CN101870720A - 熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途 - Google Patents

熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途 Download PDF

Info

Publication number
CN101870720A
CN101870720A CN201010206500A CN201010206500A CN101870720A CN 101870720 A CN101870720 A CN 101870720A CN 201010206500 A CN201010206500 A CN 201010206500A CN 201010206500 A CN201010206500 A CN 201010206500A CN 101870720 A CN101870720 A CN 101870720A
Authority
CN
China
Prior art keywords
ursolic acid
cell
preparation
ethyl acetate
hepg2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010206500A
Other languages
English (en)
Inventor
吴世华
杨璐
冯国培
吴平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201010206500A priority Critical patent/CN101870720A/zh
Publication of CN101870720A publication Critical patent/CN101870720A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途。熊果酸的分子式为C30H48O3,分子量456,其制备方法是将原料白花蛇舌草干燥全草经粉碎后分别用乙酸乙酯和乙醇进行提取后,将所得的浸膏进行合并后过正相柱及RP-C18反相柱进行分离,接着采用正己烷-乙酸乙酯-甲醇-水的逆流色谱分离体系收集,挥发溶剂后即得到熊果酸单体。本发明制得的熊果酸作为单味制剂或与药用敷料组合,可对人肝癌多耐药性细胞具有显著的抗肿瘤活性,其作用机制是通过AIF介导的caspase非依赖的细胞凋亡途径。熊果酸具有较低的毒性,因此,熊果酸具有很好的临床肿瘤化疗、尤其是抗临床肿瘤多药耐药的应用前景。

