CN101879781B - 以钢辊为模板制备聚合物超疏水表面的方法 - Google Patents

以钢辊为模板制备聚合物超疏水表面的方法 Download PDF

Info

Publication number
CN101879781B
CN101879781B CN2010102033923A CN201010203392A CN101879781B CN 101879781 B CN101879781 B CN 101879781B CN 2010102033923 A CN2010102033923 A CN 2010102033923A CN 201010203392 A CN201010203392 A CN 201010203392A CN 101879781 B CN101879781 B CN 101879781B
Authority
CN
China
Prior art keywords
polymer
steel
steel rider
micro
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102033923A
Other languages
English (en)
Other versions
CN101879781A (zh
Inventor
冯杰
钟明强
林飞云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Keguan Intelligent Equipment Co Ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN2010102033923A priority Critical patent/CN101879781B/zh
Publication of CN101879781A publication Critical patent/CN101879781A/zh
Application granted granted Critical
Publication of CN101879781B publication Critical patent/CN101879781B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

本发明公开了一种以钢辊为模板制备聚合物超疏水表面的方法,所述方法包括下列步骤:(1)以表面具有均匀微纳米凹坑结构的钢辊为模板,热压聚合物,使聚合物进入钢辊表面的微纳米凹坑;所述的聚合物为热塑性塑料或热塑性弹性体;(2)将聚合物从钢辊表面剥离,得到聚合物超疏水表面。本发明方法操作工艺简单、成本低、环保性和重复性好,且易于大面积制备,与流延技术相结合,为规模制备聚合物超疏水薄膜提供了极强的理论和试验指导,具有重要工程应用价值。

