CN101897077A - 具有放大信道的相位分散补偿的径向功率放大器件 - Google Patents

具有放大信道的相位分散补偿的径向功率放大器件 Download PDF

Info

Publication number
CN101897077A
CN101897077A CN2008801206625A CN200880120662A CN101897077A CN 101897077 A CN101897077 A CN 101897077A CN 2008801206625 A CN2008801206625 A CN 2008801206625A CN 200880120662 A CN200880120662 A CN 200880120662A CN 101897077 A CN101897077 A CN 101897077A
Authority
CN
China
Prior art keywords
waveguide
radial
channel
combiner
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801206625A
Other languages
English (en)
Other versions
CN101897077B (zh
Inventor
J-P·弗赖塞
J-M·德努阿尔
A·珀当
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of CN101897077A publication Critical patent/CN101897077A/zh
Application granted granted Critical
Publication of CN101897077B publication Critical patent/CN101897077B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及一种径向功率组合系统,包括:径向分配器(10),包括周围的矩形波导端口(16);径向组合器(10’),叠放于径向分配器上,包括周围的矩形波导端口(16’);第一输入转换器(11),在径向分配器的中心发出第一信号;第二输出转换器(11’),接收至径向组合器(10’)输出的第一放大信号;至少两个放大信道(15),包括:能够与波导(16)相互作用的第三输入转换器(22);能够与波导(16’)相互作用的第四输出转换器(23);以及至少一个放大器(24)。根据本发明的系统包括用于调整放大信道的定位的装置(29),从而能够调整不同信道的相位移动。

