附着到电子导电纳米结构膜(115)的多个纳米晶体光吸收体(120);
在电子导电纳米结构膜(115)之间设置的空穴导电材料(125);和
电耦合到空穴导电材料的第二电极(130)。
2.根据权利要求1的太阳能电池(100),其中电子导电纳米结构膜(115)包括纳米线。
3.根据权利要求1的太阳能电池(100),其中电子导电纳米结构膜(115)包括纳米管。
4.根据权利要求1的太阳能电池(100),其中第一电极(110)组成透明的阳极而第二电极(130)组成具有光学反射性表面的阴极。
5.根据权利要求1的太阳能电池(100),其中第一电极(110)包括涂敷有氧化氟锡的柔性基板。
6.根据权利要求1的太阳能电池(100),其中空穴导体(125)包括具有开放的孔的带孔材料以及空穴导电流体,所述空穴导电流体包括含水电解质、离子液、凝胶电解质和聚合物中的至少一种。
7.根据权利要求6的太阳能电池(100),其中带孔材料是电子导电材料(125)阵列的一部分并且提供对纳米线和纳米管的至少之一的支撑。
8.一种方法(200),包括:
在透明的导电电极(110)上合成(210)规则的电子导电纳米结构阵列(115);
在规则的导电纳米结构阵列(115)上生长(220)光吸收纳米结构(120);
添加(230)空穴导电材料(125),以使得空穴导电材料渗入纳米结构阵列(115);以及
提供(240)电耦合到空穴导电材料的反射性导电电极。
9.根据权利要求8的方法,其中纳米结构阵列(115)包括纳米线和纳米管至少其中之一。
10.根据权利要求8的方法,其中采用基于溶液的工艺将光吸收纳米结构(120)直接生长在电子导电纳米结构阵列(115)上,并且其中调整吸收材料的成分和几何形状以控制能带的排列以便保证有效的电子注入。
CN2010102418822A 2009-06-15 2010-06-13 纳米结构太阳能电池 Pending CN101924151A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/484608 2009-06-15
US12/484,608 US20100313953A1 (en) 2009-06-15 2009-06-15 Nano-structured solar cell

Publications (1)

Publication Number Publication Date
CN101924151A true CN101924151A (zh) 2010-12-22

Family

ID=42767979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102418822A Pending CN101924151A (zh) 2009-06-15 2010-06-13 纳米结构太阳能电池

Country Status (3)

Country Link
US (1) US20100313953A1 (zh)
EP (1) EP2264780A3 (zh)
CN (1) CN101924151A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683440A (zh) * 2011-01-13 2012-09-19 霍尼韦尔国际公司 毫微结构的太阳能电池
WO2012155293A1 (en) * 2011-05-17 2012-11-22 Honeywell International Inc. Novel electroconductive films for quantum dot sensitized solar cells
CN106057956A (zh) * 2016-06-27 2016-10-26 浙江大学 一种基于离子液体凝胶电解质的准固态柔性自供能型ZnO基紫外探测器及其制备方法
CN106663705A (zh) * 2014-09-24 2017-05-10 京瓷株式会社 光电变换装置以及光电变换模块
WO2020258659A1 (zh) * 2019-06-27 2020-12-30 深圳市华星光电半导体显示技术有限公司 量子点发光二极管器件及其制备方法
CN112909108A (zh) * 2021-01-15 2021-06-04 重庆科技学院 基于量子点的壳芯结构纳米线阵列太阳能电池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636907B1 (ko) * 2009-12-08 2016-07-07 삼성전자주식회사 다공성 나노 구조체 및 그 제조 방법
US20110277822A1 (en) * 2010-05-11 2011-11-17 Honeywell International Inc. Composite electron conductor for use in photovoltaic devices
WO2012103667A1 (en) * 2011-01-31 2012-08-09 Honeywell International Inc. Quantum dot solar cell
JP2014512667A (ja) * 2011-02-10 2014-05-22 ザ・ロイヤル・インスティテューション・フォア・ザ・アドバンスメント・オブ・ラーニング/マクギル・ユニヴァーシティ 高効率広帯域半導体ナノワイヤ素子および異種金属触媒無しの製造方法
FR2972852B1 (fr) * 2011-03-17 2013-04-12 Commissariat Energie Atomique Dispositif a base de nano/microfils stabilise mecaniquement et aux proprietes optiques ameliorees et son procede de realisation
US8796693B2 (en) * 2012-12-26 2014-08-05 Seoul Semiconductor Co., Ltd. Successive ionic layer adsorption and reaction process for depositing epitaxial ZnO on III-nitride-based light emitting diode and light emitting diode including epitaxial ZnO
KR101410668B1 (ko) 2013-06-04 2014-06-25 포항공과대학교 산학협력단 친환경 양자점 감응형 태양전지 및 이의 제조방법
CN104944404B (zh) * 2014-03-26 2019-05-31 清华大学 纳米管膜
CN114556606A (zh) * 2019-12-24 2022-05-27 松下知识产权经营株式会社 太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089784A1 (en) * 2005-10-26 2007-04-26 Noh Chang H Solar cell-driven display device and method of manufacturing thereof
EP2009713A2 (en) * 2007-06-26 2008-12-31 Honeywell International Inc. Nanostructured solar cell
CN101411001A (zh) * 2006-02-16 2009-04-15 索莱赞特公司 纳米颗粒敏化的纳米结构的太阳能电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070056581A (ko) * 2005-11-30 2007-06-04 삼성전자주식회사 태양전지용 전극, 그의 제조방법 및 그를 포함하는태양전지
TW200802903A (en) * 2006-02-16 2008-01-01 Solexant Corp Nanoparticle sensitized nanostructured solar cells
US20070295388A1 (en) * 2006-05-05 2007-12-27 Nanosolar, Inc. Solar assembly with a multi-ply barrier layer and individually encapsulated solar cells or solar cell strings
US7910015B2 (en) * 2007-10-22 2011-03-22 Institute Of Nuclear Energy Research Polymer electrolyte for dye sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089784A1 (en) * 2005-10-26 2007-04-26 Noh Chang H Solar cell-driven display device and method of manufacturing thereof
CN101411001A (zh) * 2006-02-16 2009-04-15 索莱赞特公司 纳米颗粒敏化的纳米结构的太阳能电池
EP2009713A2 (en) * 2007-06-26 2008-12-31 Honeywell International Inc. Nanostructured solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683440A (zh) * 2011-01-13 2012-09-19 霍尼韦尔国际公司 毫微结构的太阳能电池
WO2012155293A1 (en) * 2011-05-17 2012-11-22 Honeywell International Inc. Novel electroconductive films for quantum dot sensitized solar cells
CN106663705A (zh) * 2014-09-24 2017-05-10 京瓷株式会社 光电变换装置以及光电变换模块
CN106663705B (zh) * 2014-09-24 2018-11-06 京瓷株式会社 光电变换装置以及光电变换模块
CN106057956A (zh) * 2016-06-27 2016-10-26 浙江大学 一种基于离子液体凝胶电解质的准固态柔性自供能型ZnO基紫外探测器及其制备方法
WO2020258659A1 (zh) * 2019-06-27 2020-12-30 深圳市华星光电半导体显示技术有限公司 量子点发光二极管器件及其制备方法
CN112909108A (zh) * 2021-01-15 2021-06-04 重庆科技学院 基于量子点的壳芯结构纳米线阵列太阳能电池

