CN101918828A - 描述粘弹性介质流变特征的方法 - Google Patents

描述粘弹性介质流变特征的方法 Download PDF

Info

Publication number
CN101918828A
CN101918828A CN2008801052097A CN200880105209A CN101918828A CN 101918828 A CN101918828 A CN 101918828A CN 2008801052097 A CN2008801052097 A CN 2008801052097A CN 200880105209 A CN200880105209 A CN 200880105209A CN 101918828 A CN101918828 A CN 101918828A
Authority
CN
China
Prior art keywords
medium
deformation
parameter
produces
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2008801052097A
Other languages
English (en)
Inventor
拉尔夫·辛酷斯
米克尔·坦特
马蒂亚斯·芬克
杰米拉·勃可夫
大卫·萨弗里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SuperSonic Imagine SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
SuperSonic Imagine SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, SuperSonic Imagine SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN101918828A publication Critical patent/CN101918828A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02475Tissue characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02483Other human or animal parts, e.g. bones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02491Materials with nonlinear acoustic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Nonlinear Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种描述弹性介质流变特征的方法,其包括以下步骤:(a)激发步骤,在粘弹性介质中产生振动激发,所述激发将产生介质的形变,(b)形变测量步骤,观测由所述激发所产生的介质形变,以及(c)特征描述步骤,确定一个非零幂次参数y,使得所述介质的所述流变参数等于:x(f)=a+bfy,式中:f是所述频率,a是一个实数以及b是一个非零尺度参数。由此可以获得该介质中的一个幂次参数y图。