Description

熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途
技术领域
本发明涉及熊果酸的制备方法及其用途,具体地说是从白花蛇舌草(Hedyotis diffusa)全草中提取有效成分熊果酸的方法及其在治疗肿瘤疾病药物中的用途,属于医药技术领域。
背景技术
熊果酸是存在于天然植物中的一种三萜类化合物,其分子式为C30H48O3,分子量456,其化学结构如下:
人们在Oldenlandia diffusa(O.diffusa),Ligustrum lucidum,Rabdosia rubescens,Prunella vulgaris[1-3].等多种植物中均发现有熊果酸的分布。但是,传统的分离制备熊果酸的方法如正相硅胶薄层色谱、正相硅胶柱色谱等方法由于固相载体的死吸附使得分离的产率和效率均很低,而发展的高效液相色谱方法仅用于其纯度分析和鉴定,因此,还没有一种能快速高效地大量制备熊果酸的方法。
一系列的研究表明,熊果酸具有强的抗肿瘤活性,也具有镇静、抗炎、抗菌、抗糖尿病、抗溃疡、降低血糖等多种生物学效应,熊果酸还具有明显的抗氧化功能,因而被广泛地用作医药和化妆品原料[4-10]。但对于熊果酸在治疗肿瘤多药耐药的研究报道很少,特别是对于其通过AIF介导的caspase非依赖的细胞凋亡途径克服肝癌多药耐药性的研究还未见报道。
发明内容
本发明的一个目的是提供一种快速、高效、大量制备熊果酸(Ursolic acid)的方法。本发明的另一个目的是提供熊果酸在治疗肿瘤多药耐药性药物中的新用途。
熊果酸分子式为C30H48O3,分子量456,CAS nmuber:77-52-1,属于三萜酸类化合物。其制备方法步骤如下:
将白花蛇舌草全草用乙酸乙酯提取,所得的浸膏进行正相柱及RP-C18反相柱色谱分离,接着采用正己烷-乙酸乙酯-甲醇-水的溶剂体系进行逆流色谱分离,收集目标物质,挥发溶剂后得白色结晶性粉末,即为目的化合物熊果酸,所说的逆流色谱分离体系中正己烷-乙酸乙酯-甲醇-水的体积比为5∶4∶5∶4。
本发明的熊果酸在治疗肿瘤疾病药物中的用途,是在制备通过AIF介导的Caspase非依赖的细胞凋亡途径克服肝癌多药耐药性的药物中的应用。
采用本发明方法制备得到的熊果酸可以按照药学领域的常规生产方法制成以下制剂形式:包括液体制剂、颗粒剂、片剂、冲剂、软胶丸、软胶囊、滴丸剂或注射剂。熊果酸可以作为单味制剂,也可以包含其它的增效剂,组合成抗肿瘤药物。
本发明的有益效果在于:
(1)本发明采用吸附柱色谱和逆流色谱相结合的制备技术制备熊果酸。首先利用柱色谱的初级分离能力将含有熊果酸的白花蛇舌草提取物进行粗分,然后再利用逆流色谱制备技术的制备,具有效率高、样品无损、快速、高收率、高纯度等优点。
(2)本发明制备的熊果酸抗肿瘤药物,具有体外强烈抑制耐药株肿瘤细胞增殖的作用,经四甲基偶氮唑盐(简称MTT法)检测,对人肝癌多药耐药株细胞R-HepG2的半数抑制增殖率IC50约为9.75μg/ml。而且体内外实验发现熊果酸能通过AIF介导的caspase非依赖途径这一机制诱导多药耐药性肝癌细胞R-HepG2死亡,但并不会对小鼠的机体产生明显的毒性。因此其作为单味制剂或与药物敷料组合,均可在制备治疗耐药性肿瘤药物中应用。本发明为进一步新的抗恶性肿瘤多药耐药药物提供了科学依据,对开发利用我国传统中药具有重要意义。
附图说明
图1为熊果酸的1HNMR谱图;
图2为熊果酸的13CNMR谱图;
图3为熊果酸的ESI-MS谱图;
图4为熊果酸的液相色谱分析结果;
图5UA对R-HepG2细胞的增殖抑制作用。
图6为熊果酸作用于耐药株细胞R-HepG2的细胞周期图。
图7为熊果酸不同时间、不同浓度作用于乳腺癌Bcap37的AnnexinV-PI双染凋亡图。
图8为加入caspase抑制剂后熊果酸对耐药株细胞R-HepG2凋亡诱导率的柱状图;
图9为为熊果酸引起耐药株细胞R-HepG2凋亡的荧光图。
图10为加入或不加入caspase抑制剂,熊果酸对R-HepG2细胞线粒体膜电位的作用结果。
图11为熊果酸对R-HepG2细胞凋亡相关蛋白Bak及Bax表达情况的confocol及免疫印记实验结果;
图12为经熊果酸作用后,耐药株细胞R-HepG2中AIF蛋白的定位检测结果。
图13为AIF的小干扰RNA实验结果;
图14为熊果酸对耐药株细胞R-HepG2体内增殖抑制作用实验结果(A)及实验照片(B)。
图15为熊果酸对耐药株细胞R-HepG2体内增殖抑制作用的毒理学实验结果;
图16为熊果酸对耐药株细胞R-HepG2进行体内实验后的AIF蛋白定位检测的免疫荧光图。
具体实施方式
以下将结合具体实施例与和附图详细说明本发明,这些实例仅用于说明目的,而不用于限制本发明范围。