Description

以钢辊为模板制备聚合物超疏水表面的方法
(一)技术领域
本发明涉及了一种制备聚合物超疏水表面的方法
(二)背景技术
超疏水表面是指与水的接触角大于150°,滚动角小于10°的固体表面。其在防水、防雾、防雪、防尘等方面具有广阔应用前景。表面超疏水性由其化学成分和微观结构共同决定。目前实现方法有很多,如电化学法、金属刻蚀法、溶胶凝胶法、层层自组装法以及模板法等。模板法因操作简便,成本低廉、环境友好以及能与流延技术相结合等特性,成为最有希望大规模生产超疏水表面的方法之一。
(三)发明内容
本发明要解决的技术问题在于提供一种简单的、廉价的、可以大面积制备超疏水表面的方法。
为解决上述技术问题,本发明采用如下技术方案:
一种以钢辊为模板制备聚合物超疏水表面的方法,包括下列步骤:
(1)以表面具有均匀微纳米凹坑结构的钢辊为模板,热压聚合物,使聚合物进入钢辊表面的微纳米凹坑;所述的聚合物为热塑性塑料或热塑性弹性体;
(2)将聚合物从钢辊表面剥离,得到聚合物超疏水表面。
本发明得到一种布满拉长的微米和亚微米级毛刺结构的聚合物表面,该表面具有超疏水性,与水的接触角可达到150°以上,滚动角小于10°。
本发明所述的均匀微纳米凹坑的间隔、直径或边长为0.1-200μm,深0.1-10μm;优选所述的均匀微纳米凹坑的间隔、直径或边长为5-100μm,深1-10μm。
本发明所述的表面具有均匀微纳米凹坑结构的钢辊可使用市售产品,也可用微构建技术在钢辊表面制备得到均匀微纳米凹坑结构。
进一步,所述微构建技术可选自下列之一:激光雕刻、电脑雕刻、腐蚀雕刻、选择性酸蚀刻、用表面含微米级突起的辊状网纹刀模滚压。上述微构建技术均属于现有技术,本领域技术人员根据实际情况进行选择。
更进一步,本发明具体推荐所述的选择性酸蚀刻包括如下操作步骤:(a)在钢辊表面涂覆一层厚约5μm的紫外正、负型光刻胶(如KMP-BP、BP-215、BN-310等型号的光刻胶);(b)用一片柔性光掩模板紧密包覆光刻胶;(c)在紫外线照射下缓慢旋转钢辊;(d)用0.1-2.0M的NaOH溶液或其他专用显影液显影,使光刻胶形成阵列微凹坑结构(选择性露出钢基底);(e)用含200-800g/L的FeCl3的盐酸溶液或其它不锈钢专用蚀刻液进一步蚀刻,得到表面含均匀微凹坑的钢辊。凹坑的间隔、直径以及深度由光掩模板的图案大小和酸蚀刻的程度(取决于蚀刻液浓度、温度、时间、搅拌与否等因素)来决定。本领域技术人员可以根据实际需要调整参数。
更进一步,本发明具体推荐所述的滚压的操作如下:用表面具有微纳米级突起结构的辊状网纹刀模在钢辊表面滚压后制得。所述的辊状网纹刀模可使用合金钢材质,表面用激光雕刻或锻压方式制成微纳米级突起结构,突起的形状和尺寸由所需要的钢辊表面微纳凹坑的形状和尺寸而确定。
进一步,本发明所述的步骤(1)中,所述的聚合物为热塑性塑料或热塑性弹性体,如聚乙烯、聚丙烯、聚碳酸酯、尼龙等,优选疏水性聚合物,如聚乙烯、聚丙烯等。
进一步,本发明所述步骤(1)的热压聚合物是在聚合物粘流温度以上的温度条件下进行。本领域技术人员可根据实际条件选择合适的热压操作,使得聚合物进入钢辊表面的微纳米凹坑。
更进一步,本发明推荐步骤(1)所述的热压聚合物采用常压热压,具体操作如下:先将聚合物和表面具有均匀微纳米凹坑结构的钢辊加热到聚合物粘流温度以上,然后常压下将钢辊快速压在聚合物熔体上,压力在0.01-100MPa,使聚合物熔体进入钢辊表面的微纳米凹坑。优选压力条件为0.1-1MPa,热压时间为1-10秒。
更进一步,本发明推荐步骤(1)所述的热压聚合物采用真空辅助热压,具体操作如下:将聚合物薄膜包于钢辊表面,升温至聚合物粘流温度以上后保温,然后一起放入真空烘箱中,保温抽真空至-0.1~-0.01MPa,靠真空形成的负压将聚合物熔体压入钢辊表面的微纳凹坑中,其后释放真空。优选热压时间为1-10秒。
更进一步,本发明推荐步骤(1)所述的热压聚合物采用辊压,具体操作如下:将聚合物薄膜、聚合物片材或聚合物熔体送入钢辊间,其中一个钢辊具有均匀微纳米凹坑结构表面,在温度为聚合物粘流温度以上、压力0.01-100MPa的条件下使聚合物压入钢辊表面微纳米凹坑。优选压力条件为0.1-1MPa,时间0.1-1秒,依辊筒转速而定。
本发明步骤(2)所述的剥离是在室温以上并且小于聚合物粘流温度的温度条件下进行,使聚合物从钢辊表面脱开。