Description

描述粘弹性介质流变特征的方法
本发明涉及一种描述粘弹性介质流变特征的方法。
尤其是,本发明涉及一种描述粘弹性介质流变特征的方法,包括以下步骤:
(a)激发步骤,在该步骤中,所述粘弹性介质产生具有包含至少一个非零频率频谱的振动激发,所述激发产生介质的形变;
(b)形变测量步骤,在该步骤中,在所述介质中的多个点观测由所述激发产生的介质形变;以及
(c)流变特征描述步骤,在该步骤中,根据所述形变,在所述形变介质中的多个点确定该介质的至少一个流变参数x。
因此,这使得定量和/或定性分析成为可能,特别是,从粘弹性介质的其余部分中识别出具有不同硬度的部分或者从粘弹性介质的其余部分中识别出具有不同松弛时间的部分。该方法一种特别有效的应用是在人体的软组织成像中,例如,用于检测恶性肿瘤。
文献WO-A-04/21038描述了这类方法的一个实施例。
虽然这一方法已经令人满意,但本发明的目的在于进一步优化这类方法,从而进一步提高该方法的检测的可靠性和灵敏度。
为此目的,所讨论的这类方法的特征在于,在所述特征描述步骤中,在该介质中的多个点确定一个非零幂次参数y,使得所述介质的所述流变参数等于:x(f)=a+bfy,式中:f是所述频率,a是一个实数以及b是一个非零尺度参数。
因此,使得用一种非常恰当的方式来描述粘弹性介质的特征变得可行,例如,使得在所述介质中某些异常点,例如活体组织中的恶性肿瘤,可更有效的检测出来。
在根据本发明方法的一个优选实施例中,以下的一个或多个设定可以有选择地加以使用:
-在所述特征描述步骤中,在所述介质中的多个点还确定了所述尺度参数b;
-所述流变参数x是该介质中的机械波的衰减系数;
-所述流变参数x是该介质中的机械波的传播系数;
-所述激发在该介质中产生剪切波;
-所述流变参数是该介质的复切变模量G*的实部;
-所述流变参数是该介质的复切变模量G*的虚部;
-所述激发由机械振动器局部产生,所述机械振动器在该振动器与该介质之间的接触点产生所述剪切波;
-通过将适于局部移动介质的超声压缩波远程射入所述介质中产生所述剪切波;
-在形变测量步骤(b)中,在属于所述介质的一个至少两维的区域中,形成由激发产生的形变图像;
-在形变测量步骤(b)中,所述形变是由选自回波描记术和MRI的方法进行测量的;以及
-在流变特征描述步骤(c)中,确定该介质中的一个幂次参数图。
本发明其它的特征和优点将通过以下一个实施例的具体描述而变得更加清晰,该实施例通过非限制性实施例并结合附图的方式给出。
在附图中:
-图1示出了以矢状切面的方法所表示的患有侵润性导管癌病人乳房的的二维MRI切片图像;以及
-图2至图5示出了图1所示平面中的图1所示乳房的几个流变参数的图。
在不同的多个附图中,相同的附图标记表示同样的或者相似的元素。
本发明涉及一种描述诸如人体器官软组织的粘弹性介质1流变特征的方法,特别是为了通过分析讨论中的流变参数来识别例如恶性肿瘤等异常的目的。
通过一实施例,图1示出了患有侵润性导管癌2病人的乳房(其构成了上述提及的介质1)的MRI切片图像,所述侵润性导管癌2对应于图1中被实线包围的区域。
正如图1所示,MRI切片图像难以清晰地区别介质1中的病变部分2与健康部分。
为改善对诸如恶性肿瘤或类似异常的检测,因此就需要籍助于弹性成像或类似技术对流变进行特征描述的方法来测量流体参数(为了获得该流体参数图,需要在至少一个点或较佳是在整个区域进行测量),其包括以下步骤:
(a)激发步骤,在该步骤中,在粘弹性介质1中产生具有包含至少一个非零频率f频谱的振动激发,所述激发将产生介质1的形变;
(b)形变测量步骤,在该步骤中,在介质中的至少一个点观测由所述激发所产生的介质1形变;以及
(c)流变特征描述步骤,在该步骤中,至少在所述形变介质中的点上确定介质的至少一个流变参数。
这类方法都是熟知的,特别是可从文献WO-A-2000/55616、WO-A-2004/021038和WO-A-2006/010213中得到了解。
所述振动激发可诸如在介质中产生剪切波:
-或者通过外部机械振动器从所述振动器与介质之间的接触点来局部产生所述剪切波(正如文献WO-A-2000/55616所述),因此所述振动器包含激发,该激发的频谱即可以是单一频率的频谱,也可以是例如0到10000Hz频带中的宽频谱;
-或者将适于局部移动所述介质的超声压缩波远程射入介质中(WO-A-2004/021038),这些超声波的频率可以置于例如0.1到50MHz频带内的且无论其是否聚焦的,所述超声波是由独立换能器的阵列或者单一元件的换能器所产生的。
例如上述文献WO-A-2000/55616、WO-A-2004/021038和WO-A-2006/010213中所述,在形变测量步骤(b)中,所述形变采用特地选自回波描记术和MRI的方法来测量。
在形变测量步骤(b)中,在介质1中的一个至少二维的区域中,形成由激发所产生的形变(形变振幅)的图像,并且在流变特征描述步骤(c)中,进一步确定位于所述区域中的介质流变参数图。
在介质1中的机械波(特别是上述剪切波)的传播可采用复波向量k进行建模,复波向量可以表示为:
k(f)=β(f)+iα(f)        (1)
式中f是频率。
k的虚数部分α表示波的衰减,同时k的实数部分β表示波的传播:这些参数构成了描述介质1流变特征的部分参数。