实施例1:从传统中药白花蛇舌草全草中提取分离纯化熊果酸及其结构鉴定
1.提取和纯化:
白花蛇舌草干燥全草(50kg)经粉碎机粉碎后,分别用乙酸乙酯和乙醇浸泡三次,并合并所得的浸膏。将乙酸乙酯浸膏过正相柱色谱进行分离,其中得到的第12段(2g)继续过RP-C18反相柱进行分离,将其中的186-206管进行合并,得到795mg样品,为了进一步纯化样品,采用正己烷-乙酸乙酯-甲醇-水(5∶4∶5∶4)的逆流色谱分离体系去除杂质,检测波长210nm,流速2ml/min,转速800,合并47-50管,得到纯度为98%的白色结晶性粉末。其结构经NMR和MS即为目的化合物熊果酸。
2.HPLC分析:
仪器:Agilent-1100;色谱柱:ZORBAX Eclipse XDB-C18,5μm,4.6×150mm;柱温:35℃;流动相:70%-100%乙腈:30%-0%H2O梯度;流速:0.8ml/min;检测波长:210nm.。
3.波谱分析:核磁共振仪(Bruker DRX500),质谱仪(Thermo Finnigan LCQ Deca)
4.实验结果:其1H-NMR和13-NMR如图1和图2所示,ESI-MS(负离子)如图3所示。结果表明,所得化合物为熊果酸,其分子式为C30H48O3,分子量为456。经HPLC分析如图4所示,其纯度大于98%以上.
实施例2:熊果酸对人肝癌多药耐药细胞株增殖抑制活性试验
1.人肿瘤细胞株及来源:人肝癌肿瘤多药耐药株R-HepG2来自于香港中文大学生物化学系316实验室。
2.熊果酸溶解在DMSO中配成20mg/ml母液,置于-20℃冰箱,实验时用培养液稀释成终浓度为0、15、30、60μg/ml供用,MTT(AMRESCO公司产品)用磷酸缓冲液(Phosphate-buffered Saline简称PBS)配成5mg/ml母液,置于4℃冰箱备用。
3.细胞培养:细胞株培养于RPMI 1640完全培养基中,加10%胎牛血清,选择对数生长期的R-HepG2细胞进行实验。
4.采用四甲基偶氮唑盐(简称MTT法)检测肿瘤细胞对药物增殖的影响,选择对数生长期细胞,以104的密度接种于96孔板中,每孔100μl,置37℃,5%培养箱中培养24小时后按浓度加入药物,每个浓度设复孔3个,同时设空白对照,置37℃,5%CO2分别培养12,24和48小时后,在每孔中加入50μlMTT,于37℃,5%CO2培养箱继续培养3个小时,直接吸去培养基,每孔加入150μlDMSO,待结晶完全溶解后,540nm检测。实验重复三次。取每一个浓度复孔OD值得平均值,按如下公式计算细胞增殖抑制率:
抑制率=(OD空白-OD样品)/OD空白×100%
实验结果见图5,其中:(A)R-HepG2细胞经UA(15,30,60μg/ml)作用12,24及48小时后,用MTT法检测细胞的增殖抑制率。UA对R-HepG2肿瘤细胞的抑制作用表现出显著的时间和剂量依赖性。(B)20μmol/L caspase抑制剂对R-HepG2肿瘤细胞进行20小时的预处理后,按实验要求加入受试药物,而后用MTT法检测细胞的增殖抑制率。(C)细胞活性回复实验,R-HepG2细胞经UA(15and 30μg/ml)作用12,24,36小时后,换上不加药物的新鲜培养基,一直培养到48小时,最后用MTT法检测细胞的增殖抑制率。所有的实验结果都重复三次。
实施例3:熊果酸抑制人肝癌多药耐药细胞株R-HepG2增殖的凋亡相关机制
1.细胞周期分析:用碘化丙啶PI单染实验对实验药物作用后的细胞进行细胞周期检测。收集经15μg/ml,30μg/ml UA作用24小时后的R-HepG2肿瘤细胞,1000rpm离心5分钟去除培养基,PBS清洗两次,1000rpm离心5分钟除去PBS,每个样品用1ml70%的冰乙醇在-20℃下固定30分钟。1000rpm离心10分钟除去70%乙醇,PBS清洗两次后,每个实验样品用1ml PI染色液(20μg/ml PI,100μg/ml RNase A)于37℃避光染色30分钟。染色后上机(Becton Dickinson FACSCanto)检测,实验结果用ModFit LT 3.0(Verity Software House,USA)软件进行分析。
实验结果见附图6,其中:(A)直方图显示细胞的数量(纵轴)和DNA含量(横轴)。(B and C)R-HepG2肿瘤细胞经UA(15and 30μg/ml)作用24小时后进行DNA的流式分析。G0/G1,G2/M和S代表各个细胞周期,而sub-G1则表示凋亡细胞的比例。每个细胞周期的比例都是用ModiFIT软件计算得到的。所有的数据都重复三次,数据表示为
Figure BSA00000175773000051