Description

具有放大信道的相位分散补偿的径向功率放大器件
技术领域
本发明涉及半导体的微波放大器领域,更特别的涉及功率合成(power combination)系统。在各种合成技术中,本发明的领域是径向功率合成的系统。
背景技术
由于半导体元件的输出功率随着操作频率的增大而减小,所以需要组合几个独立的半导体放大器从而得到例如诸如卫星的高比特率设备的遥测发送机的特定应用中所需要的输出功率。
现在,用于空间领域的功率组合系统并不适合于在毫米频率上真正有效地组合多于四个独立放大器。有时,这一限制的结果导致涉及半导体组件中着重于输出功率对功率产额的损害和和设计临界性。
此外,这些组合有时并不足够,并且限制得到SSPAS(即固态功率放大器)的输出功率,而所述SSPAS需要满足应用的真正需求。
功率组合系统通常包括分配器、放大器以及组合器,从而能够从输入信号输送被放大的输出信号。这些系统通常包括能够改变传播结构的转换器,例如从平面结构转换为比如矩形波导或者转换为同轴波导。
现在,主要的功率组合技术被分成被称为树状的第一功率组合种类,被称为空间状的第二功率组合种类和被称为径向的第三功率组合种类。
平面树状组合技术能够有效的组合两个或者四个放大器。但是,该技术并不适合于组合大量的放大器,因为随着组合级数的增加和组合器的加法器之间的连线的长度的增加,组合损失引起信号的显著退化。
为了最小化组合损失,可以使用金属波导来代替平面传播线。在这种情况下,就需要增加组合器和单独的放大器之间的转换器,从而在独立的放大器的平面线和组合器的金属波导之间传播信号。该转换器的增加以及最重要的是使用的金属波导的尺寸导致这种类型的组合器需要相当大的空间。这样不适合于组合大量的放大器。
如图1所示的树状组合通常包括分配器1,所述分配器1能够将输入信号5分成多个放大信道2。离开放大信道的不同的放大信号可以通过转换器3在矩形波导4、4’和4”中的不同二进制加法器的级之间传播和组合。从而可以在下游处理被放大和组合的信号6。
空间状组合技术(例如专利US5736908中所开发的解决方案)的特征在于放大器件包括几个放大信道,通常是重叠的盘的形式。通过信号的能量的空间分布,输入信号传遍放大信道,一旦输入信号根据相同的原理被放大,输入信号就在输出处被重新组合。该技术存在一些缺陷。
第一个缺陷是多个放大器以该技术组合的结果。如果采用该技术就需要增加补充器件从而能够统一的激发并组合所有的放大信道。由于这些补充器件增加了损耗,这类组合器的组合效率下降。
第二个缺陷是难以有效地去除被多个重叠的放大信道所耗散的功率。其结果是,根据这种组合技术,当组合多个放大器时,难以遵循空间场对于用于结合部件与半导体的最大温度的需求,而所述最大温度是一定不能超过的。
最后一个缺陷是放大信道的相对依赖性,这是由于在一个放大信道产生的故障能够严重的破坏放大器件的整体操作。
径向组合技术(例如在专利US4700145、US4641106和US4931747中所公开的方案)的特征在于放大器件包括几个放大信道,而每个放大信道被连接到两个径向波导的端部,所述端部位于分配器和组合器之间,以及两个径向波导重叠。所述连接能够放大源于第一径向波导的一个端口的第一信号,并将其重新注入第二径向波导的一个端口中,从而其与源于组合器的径向波导的其他端口的其他信号重新组合。
该技术有许多优点,特别是相对于具有矩形波导的树状结构的组合技术而言,减小了放大器件的空间需求。此外,另一个优点是,依靠置于径向波导侧壁的吸收材料或者耗散装置,通过增加放大信道之间的隔离,可能增强一个或多个放大信道失效导致的输出功率降低上的控制。
此外,径向放大器件能够在一个步骤中组合几个独立的放大器。从而相对于树状组合技术而言组合损耗得以降低。
另一方面,由于没有简单而有效的系统在输出信号重新组合时补偿不同组合的放大信道的相位分散(phase dispersion),该解决方案受到电流限制。因为这一缺陷,需要根据传输系数的相位对放大信道进行分类,或者需要在放大信道中增加可变移相器从而补偿放大信道的相位分散。后一解决方案的应用比较复杂且繁琐,导致新的损耗以及可选的消耗额外的功率。
发明内容
本发明的一个目的是消除上述缺陷。
本发明提出了一种径向放大器件,包括调整放大信道的定位从而调整不同信道的相位移动的装置,这能够在相位上组合输出信号。
有利地,在微波领域,具有相位分散补偿的径向功率组合系统包括:
■第一径向波导,称为径向分配器,具有在其中心的输入以及在其周围的多个输出,每个输出都是金属波导,该第一径向波导能够将一个输出信号分成多个输出信号;