根据本发明,介质的至少一个流变参数根据频率f的幂次法进行变化。也就是说,我们首先称之为x的这个参数是fy(f的y幂次方)的仿射函数,其中y是随着介质1中的位置变化的一个非零实数(y本身是一个描述介质的流变特征的参数),即:x(f)=a+bfy,式中a是一个实数并且b是一个非零实数,称为尺度参数。
在特征描述步骤(c)中,至少幂次参数y被确定,在此例中,尺度参数b也有可能被确定。
根据该幂次法则模型,衰减α(表示为每厘米奈培)例如可以表示为:
α(f)=α10fy       (2)
式中α1和α0是两个实数(根据上述标记,通常情况下:x=α(f);a=α1及b=α0)。
一般来说,生物组织中的机械波的幂y介于0和2之间。
利用Kramers-Kronig关系(参考Szabo,J.Acoust.Soc.Amer.107(5),第1部分,2000年5月,2437-2446页以及Szabo,J.Acoust.Soc.Amer.96(1),1994年7月,491-500页)数学表示的因果准则,使得α和β之间存在一关系,为物理上等于所述机械波传播速度的量化散射的总合。对于验证上述公式的衰减来说,β必须被表示为(具体请参考Waters等著,J.Acoust.Soc.Amer.108(2),2000年8月,556-563页以及Waters等著,J.Acoust.Soc.Amer.108(5),第1部分,2000年11月,2114-2119页):
当y为偶数或者非整数情况:
β ( f ) = β ( f 0 ) + α 0 tan ( πy 2 ) ( f y - f 0 y ) - - - ( 3 )
而当y为奇数情况:
β ( f ) = β ( f 0 ) - 2 π α 0 f y ( ln ( f ) - ln ( f 0 ) ) - - - ( 4 )
式中f0是参考频率。
通常,幂次法则可涉及下述任一流变参数x:
-衰减:α(f)=α10fy,如上所述;和/或
一传播:β(f)=β10fy,式中β1和β0是两实数(根据上述的标记,在一般情况下:x=β(f);a=β1和b=β0);和/或
-复模量G*的实部和/或虚部(因此其中之一或二者都是fy的一仿射函数);
这样就构造了除幂次y自身以外的尽可能多的适用的流变参数,并在前述步骤(c)中建立了位于介质1的被检测区域中的所述可变流变参数图。
在所述采用的流变参数或使用参数中的空间变化可以通过分析介质在整个成图像区域内受机械激发的介质的时-空响应来建立,并且具体为:
-通过在整个成像区域上分析导出的位移域的复模量G*
-通过在整个成像区域上分析由激发产生的波的群组速度和衰减。
为了示例性说明,在如图1所示的对乳房1进行观测的情况下,剪切波在乳房1中传播,所述波的传播由MRI通过测量介质1的位移u来观察,并且然后将基于幂次法则的流变模型用于剪切波的衰减:
α(f)=α10fy     (2)
因果关系决定了波向量实部的频率性质行为,即传播系数:
对于y>0,y>2及y≠1,
β ( f ) = β ( f 0 ) + α 0 tan ( πy 2 ) ( f y - f 0 y ) - - - ( 3 )
假定在频率为零时β等于零且α1可忽略,则可得到:
β ≈ tan ( π 2 y ) α 0 ω y = χ α 0 ω y - - - ( 5 )
从该式可得到:
Figure GPA00001038563000063
式中: A = α 0 2 ω 2 y ( χ 2 - 1 ) 2 + ( 2 χ ) 2
Figure GPA00001038563000065
式中:
Figure GPA00001038563000066
从而我们得到复切变模量G*的表达式:
G * = ρ ω 2 α 0 2 ω 2 y ( χ 2 - 1 ) 2 + ( 2 χ ) 2 e jπy - - - ( 7 )
即:
G * = ρ α 0 2 ( χ 2 - 1 ) 2 + ( 2 χ ) 2 ω 2 - 2 y [ cos ( πy ) + i sin ( πy ) ] - - - ( 8 )
于是,复切变模量的实部和虚部的比值与幂次法则y直接相关:
G l G d = tan ( πy ) - - - ( 9 )
Figure GPA00001038563000073
当y趋于0时,材料是纯弹性的固体,而当y越接近0.5时,介质就越接近于纯粘性的液体。
在讨论的实施例中,通过机械振动器将单谐的外部振动(即,该振动只有单一振动频率)施加于病人的乳房1。位移区域u由MRI测算,并且复切变模量G*由下面的测算推断出:
G * ( ω ) = ρ ω 2 rot ( u ) Δ ( rot ( u ) ) - - - ( 11 )
为研究模量数的频率依赖,对几个在频率范围(65-100Hz)内的频率重复进行试验。结果清楚地表明:模值的实部Gd和虚部G1按照幂次法则依赖于频率f。正如所讨论的模型预测那样,G1和Gd的频率依赖试验上相等。G*的幂次法则估计为γ=2-2y=1.67±0.24,其对应于y=0.165的情况。
需要注意的是:y可以利用单一频率估计的G1/Gd比值来直接估算出。采用这种方法,γ的估计值等于1.74±0.07,其正好对应于多频估计。
这意味着在上述假设下α0或β0的局部估计和幂次法则y的局部估计可以在单一频率下被设想出来。
图2和图3示出了y和α0的图,该图是由80Hz频率的单谐激发得到的。这两张图使得以高精确度、高对比度地定位患者所患有的侵润性导管癌成为可能。
相似的结果可以通过y和β0得到。
图4和图5示出了在同样条件下所得到的Gd和G1的图。