**P<0.01,表示实验组与对照组之间存在极显著的差异。
2.本实验用Annexin V-GFP/PI两种染料对活细胞,早期凋亡细胞及晚期凋亡细胞/坏死细胞进行定量检测。主要步骤:
(1)将对照组细胞与UA处理12,24及48小时的细胞(1×106)经2500rpm离心5min,弃去上清;
(2)冷PBS清洗两次,弃去上清;
(3)用手指轻轻弹拨细胞沉淀,而后每组样品中加入100μlAnnexin V-GFP结合缓冲液,5μlAnnexin V-GFP及10μlPI进行重悬浮;
(4)将样品置于室温下避光作用15min;
(5)在每组样品中加入400μlAnnexin V-GFP结合缓冲液,混匀细胞;
(6)上流式机进行检测。
(7)用WinMDI软件(Version 2.8)对凋亡细胞的数量进行统计。
除用流式细胞分析术对凋亡细胞进行定量检测外,还用荧光显微镜对凋亡细胞的形态进行了观察拍照,具体方法:
经药物处理后细胞,用磷酸缓冲液(PBS,PH7.4)洗两次,70%冰乙醇固定15分钟后,PBS洗两次,经核染荧光Hoechest33342避光染色20分钟,PBS清洗后,用荧光倒置显微镜观察拍照。
实验结果见图7和图8。
3.细胞凋亡形态学实验:R-HepG2细胞与熊果酸共同孵育24及48小时后,用70%的冰乙醇固定细胞,PBS清洗两次,接着用荧光染料Hoechst 33342对细胞核进行染色,避光处理20min后,再用PBS清洗,最后用荧光倒置显微镜进行拍照记录。
实验结果见图9。
4.线粒体膜电位检测实验:线粒体膜电位的变化是细胞发生凋亡后早期发生的事件,为了确定本实验中熊果酸诱导的R-HepG2肿瘤细胞凋亡是否与线粒体有关,于是选用线粒体膜电位检测试剂对药物作用后细胞的膜电位进行检测。
依照线粒体膜电位检测实验步骤对熊果酸作用后的肿瘤细胞株进行染色,并用荧光倒置显微镜进行观察拍照。对于健康的线粒体,染料JC-1可以以二聚体的形式锚定在线粒体膜上而发出橘红色荧光,对于经样品作用后丧失膜电位的线粒体而言,JC-1无法以二聚体的形式锚定在线粒体膜上,而只能以单聚体的形式游离在细胞质中而发出绿色荧光,所以可以很容易从荧光染料颜色的变化看出线粒体的膜电位情况。
实验步骤:
(1)离心收集经30μg/ml熊果酸处理24小时的R-HepG2肿瘤细胞(1×106)。
(2)收集后的细胞经PBS清洗后,用1mlPBS(含10μM JC-1)于37℃染色15分钟。
(3)离心除去染料,用1ml的PBS对经过染色的肿瘤细胞进行重悬浮,用手指轻轻将细胞弹散,使其均匀分布于PBS中。
(4)将含有细胞的PBS缓冲液转移至专用的流式管中,上机(Becton Dickinson FACSCanto)进行检测。
实验结果见图10,其中:上图为三维的处理结果,下图为加caspase特异性抑制剂caspase-3,caspase-8和caspase-9后得到的定量结果比较。
5.免疫印记实验:取对数生长期的R-HepG2细胞与熊果酸共同孵育,用RIPA裂解液裂解15min,12,000xg离心20min后,用Bradford测定蛋白浓度,在12.5%SDS-PAGE胶上进行电泳,胶上的斑点用PBST缓冲液(PBS containing 0.1%Tween-20)室温处理过夜转移到膜上,然后与Bak、Bax及β-actin的抗体在室温下孵育,清洗后再与二抗共同孵育。最后用ECL试剂盒(Amersham)进行显色观察。
实验结果见图11,其中:(A)和(B)在UA诱导R-HepG2细胞凋亡中,引起了Bak蛋白的激活,但对Bax蛋白的表达没有影响。细胞经过15及30μg/ml的UA作用24小时后,PE-(红色荧光)用于检测Bak蛋白的表达情况,而FITC-(绿色荧光)用于监测Bax蛋白的表达。图表中的红绿曲线分别代表细胞所发出的红/绿荧光。(C)用western blot同样证明在UA诱导R-HepG2细胞凋亡中,引起了Bak蛋白的激活,但对Bax蛋白的表达没有影响这一实验结果。R-HepG2细胞经过15及30μg/ml的UA作用24小时后,将从R-HepG2细胞中裂解得到的细胞蛋白进行western blot实验。图中每个数据都代表独立三次实验的平均值,数据表示为*P<0.05,**P<0.01,表示实验组与对照组之间存在极显著的差异。
6.AIF免疫荧光实验:
实验步骤:
(1)将对照组细胞和经熊果酸作用后的R-HepG2肿瘤细胞用冰的PBS清洗两次后,用70%的冰乙醇对细胞进行固定。
(2)固定后的细胞,用含2%BSA(牛血清)的PBS(含0.2%Triton X-100)作用15分钟,进行膜打孔。
(3)将一抗AIF按1∶100的比例稀释后,与肿瘤细胞共孵育60分钟。