■第二径向波导,被称为径向组合器,叠放于径向分配器上,具有在所述第二径向波导中心的输出和在周围的多个输入,每一个输入都是金属波导,该第二径向波导能够将多个输入信号组合成一个输出信号;
■第一输入转换器,在径向分配器中传输第一信号;
■第二输出转换器,捕捉被放大到径向组合器的输出的第一信号;
■多个放大信道,每一个放大信道都包括:
○能够与径向分配器的金属波导之一相互作用的第三输入转换器,以及;
○能够与径向组合器的金属波导之一相互作用的第四输出转换器,以及;
○固定到第三转换器和第四转换器的至少一个放大器。
有利地,系统包括在金属波导中调整至少一个放大信道的定位的装置。
有利地,调整装置包括一组间隔器。
有利地,每个放大信道都包括固定装置,能够以间隔器将每个放大信道固定到组合器和分配器上。
有利地,该组间隔器利于放大信道和径向波导之间的热传递。
有利地,壳体覆盖放大信道以及加快放大器和系统外部的热交换。
有利地,分配器的输出的金属波导和组合器的输入的金属波导是直的,从而在径向轴上执行放大信道的连接。
有利地,分配器的输出的金属波导和组合器的输入的金属波导是弯的,从而垂直于径向轴执行放大信道的连接。
有利地,径向分配器和径向组合器包括吸收材料或用于信道之间的隔离的耗散装置。
有利地,在两个径向波导周围的金属波导是矩形波导。
有利地,分配器的输入和/或组合器的输出是圆柱形波导。
有利地,分配器的输入和/或组合器的输出是同轴波导。
有利地,至少一个转换器包括与径向波导的较低的部分接触的中心核。
有利地,以径向波导为中心的同轴波导的至少一个端口被设计为接收同轴连接器、中心定位环、和中心核,以及通过在上盖中直接机械加工的圆锥形式的外导体,该端口部分地延伸进入径向波导中。
有利地,矩形波导传播模式和微波带状传播模式之间的转换器包括:
■金属喷镀(metallization),其剖面是余弦形式且在转换器的矩形波导端具有零梯度;
■基板,其根据金属喷镀的余弦剖面被切割从而最小化转换器的反射系数。
附图说明
参考附图结合以下说明,本发明的其它特征和优点将变得非常明显:
图1:根据现有技术的具有树状结构的放大器件;
图2A:径向放大器件的图示;
图2B:具备一组间隔器的径向放大器件的图示;
图2C:具备一组间隔器的弯曲径向放大器件的图示;
图3A:根据本发明的径向放大器件的俯视图;
图3B:如图3A所示的径向放大器件的截面图;
图4A:放大信道和调整位置的装置的第一变形实施例;
图4B:放大信道和调整位置的装置的第二变形实施例;
图4C:放大信道和调整位置的装置的第三变形实施例;
图5A:同轴波导和径向波导之间的转换器的示例的截面图;
图5B:同轴波导和径向波导之间的转换器的实施例的截面图和俯视图;
图6A和6B:矩形波导和微波带状线(microwave strip line)之间的转换器的实施例;
图6C:包括几个电路的转换器的实施例,从而得到矩形波导和微波带状线之间的转换器。
具体实施方式
在以下描述中,“转换器”是指允许电磁波以最小的传输损耗从一种传播结构转换到另一种传播结构的器件,例如从同轴线到径向波导,或者从矩形波导到微波带状类型的一个或多个平面线、共平面、槽或任何其他介质。
图2A和2B分别以方框图的形式显示了现有技术的器件和根据本发明的放大器件的截面图。
器件包括含有第一径向波导10的分配器,输入信号通过转换器11进入所述第一径向波导10,转换器11在例如同轴波导、圆柱形波导或矩形波导类型的端口28和径向波导10之间传播信号。
在图2B的示例中,放大器件的分配器包括径向波导10,其端口是位于周围的矩形波导16的形式。分配的信号在每个矩形波导16之中传播,从而到达放大信道15的输入转换器,所述放大信道15的输入转换器根据制造方法插入或者连接到矩形波导,从而固定于其中。放大信道15能够捕捉源于矩形波导16的信号,从而通过放大器24将其放大,以及将其传输进入矩形波导16’中,从而信号在组合器10’中被重新组合。组合的信号通过转换器11’被传输到器件之外,所述转换器11’在径向波导10’和例如同轴波导、圆柱形波导或矩形波导类型的第二端口28’之间传播信号。
放大信道15可以在图3A中指定的方向17上通过固定器件插入或固定于矩形波导16和16’。
例如,如图2B所示,可以在放大信道15和矩形波导16、16’之间增加间隔器29。根据矩形波导16、16’的信道,矩形波导16、16’可以有利的具有不同的厚度,从而使相位移动专门适合于每个放大信道15。
在如图2C所示的另一个实施例中,矩形波导16、16’可以是弯曲的,例如以90°弯曲,从而在转换器11、11’的轴线的方向上连接放大信道15。