Claims (12)

1.一种描述粘弹性介质(1)流变特征的方法,包括以下步骤:
(a)激发步骤,在该步骤中,在所述粘弹性介质(1)中产生具有包含至少一个非零频率的频谱的振动激发,所述激发产生介质的形变;
(b)形变测量步骤,在该步骤中,在所述介质中的多个点观测由所述激发产生的介质(1)形变;以及
(c)流变特征描述步骤,在该步骤中,根据所述形变,在所述介质(1)中的多个点确定介质的至少一个流变参数x;
其特征在于,在所述特征描述步骤中,在所述介质中的多个点确定一个非零幂次参数y,使得所述介质的流变参数等于:x(f)=a+bfy,式中f是频率,a是一个实数,并且b是一个非零尺度参数。
2.根据权利要求1所述的方法,其特征在于,在特征描述步骤中,还在所述介质中的多个点确定所述尺度参数b。
3.根据权利要求1或2所述的方法,其特征在于,所述流变参数x是介质(1)中的机械波的衰减系数。
4.根据权利要求1或2所述的方法,其特征在于,所述流变参数x是介质(1)中的机械波的传播系数。
5.根据前述任一权利要求所述的方法,其特征在于,所述激发在介质(1)中产生剪切波。
6.根据权利要求5所述的方法,其特征在于,所述流变参数x是介质(1)的复切变模量G*的实部。
7.根据权利要求5所述的方法,其特征在于,所述流变参数x是介质(1)的复切变模量G*的虚部。
8.根据权利要求5至7任一项所述的方法,其特征在于,所述激发由机械振动器局部产生,所述机械振动器在该振动器与介质(1)之间的接触点产生所述剪切波。
9.根据权利要求5至7任一所述的方法,其特征在于,所述剪切波通过将适于局部移动介质的超声压缩波远程射入介质(1)中产生。
10.根据前述任一权利要求所述的方法,其特征在于,在形变测量步骤(b)中,在所述属于介质(1)的一个至少两维的区域中,形成由激发产生的形变图像。
11.根据前述任一权利要求所述的方法,其特征在于,在所述形变测量步骤(b)中,所述形变采用选自回波描记术和MRI的方法进行测量。
12.根据前述任一权利要求所述方法,其特征在于,在所述流变特征描述步骤(c)中,确定介质(1)中的幂次参数(y)图。
CN2008801052097A 2007-06-25 2008-06-23 描述粘弹性介质流变特征的方法 Pending CN101918828A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0704535 2007-06-25
FR0704535A FR2917831B1 (fr) 2007-06-25 2007-06-25 Procede de caracterisation rheologique d'un milieu viscoelastique
PCT/FR2008/051129 WO2009007582A2 (fr) 2007-06-25 2008-06-23 Procede de caracterisation rheologique d'un milieu viscoelastique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012102930576A Division CN102830163A (zh) 2007-06-25 2008-06-23 描述粘弹性介质流变特征的方法

Publications (1)

Publication Number Publication Date
CN101918828A true CN101918828A (zh) 2010-12-15

Family

ID=38935903

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2008801052097A Pending CN101918828A (zh) 2007-06-25 2008-06-23 描述粘弹性介质流变特征的方法
CN2012102930576A Pending CN102830163A (zh) 2007-06-25 2008-06-23 描述粘弹性介质流变特征的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2012102930576A Pending CN102830163A (zh) 2007-06-25 2008-06-23 描述粘弹性介质流变特征的方法

Country Status (9)