(4)孵育结束后,用封闭缓冲液对细胞清洗3次。
(5)细胞与FITC标记的二抗共孵育60分钟后,用PBS清洗3次。
(6)需要进行细胞核染色的细胞,经2.5μg/ml的PI作用10分钟后,用PBS清洗3次。
(7)染色后的细胞用激光共聚焦显微镜(Leica TCS SP5)进行观察分析。
实验结果见图12。
7.AIF的siRNA实验:根据实验结果,我们发现凋亡诱导因子AIF是熊果酸诱导R-HepG2肿瘤细胞凋亡机制中起关键作用的因子,因此对AIF进行小干扰RNA实验,以便确定AIF在熊果酸诱导R-HepG2肿瘤细胞凋亡机制中所起作用的关键性。
实验步骤:
(1)在进行细胞转染的前一天,先用不加抗生素的细胞培养基培养细胞,保证细胞的密度大约在80%-90%左右就可进行转染。
(2)24小时后进行转染,将Lipofectamine 2000(Invitrogen,Carlsbad,CA)加入到不加血清的培养基中室温混合5分钟,同时将AIF的siRNA(5’-AUAGCAUUGGGCAUCACCUUAACCC-3’,5’-GGGUUAAGGUGAUGCCCAAUGCUAU-3’和5’-UAAGUAACUUGCUGACUCC-3)’加入到不含血清的培养基中室温混合5分钟后,然后将混合后的Lipofectamine 2000和AIF的siRNA室温混合作用20分钟。
(3)将混合后的Lipofectamine 2000和AIF的siRNA加入到经过PBS清洗的R-HepG2肿瘤细胞中,作用4-6小时后,吸去转染液,换上新鲜的完全培养基继续培养48小时。
(4)转染后的细胞用激光共聚焦显微镜进行检测,在转染成功的细胞中按实验要求加入15μg/ml的熊果酸作用48小时后,用MTT法检测细胞的存活情况,从而确定AIF在熊果酸诱导的细胞死亡中所起的作用。
实验结果见图13,其中:(A)用激光共聚焦显微镜检测用siRNA对AIF的沉默情况。(B)AIF的沉默对UA诱导的R-HepG2细胞死亡的影响。R-HepG2细胞预先经20μM/L的caspase抑制剂作用后,再经UA处理48小时;而对于siRNA实验,细胞经AIF siRNA转染后,也同样再经UA处理48小时,最后用MTT法检测R-HepG2细胞的死亡百分率。图中每个数据都代表独立三次实验的平均值,**P<0.01,表示实验组与对照组之间存在极显著的差异。
实施例4:熊果酸对人肝癌多药耐药细胞株R-HepG2体内抑制作用
1.体内抗肿瘤实验:雌性的4-6周龄裸鼠由香港中文大学动物实验中心提供,动物实验的所有操作规范都严格按照香港中文大学的规定进行。R-HepG2肿瘤细胞(1×107)接种于裸鼠的背部,待肿瘤的大小长到80mm3左右后,可开始进行实验。将准备进行实验的裸鼠随机分为3组,每组8只裸鼠:分别为双蒸水对照组,熊果酸50mg/kg给药组及熊果酸75mg/kg给药组。每天对裸鼠进行灌胃给药,连续给药14天。给药过程中,每两天进行体重和肿瘤大小的测量,肿瘤的大小按照计算公式1/2×长×宽×高计算。
实验结果见图14,(A)实验结果,(B)实验照片。UA抑制R-HepG2细胞在裸鼠体内的生长。R-HepG2肿瘤细胞接种于老鼠的背部,在连续给药的14天中,每两天对裸鼠背部的肿瘤大小进行测量。图表中的数据表示肿瘤体积的平均值(n=8)。
2.毒理学实验:经50mg/kg及75mg/kg熊果酸连续给药14天后,将老鼠处死,药物对动物脾脏的毒性用脾脏指数(脾脏重量/裸鼠体重×1000)进行评价;裸鼠肝脏的损伤情况用两种肝脏特异性酶ALT,AST的释放情况进行评价,而裸鼠心脏的损伤情况用两种心脏特异性酶CK,LDH的泄漏情况进行评价。血浆中AST,ALT,CK和LDH四种酶的活性根据检测试剂盒中的产品实验步骤进行检测(AST和ALT检测试剂盒购买自Biosystems;CK和LDH检测试剂盒购买自Stanbio)。
实验结果见图15,其中:(A)在连续给药的14天中,每两天对裸鼠体重进行称量,图表中的数据表示裸鼠体重的平均值(n=8)。(B)UA对裸鼠脾脏的毒性作用。给药14天结束后,将老鼠处死,称取裸鼠脾脏的重量,用脾脏指数(脾脏指数=脾脏重量/裸鼠体重×1000),图表中的数据表示裸鼠脾脏指数的平均值(n=8)。(C)UA对裸鼠血浆中特异性心脏及肝脏酶LDH,CK,ALT和AST活性的影响。给药14天结束后,将老鼠处死,收集裸鼠心腔内血液,并按实验步骤检测LDH,CK,ALT和AST酶的活性。图表中的数据表示各种酶活性的平均值(n=8)。**P<0.01,表示实验组与对照组之间存在极显著的差异。