Also Published As

Publication number Publication date
US20100313953A1 (en) 2010-12-16
EP2264780A2 (en) 2010-12-22
EP2264780A3 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
CN101924151A (zh) 纳米结构太阳能电池
Li et al. Enhanced electrochromic properties of WO3 nanotree-like structures synthesized via a two-step solvothermal process showing promise for electrochromic window application
KR20190104052A (ko) 나노구조화된 표면
Yang et al. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties
Koo et al. Improvement of transparent conducting performance on oxygen-activated fluorine-doped tin oxide electrodes formed by horizontal ultrasonic spray pyrolysis deposition
KR101131218B1 (ko) 산화아연 나노 구조체 전극 제조 방법 및 이를 이용한 염료 감응형 태양 전지 제조 방법
KR101208272B1 (ko) 양면 구조를 가지는 태양전지 및 이의 제조방법
KR20190102066A (ko) 솔라 셀의 효율을 높이는 방법 및 시스템
KR20130084218A (ko) 나노구조체 및 이를 구현하는 광전지
JP2009507397A (ja) ナノ構造およびそれを実施する光起電力セル
US20100013037A1 (en) Solar cell and manufacturing method thereof
JP2004343071A (ja) 電子機器に用いられる多孔質膜、その多孔質膜の使用方法、電子機器、及びその多孔質膜の製造方法
US20090320914A1 (en) Dye-sensitized solar cell and method of fabricating the same
JP2012222365A (ja) ポリマー分散液晶を利用した太陽電池
US20070207561A1 (en) InN/TiO2 photosensitized electrode
JP4899118B2 (ja) 非単結晶半導体材料の製造方法
KR20100046447A (ko) 염료감응 태양전지의 전극과 그 제조방법 및 염료감응 태양전지
CN109126661A (zh) 一种叠层式光谱分光太阳能光催化反应系统
KR101634620B1 (ko) 기공을 포함하는 금속 산화물 광전극의 제조방법, 이에 따라 제조되는 금속 산화물 광전극 및 이를 포함하는 페로브스카이트 태양전지
JP2005142086A (ja) 色素増感型太陽電池用電極基板及びその製造方法並びに色素増感型太陽電池
Zhao et al. Constructed TiO 2/WO 3 heterojunction with strengthened nano-trees structure for highly stable electrochromic energy storage device.
JP4026501B2 (ja) 光電変換素子の製造方法、光電変換素子および電子機器
US7655575B2 (en) InN/InP/TiO2 photosensitized electrode
Xie et al. Optical absorption enhancement in NH2CH= NH2PbI3 lead halide perovskite solar cells with nanotextures
KR101615925B1 (ko) 복합구조 광전극 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20101222