Country Link
US (1) US8347692B2 (zh)
EP (1) EP2160597A2 (zh)
JP (2) JP2010531183A (zh)
KR (2) KR101633804B1 (zh)
CN (2) CN101918828A (zh)
CA (1) CA2692296A1 (zh)
FR (1) FR2917831B1 (zh)
IL (1) IL202962A (zh)
WO (1) WO2009007582A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317764B (zh) * 2008-12-24 2013-11-13 阿海珐核能公司 基本为球形的多层结构的非破坏性和无接触的表征方法及相关装置
CN105188556A (zh) * 2013-02-25 2015-12-23 皇家飞利浦有限公司 对声学分散元素的浓度分布的确定

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899336B1 (fr) 2006-03-29 2008-07-04 Super Sonic Imagine Procede et dispositif pour l'imagerie d'un milieu viscoelastique
US8741663B2 (en) * 2008-03-11 2014-06-03 Drexel University Enhanced detection sensitivity with piezoelectric sensors
WO2009140660A2 (en) * 2008-05-16 2009-11-19 Drexel University System and method for evaluating tissue
EP2310829B1 (en) * 2008-07-30 2016-04-06 Centre Hospitalier De L'Universite de Montreal A system and method for detection, characterization and imaging of heterogeneity using shear wave induced resonance
US20100286520A1 (en) * 2009-05-11 2010-11-11 General Electric Company Ultrasound system and method to determine mechanical properties of a target region
JP6148010B2 (ja) * 2009-11-25 2017-06-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 焦束されたスキャンラインビーム形成での超音波剪断波撮像
KR101581369B1 (ko) * 2010-04-20 2015-12-30 수퍼 소닉 이매진 전단파를 이용한 이미징 방법 및 기기
EP2676143B1 (en) 2011-02-15 2023-11-01 Hemosonics, Llc Characterization of blood hemostasis and oxygen transport parameters
WO2014201020A1 (en) * 2013-06-10 2014-12-18 Mayo Foundation For Medical Education And Research System and method for acoustic radiation force creep-recovery and shear wave propagation for elasticity imaging
US9726647B2 (en) 2015-03-17 2017-08-08 Hemosonics, Llc Determining mechanical properties via ultrasound-induced resonance
US11154277B2 (en) 2017-10-31 2021-10-26 Siemens Medical Solutions Usa, Inc. Tissue viscoelastic estimation from shear velocity in ultrasound medical imaging
CN114280030B (zh) * 2021-12-24 2023-07-21 中国科学院近代物理研究所 基于激光诱导击穿光谱的软物质粘弹性表征方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173539A (ja) * 1982-04-07 1983-10-12 富士通株式会社 超音波による生体組織特性測定方法
US5115808A (en) * 1988-02-19 1992-05-26 Institute Of General And Physical Chemistry Method and device for noninvasive acoustic testing of elasticity of soft biological tissues
JP3686698B2 (ja) * 1995-03-20 2005-08-24 オリンパス株式会社 触覚センサプローブ
US5810731A (en) * 1995-11-13 1998-09-22 Artann Laboratories Method and apparatus for elasticity imaging using remotely induced shear wave
KR980007744U (ko) * 1996-07-31 1998-04-30 김영귀 우천시 차량용 앞유리 물기제거구조
FR2791136B1 (fr) * 1999-03-15 2001-06-08 Mathias Fink Procede et dispositif d'imagerie utilisant les ondes de cisaillement
EP1402243B1 (en) * 2001-05-17 2006-08-16 Xenogen Corporation Method and apparatus for determining target depth, brightness and size within a body region
US7578789B2 (en) * 2002-08-08 2009-08-25 Echosens Device and method for measuring the elasticity of a human or animal organ
FR2844178B1 (fr) * 2002-09-06 2005-09-09 Dispositif et procede pour la mesure de l'elasticite d'un organe humain ou animal et l'etablissement d'une representation a deux ou trois dimensions de cette elasticite
US7437912B2 (en) * 2004-07-19 2008-10-21 Integrated Sensing Systems, Inc. Device and method for sensing rheological properties of a fluid
US7353709B2 (en) * 2005-07-06 2008-04-08 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation
WO2007003058A1 (en) * 2005-07-06 2007-01-11 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation
US8394026B2 (en) * 2008-11-03 2013-03-12 University Of British Columbia Method and apparatus for determining viscoelastic parameters in tissue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317764B (zh) * 2008-12-24 2013-11-13 阿海珐核能公司 基本为球形的多层结构的非破坏性和无接触的表征方法及相关装置
CN105188556A (zh) * 2013-02-25 2015-12-23 皇家飞利浦有限公司 对声学分散元素的浓度分布的确定