在说明书的其余部分中,包括至少一个传输转换器、一个接收转换器和至少一个放大器的信道将被称为放大信道。
在实施例所描述的情况以外,本发明更普遍的应用于径向波导周围的金属波导形式的端口。
图3A表现了根据本发明的包括分配器的器件的俯视图,所述分配器包括第一径向波导10,通过所述第一径向波导10,输入信号经过传输源于端口28的信号的转换器11(图中未示出)而进入。
在图3A的示例中,放大器件的分配器包括径向波导10,其端口以矩形波导16的形式位于周围。在该实施例中,根据本发明的器件具有在径向波导10的周围对称分布的八个矩形波导。被分配的信号在矩形波导的每一个中传播,从而到达插入并连接到矩形波导的放大信道15的输入转换器。
根据本发明的放大器件能够具有在矩形波导16中调整每个转换器的位置的装置29。这些如图3A的实施例中所示的调整装置29是一组间隔器,适应于矩形波导29而制造所述间隔器。
有利的,部分14在两个矩形波导16的交叉处形成角度,以允许信号完全分布进入金属波导形式的不同的端口。
根据本发明的器件包括重叠于分配器之上的组合器,所述组合器包括具有矩形波导形式的端口的径向波导,但是在图3A的俯视图中未示出。
图3B显示了图3A中的放大器件沿轴21的截面图。放大器件包括两个重叠的径向波导10、10’,所述径向波导10、10’分别和置于周围的矩形波导16、16’相互作用。
转换器11传输源于径向波导10的端口28的信号。根据本发明的实施例,端口28可以是圆柱形波导、同轴波导或者其他的矩形波导。径向波导10的几何形状以及矩形波导16的几何形状能够将被传输的信号分布到矩形波导16的每一个中。
根据实施例,所述器件还包括被插入或被连接以及借助于的固定装置被固定的放大信道15。每个放大信道15包括接收转换器22,其从矩形波导向例如微波带状类型的平面传播线传播信号。此外,每个放大信道15包括至少一个放大器24和用于传输放大信号的转换器23。通过与接收转换器相同的方式,传输转换器23可以是矩形波导中的、简单的例如微波带状类型的平面传播线的转换器。
组合器包括可以被称为径向组合器的径向波导10’,端口以矩形波导的形式位于周围。径向波导10’接收源于每个放大信道15的每个信号,所述信号通过矩形波导16’传播。径向波导10’能够经过转换器11’将组合输出信号传输到端口28’。
本发明的方案的主要的优势在于能够调整源于矩形波导16’的不同信号的相位,所述信号在径向波导10’中被重新组合。借助调整深度的装置进行所述调整,其中所述放大信道15置于矩形波导16和16’中。
在一个变化的实施例中,该装置可以与是如图4C所示的矩形适应波导形式的矩形波导16和16’相互作用的支座的间隔器29。
间隔器可以被选择为放大信道15所引入的相位移动的函数。
另一个优点是能够检测分别在两个重叠的矩形波导中的放大信道15,从而在其被安装进放大器件之前确定其特征。
测量放大信道引入的相位移动能够确定矩形波导16、16’中的每个放大信道的位置,从而所有的放大信道都在相位上被重新组合。
壳26有利的覆盖放大信道和固定装置25,在图3B中固定装置25由支座表示。
放大器24可以有利的接触壳26从而提升放大器和系统外部的热交换。
在其它实施例中,根据本发明的器件能够增加组合的放大器的数量。可以同时或独立的采用三个方案。
第一方案包括增加矩形波导形式的端口的数量。第二方案是为每一个放大信道增加放大器的数量。最后,第三方案包括增加能够插入每个矩形波导中的放大信道的数量。
根据本发明的器件提出了例如专利US4263568所述,通过有利的在组合器和分配器之间放置吸收材料或耗散装置,而增强组合器和分配器的信道之间的隔离。这一改进使放大信道更加独立。
根据本发明的器件以及特别是解释的实施例的器件的优势在于其具有无源部分的低相位分散,并且其引入低的组合损耗以及其允许使用的范围从厘米波段延伸到毫米波段。
此外,还具有的优点是可以容易的移除放大信道,放大信道可以包括放大器和转换器,以及简便且特别地,放大信道的特征在于放大信道引入的相位移动的内部参数。
此外,器件的紧凑性能够制造具有小的台面面积(footprint)同时保持热约束条件的有效管理的组件。
图4A、4B和4C描述了不同实施例,特别是能够结合放大器24以及能够通过基板50上的金属线制造传输和接收转换器的放大信道15。放大信道15可以如图4A和4B所示连接到波导16和16’,或者如图4C所示插入到矩形波导中。
在这些变形实施例中,该组间隔器29可以是如图4C所示的简单的支座间隔件,或者如图4A所示的其它适应矩形波导。