3.免疫组化实验:连续给药14天后,将裸鼠处死后取出肿瘤样本,将对照组和给药组的肿瘤样本用4%的多聚甲醛固定48小时。固定结束后,将肿瘤样本进行包埋,将肿瘤放置于一个小容器中,倒入OCT直到覆盖整个肿瘤样本,然后用液氮进行冷冻,使OCT凝固。准备好载玻片,将经过冷冻切片机切片的肿瘤样本(每个肿瘤切片样本的厚度为10μm)黏着于事先准备好的载玻片上,过夜风干。将肿瘤样本用95%的乙醇固定30分钟后,用PBS清洗3次,每次5分钟。然后用含2%BSA(牛血清)的PBS(含0.15%Triton X-100)作用20分钟,再与AIF的一抗(1∶100)在37℃下共孵育2个小时。用PBS清洗10分钟后,用FITC标记的二抗(1∶200)与肿瘤样本在37℃下共孵育1个小时后,用PBS清洗10分钟,最后在荧光显微镜下进行观察拍照。
实验结果见图16。
本发明涉及的参考文献:
[1]F.Z.Chen DS,Analysis on the frequency of herbs used in primary hepatocellular carcinoma.29(2002)187-189.
[2]J.Liu,Pharmacology of oleanolic acid and ursolic acid.Journal of Ethnopharmacology 49(1995)57-68.
[3]Z.Z.Wang P,Wu Z,Distribution of ursolic acid in medicinal plants.Journal of Chinese Medicinal 23(2000)717-722.
[4]Y.Achiwa,K.Hasegawa,T.Komiya,Y.Udagawa,Ursolic acid induces Bax-dependent apoptosis through the caspase-3 pathway in endometrial cancer SNG-II cells.Oncology Reports 13(2005)51-57.
[5]D.Andersson,J.J.Liu,A.Nilsson,R.D.Duan,Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase.AnticancerResearch 23(2003)3317-3322.
[6]B.M.Choi,R.Park,H.O.Pae,J.C.Yoo,Y.C.Kim,C.D.Jun,B.H.Jung,G.S.Oh,H.S.So,Y.M.Kim,H.T.Chung,Cyclic adenosine monophosphate inhibits ursolic acid-induced apoptosis via activation of protein kinase A in human leukaemic HL-60cells.Pharmacology & Toxicology 86(2000)53-58.
[7]Y.L.Hsu,P.L.Kuo,C.C.Lin,Proliferative inhibition,cell-cycle dysregulation,and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells.Life Sciences 75(2004)2303-2316.
[8]X.S.Liu,J.K.Jiang,Induction of apoptosis and regulation of the MAPK pathway by ursolic acid in human leukemia K562 cells.Planta Medica 73(2007)1192-1194.
[9]K.G.Manu KA,Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expression and suppression NF-kappaB mediated activation of bcl-2in B 16F-10 melanoma cells.Int immunopharmacol 8(2008)947-981.
[10]D.M.Zhang,P.M.K.Tang,J.Y.W.Chan,H.M.Lam,S.W.N.Au,S.K.Kong,S.K.W.Tsui,M.M.Y.Waye,T.C.W.Mak,K.P.Fung,Anti-proliferative effect of ursolic acid on multidrug,resistant hepatoma cells R-HepG2 by apoptosis induction.Cancer Biology & Therapy 6(2007)1381-1389.