Also Published As

Publication number Publication date
WO2009007582A3 (fr) 2009-03-12
EP2160597A2 (fr) 2010-03-10
KR20100050469A (ko) 2010-05-13
US20100170342A1 (en) 2010-07-08
KR20150023945A (ko) 2015-03-05
JP5864680B2 (ja) 2016-02-17
IL202962A (en) 2014-08-31
CN102830163A (zh) 2012-12-19
FR2917831A1 (fr) 2008-12-26
US8347692B2 (en) 2013-01-08
KR101633804B1 (ko) 2016-06-27
FR2917831B1 (fr) 2009-10-30
JP2010531183A (ja) 2010-09-24
WO2009007582A2 (fr) 2009-01-15
JP2015006405A (ja) 2015-01-15
CA2692296A1 (fr) 2009-01-15

Similar Documents

Publication Publication Date Title
CN101918828A (zh) 描述粘弹性介质流变特征的方法
CN101784234B (zh) 用于测量感兴趣区域的平均粘弹值的方法和设备
US7546769B2 (en) Ultrasonic inspection system and method
US8214168B2 (en) Noninvasive testing of a material intermediate spaced walls
CN101883526A (zh) 使用超声技术测量材料的厚度的方法
EP3732437B1 (en) Method and system for determining a thickness of an elongate or extended structure
Kijanka et al. Two point method for robust shear wave phase velocity dispersion estimation of viscoelastic materials
US20040031322A1 (en) System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy
Lin et al. Estimation of wave velocity for ultrasonic imaging of concrete structures based on dispersion analysis
Pham et al. Effect of temperature on ultrasonic velocities, attenuations, reflection and transmission coefficients between motor oil and carbon steel estimated by pulse-echo technique of ultrasonic testing method
EP2419722B1 (en) Method and apparatus for investigating a flexible hollow element using acoustic sensors
Kang et al. Selection of optimal exciting frequency and Lamb wave mode for detecting wall-thinning in plates using scanning laser Doppler vibrometer
Li et al. Nonlinear Bayesian inversion for estimating water pipeline dimensional and material parameters using acoustic wave dispersion
CN103033154B (zh) 一种用于提高超声检测时间分辨率的自回归谱分析方法
JP4403280B2 (ja) 軟質薄膜の物性値測定方法とそのための装置
JP2007309850A5 (zh)
KR102157144B1 (ko) 구조물의 두께 측정 장치 및 방법
Ammann et al. Sound velocity determination in gel-based emulsions
Alfareh et al. Simulation Research on Frequency Optimization for Oil-Water-Gas Regimes Identification Using Invasive Approach of Ultrasonic Tomography
Hirnschrodt et al. Ultrasonic characterization of liquids using resonance antireflection
RU2382358C2 (ru) Способ одновременного определения скорости продольных и сдвиговых акустических волн
Raheem et al. Piezoelectric Micromachined Ultrasound Transducers As a Materials Characterization Probe
Borate et al. A Novel Structural Health Monitoring System Using Surface Acoustic Sensor Network and Guided Lamb Waves
Chuprin Ultrasonic Measurements of Kinematic Viscosity for Analize of Engine Oil Parameters
JP5630790B2 (ja) 減肉率の推定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: CENTRO NACIONAL DE INVESTIGACIONES CIENTIFICAS

Effective date: 20130110

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130110

Address after: French Aiang Provence

Applicant after: Super Sonic Imagine

Address before: French Aiang Provence

Applicant before: Super Sonic Imagine

Applicant before: National Center for scientific research

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20101215