在优选的实施例中,该组间隔器能够在放大信道和径向波导之间进行有效的热交换,所述径向波导能够在大的表面面积上散热。此外,由于放大信道的位于结构周围的定位,也可以设想经过周围去除耗散的功率。
图4A说明了有利地使用壳26从而促进放大器和系统外部的热交换30。
图5A显示了同轴端口28和径向波导10之间的转换器11的示例的截面图,所述同轴端口28也称为同轴连接器。
图5B是如图5A的转换器的典型实施例。
同轴端口和径向波导之间的转换器包括两个金属部分:形成径向波导10的上盖100和下盖103。中心位于径向结构上的同轴波导通过外导体101在径向波导10中部分的延伸,所述外导体101是以圆锥的形式直接加工在上盖100上的。这样形成的同轴波导和固定到上盖100上的同轴连接器28具有相同的内部尺寸。延伸的同轴连接器的中心核110由金属管座112制成,一方面所述金属管座112插入部分110中,所述部分110是同轴连接器28的被称为凹部的部分,以及另一方面所述金属管座112插入装备在径向波导10的下盖103上的插孔102中。金属管座112的直径必须和连接器28的核110的直径相等。从而,在同轴部分从连接器28经过延伸进入径向波导10的同轴波导的过程中,同轴部分的尺寸没有改变。这一尺寸的连续性可以确保转换器的最佳的适应性能。
一方面通过下盖103中的插孔102,另一方面通过插入圆锥101的介电环111,能够确保核在结构的中心的精确的定位。但是,如果该环由介电常数与空气或真空或者转换器中含有的材料不同的电介质制成,可以引入外导体的直径和/或同轴波导的中心核的直径的不连续性,从而补偿该介电常数的不同。
为了将金属管座112(也称为核)插入连接器28的凹部110中,可以通过在下盖103的孔102中插入弹簧或者可压缩材料而保持金属管座112上的足够的垂直压力。
如图5B所示的该转换器可以:
■简化中心核的加工以及提高几何尺寸的准确性;从而可以在波从连接器到结构的通过过程中减小不适应性;
■依靠上盖100上加工的圆锥101得到的更好的适应性,在广泛的频段中获得良好的适应性;
■通过使用直线圆锥,减少与同轴波导的外导体的复杂形状剖面的机械加工相关的约束条件;
■通过用于定位中心核和连接器110的不同系统,得到完全的旋转对称;
■通过重新最优化核的两个几何尺寸,即基座的高度和宽度,制造任何高度的从同轴波导到径向波导的转换器;
■得到器件良好的功率性能,同轴波导的中心核与结构的底部(下盖103)接触。
将转换器结合到分配器和/或组合器中能够:
■减少与机械加工相关的约束条件,在下盖103中机械加工波导以及在上部100中加工圆锥101;
■通过具有减小的台面面积的圆锥101的转换器,得到同轴和径向波导之间的适应性,同轴和径向波导的高度对应于结构周围出现的矩形波导的高度。
根据本发明的器件的放大信道能够放大转换器22捕捉的信号,并在放大后通过转换器23将其重新注入矩形波导16中。在根据本发明的器件中的这些转换器具有优点,并且可以例如根据图6A和6B制造。
矩形波导16至微波带状线64的转换器在图6A和6B中以不同的视图显示,其包括置于矩形波导中并与主要模式的电场的传播平行的电路。该电路的支撑物是具有任何介电常数的基板61,在所述基板的两面上都刻有金属板60和金属线63。金属板60在转换器22的矩形波导16一端具有零梯度的余弦的形状。余弦的高度对应于矩形波导16的高度,以及其长度通过最优化而确定。位于另一面的金属线63也包括余弦部分。其长度也通过最优化而确定。用于描述金属板60的余弦和金属线63的余弦的参数,特别是“周期”和“高度”,都是相同的。将微波带状线64连接到转换器22的顶部的段62以直线形式制成,但是也可以以圆弧、余弦或其它形式制造。通过最优化确定线的位置和段62的几何值。通过跟随线或金属板60的余弦剖面得到基板61的切割,尽可能接近金属喷镀。
在一个实施例中包括多个电路,转换器可以彼此平行的置于矩形波导中,从而得到波导16到几个微波带状线的转换器。
图6C显示了从三个微波带状线到矩形波导的转换器的情况,包括三个平行放置的电路220,221和222。
这种类型的转换器可以:
■直接从矩形波导中的传播模式转换到微波带状类型的传播模式;
■通过去除中间转换器而最小化损耗,以及从而能够降低制造的复杂性;
■通过在线和金属板上使用余弦剖面而得到减小的台面面积,其中线和金属板在转换器的矩形波导端具有零梯度;
■得到宽的带宽和良好的适应性;
■从矩形波导观测,即使在波导中具有几个电路时,在结构的输入上也能得到非常低的反射系数。
将该结构结合到完整的组合器能够:
■减小台面面积;
■使性能最大化。