本发明可采用扫描电镜(SEM)来观察所得表面的微观形貌,用接触角测量仪测量所得表面水的接触角。
本发明中表面的超疏水性可由钢辊表面微凹坑的间隔、直径或边长大小以及聚合物的种类来控制。
与现有技术相比,本发明以表面含均匀微凹坑结构的钢辊为模板,通过热压聚合物并剥离,得到一种表面布满拉长的微米和亚微米级毛刺结构的聚合物薄膜/片材或型材,该表面具有超疏水性,与水的接触角可达到150°以上,滚动角小于10°。本发明方法操作工艺简单、成本低、环保性和重复性好,且易于大面积制备,与流延技术相结合,为规模制备聚合物超疏水薄膜提供了极强的理论和试验指导,具有重要工程应用价值。
(四)附图说明
图1为表面含均匀微凹坑的钢辊数码照片;
图2为实施例1用选择性酸蚀刻制得的钢辊表面原子力显微镜(AFM)图(a,b)和以此为模板热压制得的HDPE超疏水表面SEM图和接触角照片(c);
图3为实施例2使用的A钢辊的表面金相显微镜图;
图4为实施例2用A钢辊模板法制备的HDPE表面SEM图和接触角照片;
图5为实施例2用A钢辊模板法制备的HDPE表面动态接触角和滚动角;
图6为实施例3用A钢辊模板法制备的LDPE表面SEM图和接触角照片;
图7为实施例4用A钢辊模板法制备的LLDPE表面SEM图和接触角照片。
图8为实施例5制备的HDPE表面SEM图和接触角照片。
(五)具体实施方式
以下实例进一步说明本发明,但这些实例并不用来限制本发明。
实施例1
表面含均匀微凹坑结构的钢辊模板,其直径10cm,长度15cm,宏观结构如图1。
选择性蚀刻制备方法包括如下:(a)在钢辊表面涂覆一层厚~5μm的KMP-BP正型光刻胶(北京科华丰园微电子科技有限公司生产);(b)用一片柔性光掩模板紧密包覆光刻胶;(c)在UV照射下缓慢旋转钢辊(10rpm,30min);(d)用0.5M的NaOH溶液显影60s,使光刻胶形成阵列微凹坑结构(选择性露出钢基底);(e)用含600g/L FeCl3,20g/L H3PO4,80g/L HCl and 4g/L H2NCSNH2的溶液进一步旋转蚀刻钢辊(10rpm,10min);(f)自来水冲洗钢辊表面,换用0.5M的NaOH溶液旋转浸10min(10rpm),得到表面含均匀微凹坑的钢辊(图2a,b)(上述步骤均在室温下操作)。
将钢辊和HDPE片材(厚约2mm)均在常压烘箱中加热至220℃,取出将钢辊快速压在HDPE熔体上,压力约0.5MPa/cm2,时间2s。自然冷却后将HDPE从钢辊表面剥离,得到轻度弧形的HDPE薄膜。薄膜表面微结构和水静态接触角如图2c所示,显示超疏水性能。
实施例2
A钢辊模板:广州衡兴制辊厂生产,微观结构如图3,即表面呈排列整齐、尺寸统一的网格状凹坑结构,横向尺寸为~40×40μm,间隔~40μm。凹坑内壁不光滑,而是由更精细的微米乃至亚微米级的粗糙结构紧凑而成。
将HDPE(高密度聚乙烯,韩国大林产业公司,5502)薄膜(约1mm厚)包于钢辊表面,升温至220℃后再保温5分钟,然后一起放入真空烘箱中,保温抽真空,2min内至-0.01MPa,其后释放真空,时间10s,冷却后将HDPE薄膜从钢辊表面剥离,得到HDPE薄膜。薄膜表面结构和水静态接触角如图4所示,接触角的稳定性即动态接触角如图5所示,水滴在表面上开始滚动时的照片如图5插图所示。
实施例3
钢辊模板和热压工艺如实施例2。但HDPE换成了LDPE(低密度聚乙烯,上海石化,N220)。其它条件相同,得薄膜表面微结构和水滴静态接触角如图6所示,显示超疏水结构和性能。
实施例4
钢辊模板和热压工艺如实施例2。但HDPE换成LLDPE(线性低密度聚乙烯,上海赛科石油化工责任有限公司,EXPPE003)。其它条件相同,得薄膜表面微结构和水滴静态接触角如图7所示,显示超疏水结构和性能。
实施例5
钢辊表面结构和聚合物材料如实施例2。但特别定制宏观尺寸为直径160mm,有效长度为320mm的表面含微凹坑的钢辊,并将真空辅助热压改为常压下辊压。即将表面含有微凹坑的钢辊装在双辊开炼机上(上海橡胶机械厂产SK160B型双辊塑炼机),另一钢辊为普通光滑表面钢辊,两辊分别加热至145℃和140℃,将HDPE粒料放入钢辊间隙,在辊间距0.2mm,压力~0.5MPa下薄通1次(~1s)。用一风扇在距离辊间隙半周处对HDPE膜予以冷却至100-120℃,将其从钢辊表面剥离,得到微模塑的HDPE薄膜。薄膜表面微结构和水静态接触角如图8所示,显示超疏水结构和性能。