Claims (2)

1.熊果酸的制备方法,所说的熊果酸的分子式为C30H48O3,分子量456,属于三萜酸类化合物,其特征是将白花蛇舌草全草用乙酸乙酯提取,所得的浸膏进行正相柱及RP-C18反相柱色谱分离,接着采用正己烷-乙酸乙酯-甲醇-水的溶剂体系进行逆流色谱分离,收集目标物质,挥发溶剂后得白色结晶性粉末,即为目的化合物熊果酸,所说的逆流色谱分离体系中正己烷-乙酸乙酯-甲醇-水的体积比为5∶4∶5∶4。
2.权利要求1所述方法制得的熊果酸在治疗肿瘤疾病药物中的用途,其特征是在制备通过AIF介导的Caspase非依赖的细胞凋亡途径克服肝癌多药耐药性的药物中的应用。
CN201010206500A 2010-06-22 2010-06-22 熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途 Pending CN101870720A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010206500A CN101870720A (zh) 2010-06-22 2010-06-22 熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010206500A CN101870720A (zh) 2010-06-22 2010-06-22 熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012100309302A Division CN102600175A (zh) 2010-06-22 2010-06-22 熊果酸在治疗肿瘤疾病药物中的用途

Publications (1)

Publication Number Publication Date
CN101870720A true CN101870720A (zh) 2010-10-27

Family

ID=42995819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010206500A Pending CN101870720A (zh) 2010-06-22 2010-06-22 熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途

Country Status (1)

Country Link
CN (1) CN101870720A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961473A (zh) * 2012-10-12 2013-03-13 牛宇 一种白花蛇舌草抗癌活性组分的制备方法
CN103142620A (zh) * 2013-03-18 2013-06-12 中国科学院新疆理化技术研究所 一种熊果酸在抗肿瘤免疫中的用途
CN104861033A (zh) * 2015-04-17 2015-08-26 浙江海洋学院 一种微波辅助提取白花蛇舌草中熊果酸的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
范杰平: "柿叶中有效成分的提取与分离研究", 《浙江大学博士学位论文》 *
谢艳等: "白花蛇舌草中熊果酸的提取工艺研究", 《天然产物研究与开发》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961473A (zh) * 2012-10-12 2013-03-13 牛宇 一种白花蛇舌草抗癌活性组分的制备方法
CN103142620A (zh) * 2013-03-18 2013-06-12 中国科学院新疆理化技术研究所 一种熊果酸在抗肿瘤免疫中的用途
CN104861033A (zh) * 2015-04-17 2015-08-26 浙江海洋学院 一种微波辅助提取白花蛇舌草中熊果酸的方法