Claims (14)

1.一种径向功率组合系统,所述系统在微波领域具有相位分散补偿,所述系统包括:
第一径向波导(10),被称为径向分配器,具有在所述第一径向波导中心的输入以及在周围的多个输出,每个输出都是金属波导(16),该第一径向波导(10)能够将一个输出信号分成多个输出信号;
第二径向波导(10’),被称为径向组合器,叠放于径向分配器(10)上,具有在所述第二径向波导中心的输出和在周围的多个输入,每一个输入都是金属波导(16),该第二径向波导(10’)能够将多个输入信号组合成一个输出信号;
第一输入转换器(11),在径向分配器(10)中传输第一信号;
第二输出转换器(11’),捕捉被放大到径向组合器的输出的第一信号;
多个放大信道(15),每一个放大信道都包括:
能够与径向分配器(10)的金属波导(16)之一相互作用的第三输入转换器(22),以及;
能够与径向组合器(10’)的金属波导(16’)之一相互作用的第四输出转换器(23),以及;
固定到第三转换器和第四转换器(22,23)的至少一个放大器(24);
其特征在于,所述系统包括在金属波导(16,16’)中调整至少一个放大信道(15)的定位的装置(29)。
2.如权利要求1所述的系统,其特征在于,调整装置(29)包括一组间隔器。
3.如权利要求1或2所述的系统,其特征在于,每个放大信道都包括固定装置(25),所述固定装置能够通过间隔器(29)将每个放大信道(15)固定到组合器和分配器。
4.如权利要求2所述的系统,其特征在于,该组间隔器利于放大信道和径向波导之间的热传递。
5.如权利要求1所述的系统,其特征在于,壳体(26)覆盖放大信道以及加快放大器与系统外部之间的热交换。
6.如权利要求1到5中任意一项所述的系统,其特征在于,分配器的输出的金属波导和组合器的输入的金属波导是直的,从而在径向轴上执行放大信道的连接。
7.如权利要求1到5中任意一项所述的系统,其特征在于,分配器的输出的金属波导和组合器的输入的金属波导是弯的,从而垂直于径向轴执行放大信道的连接。
8.如权利要求1到7中任意一项所述的系统,其特征在于,径向分配器和径向组合器包括吸收材料或用于信道之间的隔离的耗散装置。
9.如权利要求1到7中任意一项所述的系统,其特征在于,在两个径向波导(10,10’)周围的金属波导(16,16’)是矩形波导。
10.如权利要求1到9中任意一项所述的系统,其特征在于,分配器(28)的输入和/或组合器(28’)的输出是圆柱形波导。
11.如权利要求1到9中任意一项所述的系统,其特征在于,分配器(28)的输入和/或组合器(28’)的输出是同轴波导。
12.如权利要求11所述的系统,其特征在于,至少一个转换器(11,11’)包括中心核(112),所述中心核与径向波导(10,10’)的较低的部分(103)接触。
13.如权利要求12所述的系统,其特征在于,以径向波导为中心的同轴波导的至少一个端口被设计为接收同轴连接器(28)、中心定位环(111)、和中心核(112),以及通过在上盖(100)中直接机械加工的圆锥形式的外导体(101),该端口部分地延伸进入径向波导(10,10’)中。
14.如权利要求9所述的系统,其特征在于,矩形波导传播模式(16)和微波带状传播模式(63)之间的转换器(22,23)包括:
金属喷镀(63),其剖面是余弦形式且在转换器的矩形波导端具有零梯度;以及
基板(61),其根据金属喷镀的余弦剖面被切割从而最小化转换器的反射系数。
CN2008801206625A 2007-12-18 2008-12-15 具有放大信道的相位分散补偿的径向功率放大器件 Expired - Fee Related CN101897077B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR07/08848 2007-12-18
FR0708848A FR2925230B1 (fr) 2007-12-18 2007-12-18 Dispositif d'amplification de puissance radiale a compensation de dispersion de phase des voies amplification
PCT/EP2008/067546 WO2009077501A1 (fr) 2007-12-18 2008-12-15 Dispositif d'amplification de puissance radiale a compensation de dispersion de phase des voies amplificatrices