Claims (8)

1.一种以钢辊为模板制备聚合物超疏水表面的方法,其特征是所述方法包括下列步骤:
(1)以表面具有均匀微纳米凹坑结构的钢辊为模板,热压聚合物,使聚合物进入钢辊表面的微纳米凹坑;所述的聚合物为热塑性塑料或热塑性弹性体;所述的均匀微纳米凹坑的间隔、直径或边长为0.1-200μm,深0.1-10μm;
(2)将聚合物从钢辊表面剥离,得到聚合物超疏水表面。
2.按权利要求1所述的以钢辊为模板制备聚合物超疏水表面的方法,其特征是:所述的均匀微纳米凹坑的间隔、直径或边长为5-100μm,深1-10μm。
3.按权利要求1所述的以钢辊为模板制备聚合物超疏水表面的方法,其特征是所述的聚合物为疏水性聚合物。
4.按权利要求1或3所述的以钢辊为模板制备聚合物超疏水表面的方法,其特征是:步骤(1)所述的热压聚合物是在聚合物粘流温度以上的温度下进行。
5.按权利要求4所述的以钢辊为模板制备聚合物超疏水表面的方法,其特征是:步骤(1)所述的热压聚合物采用常压热压,具体操作如下:先将聚合物和表面具有均匀微纳米凹坑结构的钢辊加热到聚合物粘流温度以上,然后常压下将钢辊快速压在聚合物熔体上,压力在0.01~100MPa,使聚合物熔体进入钢辊表面的微纳米凹坑。
6.按权利要求4所述的以钢辊为模板制备聚合物超疏水表面的方法,其特征是:步骤(1)所述的热压聚合物采用真空辅助热压,具体操作如下:将聚合物薄膜包于钢辊表面,升温至聚合物粘流温度以上后保温,然后一起放入真空烘箱中,保温抽真空至-0.1~-0.01MPa,靠真空形成的负压将聚合物熔体压入钢辊表面的微纳米凹坑中,然后释放真空。
7.按权利要求4所述的以钢辊为模板制备聚合物超疏水表面的方法,其特征是:步骤(1)所述的热压聚合物采用辊压,具体操作如下:将聚合物薄膜、聚合物片材或聚合物熔体送入钢辊间,其中一个钢辊具有均匀微纳米凹坑结构表面,在温度为聚合物粘流温度以上、压力0.01~100MPa的条件下使聚合物压入钢辊表面微纳米凹坑。
8.按权利要求1所述的以钢辊为模板制备聚合物超疏水表面的方法,其特征是:步骤(2)所述的剥离是在室温以上并且小于聚合物粘流温度的温度条件下进行,使聚合物从钢辊表面脱开。
CN2010102033923A 2010-06-21 2010-06-21 以钢辊为模板制备聚合物超疏水表面的方法 Expired - Fee Related CN101879781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102033923A CN101879781B (zh) 2010-06-21 2010-06-21 以钢辊为模板制备聚合物超疏水表面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102033923A CN101879781B (zh) 2010-06-21 2010-06-21 以钢辊为模板制备聚合物超疏水表面的方法

Publications (2)

Publication Number Publication Date
CN101879781A CN101879781A (zh) 2010-11-10
CN101879781B true CN101879781B (zh) 2012-11-21

Family

ID=43051980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102033923A Expired - Fee Related CN101879781B (zh) 2010-06-21 2010-06-21 以钢辊为模板制备聚合物超疏水表面的方法

Country Status (1)