Similar Documents

Publication Publication Date Title
Zhao et al. A flavonoid component from Docynia delavayi (Franch.) Schneid represses transplanted H22 hepatoma growth and exhibits low toxic effect on tumor-bearing mice
Liu et al. An in vivo and in vitro assessment of the anti-inflammatory, antinociceptive, and immunomodulatory activities of Clematis terniflora DC. extract, participation of aurantiamide acetate
He et al. Liquiritin (LT) exhibits suppressive effects against the growth of human cervical cancer cells through activating Caspase-3 in vitro and xenograft mice in vivo
Cheng et al. CRA (Crosolic Acid) isolated from Actinidia valvata Dunn. Radix induces apoptosis of human gastric cancer cell line BGC823 in vitro via down-regulation of the NF-κB pathway
Xing et al. The inhibitory effect of gypenoside stereoisomers, gypenoside L and gypenoside LI, isolated from Gynostemma pentaphyllum on the growth of human lung cancer A549 cells
Venables et al. Isoalantolactone, a sesquiterpene lactone from Artemisia afra Jacq. ex Willd and its in vitro mechanism of induced cell death in HeLa cells
Xiang et al. Chemical composition of total flavonoids from Salvia chinensia Benth and their pro-apoptotic effect on hepatocellular carcinoma cells: potential roles of suppressing cellular NF-κB signaling
Hong et al. Chemical composition, anticancer activities and related mechanisms of the essential oil from Alpinia coriandriodora rhizome
CN106389407B (zh) 茜草活性成分及其组合物、应用
Yang et al. In vitro and in vivo antitumor effects of the diterpene-enriched extract from Taxodium ascendens through the mitochondrial-dependent apoptosis pathway
CN101870720A (zh) 熊果酸的制备方法及其在治疗肿瘤疾病药物中的用途
Xu et al. The effect of prim-O-glucosylcimifugin on tryptase-induced intestinal barrier dysfunction in Caco-2 cells
Lei et al. Cardiotoxicity of Consolida rugulosa, a poisonous weed in Western China
Goswami et al. Antiproliferative potential of a novel parthenin analog P16 as evident by apoptosis accompanied by down-regulation of PI3K/AKT and ERK pathways in human acute lymphoblastic leukemia MOLT-4 cells
CN102600175A (zh) 熊果酸在治疗肿瘤疾病药物中的用途
Assani et al. Anti-proliferative effects of diterpenoids from Sagittaria trifolia L. tubers on colon cancer cells by targeting the NF-κB pathway
Lalrinzuali et al. Sonapatha (Oroxylum indicum) mediates cytotoxicity in cultured HeLa cells by inducing apoptosis and suppressing NF-κB, COX-2, RASSF7 and NRF2
CN108653297A (zh) 以细胞核内组织蛋白酶l为靶点的灵芝酮二醇在制药中的应用
CN101333236A (zh) 克力托辛的制备方法及在抗肿瘤药物中的应用
CN100430065C (zh) 滇重楼茎叶单体皂苷在制药中的应用
Taechakulwanijya et al. Apoptosis induction effect of three jujube cultivars in HepG2 and Jurkat cell lines
CN104974214B (zh) 商陆皂苷元氨基胍衍生物Hu-17及其制备方法
CN107011357A (zh) 一种酸浆苦素b的制备方法及其在抗肺部肿瘤制药中的应用
CN105669630A (zh) 适于用作肝癌靶向药物的脱氧二氢黄当归醇h查尔酮的提取方法
Liu et al. A composition of ursolic acid derivatives from Ludwigia hyssopifolia induces apoptosis in throat cancer cells via the Akt/mTOR and mitochondrial signaling pathways and by modulating endoplasmic reticulum stress

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20101027