Publications (2)

Publication Number Publication Date
CN101897077A true CN101897077A (zh) 2010-11-24
CN101897077B CN101897077B (zh) 2013-08-07

Family

ID=39469371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801206625A Expired - Fee Related CN101897077B (zh) 2007-12-18 2008-12-15 具有放大信道的相位分散补偿的径向功率放大器件

Country Status (10)

Country Link
US (1) US8558620B2 (zh)
EP (1) EP2223377B1 (zh)
JP (1) JP2011508492A (zh)
KR (1) KR101527247B1 (zh)
CN (1) CN101897077B (zh)
CA (1) CA2709406C (zh)
ES (1) ES2423183T3 (zh)
FR (1) FR2925230B1 (zh)
RU (1) RU2484558C2 (zh)
WO (1) WO2009077501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750697B (zh) * 2020-06-17 2021-12-21 正基科技股份有限公司 共振本體與功率分割合併器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944928B1 (fr) * 2009-04-24 2011-06-24 Thales Sa Dispositif d'amplification de puissance a encombrement reduit
US9438173B2 (en) * 2012-05-29 2016-09-06 Nec Corporation Multiple-series amplifying device
KR101889061B1 (ko) * 2016-11-23 2018-08-17 주식회사 피플웍스 N 웨이 도파관 전력 합성기 및 그의 제조 방법
US20190089065A1 (en) * 2017-08-21 2019-03-21 Kymeta Corporation Apparatus with rectangular waveguide to radial mode transition
US10193512B1 (en) 2018-01-05 2019-01-29 Werlatone, Inc. Phase-shifting power divider/combiner assemblies and systems
US10770775B2 (en) 2018-06-08 2020-09-08 SAAB Defense and Security USA LLC t/a Sensor System Radial combiner
FR3111479B1 (fr) * 2020-06-11 2022-08-19 Thales Sa Systeme combineur de puissance comprenant quatre amplificateurs de puissance hyperfrequences a etat solide
KR102425030B1 (ko) * 2020-10-19 2022-07-27 알에프코어 주식회사 고출력 방사형 결합기
CN113285199A (zh) * 2021-05-14 2021-08-20 湖南纳秒脉冲设备有限公司 一种高功率波导功分馈电电路
KR102583406B1 (ko) * 2021-06-15 2023-09-26 서강대학교산학협력단 전력 분배 및 결합기
KR102523538B1 (ko) * 2021-06-21 2023-04-20 주식회사 피플웍스 방사형 공간 결합기

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263568A (en) 1979-03-12 1981-04-21 International Telephone And Telegraph Corporation Large scale low-loss combiner and divider
SU813553A1 (ru) * 1979-05-03 1981-03-15 Московский Ордена Ленина Авиаци-Онный Институт Им. C.Орджоникидзе Устройство дл обработки сигна-лОВ пРиЕМНОй АНТЕННОй РЕшЕТКи
US4291278A (en) * 1980-05-12 1981-09-22 General Electric Company Planar microwave integrated circuit power combiner
US4458229A (en) * 1981-12-17 1984-07-03 Rca Corporation Dispersion correcting waveguide
JPS59221016A (ja) * 1983-05-30 1984-12-12 Nec Corp トランジスタ増幅器
JPS6018007A (ja) * 1983-07-12 1985-01-30 Fujitsu Ltd マイクロ波電力増幅装置
GB2157504B (en) 1984-03-21 1987-05-28 Plessey Co Plc Radially fed microwave signal combiner/distributor apparatus
US4799145A (en) * 1985-04-03 1989-01-17 Honeywell Bull Inc. Facility for passing data used by one operating system to a replacement operating system
US4641106A (en) * 1985-05-21 1987-02-03 Rca Corporation Radial power amplifier
US4688006A (en) * 1985-10-02 1987-08-18 Hughes Aircraft Company Phase compensated hybrid coupler
DE3684304D1 (de) * 1985-10-03 1992-04-16 Hughes Aircraft Co Breitbandiger, hoch isolierender, als radialer wellenleiter ausgefuerter leistungsverteiler/-kombinierer.
JPH0195603A (ja) * 1987-10-08 1989-04-13 Nec Corp 位相調整型電力合成増幅器
US4931747A (en) 1989-05-30 1990-06-05 Microwave Components And Systems, Inc. Microwave power amplifier
US5180944A (en) * 1991-01-25 1993-01-19 Varian Associates, Inc. Gyrotron with a mode convertor which reduces em wave leakage
US5218322A (en) * 1992-04-07 1993-06-08 Hughes Aircraft Company Solid state microwave power amplifier module
RU2060572C1 (ru) * 1993-05-18 1996-05-20 Скляр Леонид Михайлович Волноводная система питания фазированной антенной решетки
US5736908A (en) * 1996-06-19 1998-04-07 The Regents Of The University Of California Waveguide-based spatial power combining array and method for using the same
CN1172406C (zh) * 2001-03-22 2004-10-20 深圳市利原宏通信技术有限公司 波导内固态功率合成器
CN1262043C (zh) * 2003-05-09 2006-06-28 深圳市利原宏通信技术有限公司 基于鳍线巴仑结构的波导内固态推挽放大功率合成器
CN101189754B (zh) * 2005-03-08 2012-05-23 波流公司 用于增大基于波导的空间功率合成器的性能的方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750697B (zh) * 2020-06-17 2021-12-21 正基科技股份有限公司 共振本體與功率分割合併器
US11962060B2 (en) 2020-06-17 2024-04-16 Ampak Technology Inc. Resonance body and power dividing and combining device