Country Link
CN (1) CN101879781B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101232B (zh) * 2010-11-17 2013-01-23 江苏大学 一种在晶态镁合金表面制作微纳结构的方法
CN102561536B (zh) * 2012-01-14 2014-06-25 杨永全 一种超疏水自清洁保温板
CN107573531B (zh) 2017-07-13 2020-08-14 大连理工大学 一种液滴饼状弹跳的大尺寸超疏水圆柱阵列的热压加工方法
CN108044922B (zh) * 2017-12-13 2019-08-13 南京航空航天大学 树脂基复合材料表面制备超疏水微结构防覆冰表面的方法
CN108063300B (zh) * 2017-12-14 2021-11-05 合肥伏雷科技有限公司 一种空气电极与空气接触的表面疏水效应处理方法
CN112428573B (zh) * 2020-10-30 2023-03-10 江苏理工学院 实现多种超疏水表面微结构形貌的滚压装置及其应用方法
CN113491956B (zh) * 2021-07-15 2023-04-25 河南工程学院 一种lldpe油水分离膜及其制备方法和应用
CN114261083A (zh) * 2021-12-20 2022-04-01 吉林大学重庆研究院 一种聚乙烯尼龙共挤薄膜超疏水减摩表面的制备方法
CN116692951B (zh) * 2023-08-07 2023-11-03 星恒电源股份有限公司 一种尖晶石金属氧体磁性材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810912A (zh) * 2006-03-03 2006-08-02 清华大学 利用软模板和紫外光固化技术制备表面超疏水材料的方法
CN101544770A (zh) * 2008-03-27 2009-09-30 财团法人首尔大学校产学协力财团 超疏水聚合物制造物
CN101549552A (zh) * 2009-04-29 2009-10-07 浙江工业大学 以可控刻蚀金属表面为模板制备聚合物超疏水表面的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810912A (zh) * 2006-03-03 2006-08-02 清华大学 利用软模板和紫外光固化技术制备表面超疏水材料的方法
CN101544770A (zh) * 2008-03-27 2009-09-30 财团法人首尔大学校产学协力财团 超疏水聚合物制造物
CN101549552A (zh) * 2009-04-29 2009-10-07 浙江工业大学 以可控刻蚀金属表面为模板制备聚合物超疏水表面的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄明达等.拉伸微模塑制备低密度聚乙烯超疏水表面.《功能高分子学报》.2009,第22卷(第2期),第189页第3段,第5段第190页第2段. *

Also Published As

Publication number Publication date
CN101879781A (zh) 2010-11-10

Similar Documents

Publication Publication Date Title
CN101879781B (zh) 以钢辊为模板制备聚合物超疏水表面的方法
Maghsoudi et al. Advances in the fabrication of superhydrophobic polymeric surfaces by polymer molding processes
CN102066089A (zh) 不规则表面的楔形压印图案形成
CN103738913A (zh) 一种准三维微、纳米柱阵列的制作方法
CN101549552B (zh) 以可控刻蚀金属表面为模板制备聚合物超疏水表面的方法
US9728802B2 (en) Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes
Zhong et al. Microstructure formation via roll-to-roll UV embossing using a flexible mould made from a laminated polymer–copper film
CA2530678A1 (en) Process for manufacturing a catalyst-coated polymer electrolyte membrane
CN105619774A (zh) 一种基于热压印的超疏水材料的制备方法
CN100453613C (zh) 固体材料超疏水性表面的制备方法
CN101445009B (zh) 一种全息激光防伪膜的uv冷铸工艺
CN103724639B (zh) 一种利用热喷涂模板法制备超疏水聚合物表面的方法
CN104422981A (zh) 光学膜的制造方法
Umezaki et al. Electrochemical imprint lithography on Si surface using a patterned polymer electrolyte membrane
CN103192532A (zh) 一种制造水溶性pva薄膜模具的装置及其方法
Jiang et al. Facile fabrication of superhydrophobic polytetrafluoroethylene surface by cold pressing and sintering
Feng et al. Fabrication of Polyethylene Superhydrophobic Surfaces by Stretching‐Controlled Micromolding
Tsai et al. Fabrication of seamless roller mold with 3D micropatterns using inner curved surface photolithography
Metwally et al. Hot roll embossing in thermoplastic foils using dry-etched silicon stamp and multiple passes
CN203157148U (zh) 一种制造水溶性pva薄膜模具的装置
CN108515688A (zh) 一种超疏水塑料薄膜的制备方法
Feng et al. Stretching‐Controlled Micromolding Process with Etched Metal Surfaces as Templates Towards Mass‐Producing Superhydrophobic Polymer Films
CN115367698A (zh) 一种新型InP纳米线阵列及其制备方法
CN103587132A (zh) 一种可卷曲塑料挤出板、片或膜的双面加硬设备
CN107746467A (zh) 一种使用多次涂覆成膜工艺制备聚乙烯醇薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200731

Address after: 311404 No.261 dawanli, Panyan village, Xindeng Town, Fuyang District, Hangzhou City, Zhejiang Province

Patentee after: Zhejiang Keguan Intelligent Equipment Co., Ltd

Address before: Hangzhou City, Zhejiang province 310014 City Zhaohui District Six

Patentee before: ZHEJIANG University OF TECHNOLOGY

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121121

Termination date: 20210621

CF01 Termination of patent right due to non-payment of annual fee