Also Published As

Publication number Publication date
US8558620B2 (en) 2013-10-15
EP2223377B1 (fr) 2013-05-29
FR2925230B1 (fr) 2009-12-04
EP2223377A1 (fr) 2010-09-01
CN101897077B (zh) 2013-08-07
US20110002031A1 (en) 2011-01-06
CA2709406C (en) 2016-01-26
ES2423183T3 (es) 2013-09-18
RU2484558C2 (ru) 2013-06-10
FR2925230A1 (fr) 2009-06-19
CA2709406A1 (en) 2009-06-25
JP2011508492A (ja) 2011-03-10
KR101527247B1 (ko) 2015-06-09
WO2009077501A1 (fr) 2009-06-25
KR20100095600A (ko) 2010-08-31
RU2010129442A (ru) 2012-01-27

Similar Documents

Publication Publication Date Title
CN101897077B (zh) 具有放大信道的相位分散补偿的径向功率放大器件
JP3805206B2 (ja) 送受信機積層アセンブリ
CN102255126B (zh) 无线通信装置
KR102233029B1 (ko) 안테나 장치
KR102102434B1 (ko) 기판 대 기판 연결을 위한 단일 rf 커넥터 및 다수의 기판 대 기판 연결을 위한 복수의 단일 커넥터를 포함하는 강화된 커넥터
JP7262574B2 (ja) 非接触式マイクロストリップ-導波路変換器
CN101527377A (zh) 配备有矩形波导的高频设备
US10998605B2 (en) Connecting unit for connecting to first and second interfaces, where the connecting unit comprises an internal conductor disposed within a housing formed by half-shell construction
TWI776601B (zh) 具有波導管的線路板結構及其製作方法
US11777188B2 (en) Cooling in a waveguide arrangement
CN101971490A (zh) 多源空间功率放大器
JP2022509471A (ja) アンテナ装置
KR101713769B1 (ko) 동축 도파관 기반의 공간 전력 결합기
US10992272B2 (en) High-frequency module with connection interface
US11621469B2 (en) Power-combining devices with increased output power
KR102522107B1 (ko) 높은 격리도를 가지는 t자형 접합부 및 이의 제작 방법
WO2024050841A1 (zh) 一种慢波结构、高频系统、行波管及通信装置
EP4246728A1 (en) Antenna structures for spatial power-combining devices
JP2022185566A (ja) 集積ダイプレクサを備えた小型で薄型の開口アンテナ
KR100401128B1 (ko) 중심 주파수의 이동 특성을 갖는 고출력 결합기 및 분배기
JP2005151439A (ja) 導波管、線路変換器、および高周波モジュール
CN116722331A (zh) 基于嵌入式销钉单元的微波模组电磁带隙封装结构
CN117748080A (zh) 一种电路到波导的转换结构
JPH06164248A (ja) 増幅器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130807

Termination date: 20211215