新型高效旋流段塞流捕集器
技术领域
本发明涉及一种油气处理装置,尤其是涉及一种段塞流捕集器。
背景技术
随着海洋、沙漠、近海油气田以及越来越多的大型凝析气田的开发,多相混输工艺得到不断的发展,湿气输送能满足管道安全运行要求。
由于大型凝析气田的开发,混输管径越来越大,多相混输过程中段塞流量越来越大,采用普通管式段塞流捕集器已不能满足大流量气液混输段塞流捕集工况。
申请号为200810232329.5的中国发明专利申请,公开了一种断塞流捕集系统,包括罐体、旋流装置、气体整流装置、立式捕雾分离装置、缓冲隔板,罐体右侧顶端垂直安装旋流装置,旋流装置下部筒体内有两级缓冲隔板,两级缓冲隔板再向左靠近罐体中部位置的顶部安装有气体整流装置,罐体左端顶部安装立式捕雾器,下部设有防涡流出口。旋流装置包括旋流筒、气体上升段、气体通过段和锥体筒,旋流筒垂直安装在罐体右端顶部,气体通过段插入旋流筒顶部向旋流筒内延伸,旋流筒内有旋流锥体筒,向下端通过旋流锥体筒过渡到液体通过段,气体上升段上端连接气体通过段,气体通过段重新进入罐体的顶端。
该专利申请通过采用较大的缓冲空间,设置缓冲隔板、切向进口及防涡流出口,减少了段塞流对系统的冲击,降低了容器内的压力波动、保持容器内液面的稳定,使仪表控制系统正常运行;通过设置旋流装置、气体整流装置和聚结捕雾装置,减少了液相夹带,达到了一定的气液分离效果。
但由于该专利申请只采用了旋流分离,而且旋流分离部分内构件太多,制造难度大,气液分离效果并不是很好。当管线清管时,其工况复杂,液体杂质多,内构件容易损坏,检修维护工作量大。由于受结构限制,位于储液段上的旋流分离尺寸不能做得太大,整个装置的储液段不能作为重力分元件使用,当流量较大时,液体在分离段停流时间短,气液来不及分离就从气相出口中被带入下游装置,造成下游装置液量偏多,尤其是在管线清管作业时,易造成溢流的危险;同时,由于切向进口位置高,配管安装难度大,多管储液段时流量分配不均匀,影响分离段塞流捕集效果。
发明内容
为了克服现有技术的上述缺点,本发明提供了一种新型高效旋流段塞流捕集器,能够有效分离和捕集段塞,运行平稳,解决了混输管线段塞流对生产的影响,保证了生产运行的安全。
本发明解决其技术问题所采用的技术方案是:一种新型高效旋流段塞流捕集器,包括一级切线斜入式旋流分离段和管式液相缓冲储存分离段,一级切线斜入式旋流分离段的筒体直接与管式液相缓冲储存分离段连接,设置在一级切线斜入式旋流分离段筒体中下部的入口与斜入式引流管相连;在管式液相缓冲储存分离段左上方、紧邻一级切线斜入式旋流分离段之后,设置有二级气相重力分离段,二级气相重力分离段的气相入口通过旋流分离与重力分离气相连通管与一级切线斜入式旋流分离段连接,二级气相重力分离段的底部通过重力分离降液连通口和多功能气液平衡连通口与管式液相缓冲储存分离段连通。
在所述管式液相缓冲储存分离段左上方设置有入口流量均分装置,所述入口流量均分装置由至少两组“n”型对称管道串联而成,最后一组对称管道通过弯头与斜入式引流管焊接或法兰连通,对称管道直径、斜入式引流管直径均与段塞流捕集器入口管径相同。
所述重力分离降液连通口的上开口端面与二级气相重力分离段的底面齐高,所述多功能气液平衡连通口的上开口端面高于二级气相重力分离段的底面;所述多功能气液平衡连通口的上开口端面与二级气相重力分离段底面的高度差为150mm-250mm。
所述一级切线斜入式旋流分离段的入口通过焊接或法兰与斜入式引流管相连;在所述二级气相重力分离段气相出口内上部安装有气体除雾器;在所述管式液相缓冲储存分离段上设置有气相平衡管,所述气相平衡管接入到二级气相重力分离段的右上方,位于气体除雾器之下。
在二级气相重力分离段顶部设置有人孔;在所述二级气相重力分离段和管式液相缓冲储存分离段之间设置有支座;在所述二级气相重力分离段上顶部设置有附属构件,包括:注水吹扫口、放空口、安全阀口、压力表口、压力变送器口、第一温度计口;在管式液相缓冲储存分离段上还设置有第二温度计口、注氮口和液位计口。
与现有技术相比,本发明的积极效果是:管式液相缓冲储存分离段除了储液功能外,也作为重力分离元件使用,其与二级气相重力分离段形成尺寸更大的重力分离装置,大大增加了液相停留时间,充分保障气液两相分离,减小了二级气相重力分离段的尺寸;由于采用了斜入式引流管改变入口气液流动状态,改变流动方向,并进行气液分层预分,通过一定角度形成切线方向的向下旋流,旋流分离段直径做得更小,效果好,同时不需其它旋流内构件,不用检修、节约投资,同样达到了旋流分离效果;通过在入口设置入口流量均分装置,确保流量平均分配给每一列后续装置,保证段塞流捕集器平稳运行。
由于多功能气液平衡连通口既能降液又兼防气阻功能,提高了二级气相重力分离段的分离效果;同时在二级气相重力分离段中安装了气体除雾器,减少气相带液量,这种结构进一步减少了一级切线斜入式旋流分离段和二级气相重力分离段的尺寸,提高了分离效果,结构设计容易且受力好。
由于管式液相缓冲储存分离段上的气相平衡管与二级气相重力分离段的接入位置高,新型高效旋流段塞流捕集器保证了储液段远段闪蒸气相,能顺利进行二级分离段,减少液相含气量,有利于下游装置液相处理。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的主视图;
图2是本发明的俯视图。
具体实施方式
一种新型高效旋流段塞流捕集器,如图1和图2所示,包括入口流量均分装置1、斜入式引流管2、一级切线斜入式旋流分离段3、二级气相重力分离段4、管式液相缓冲储存分离段5、液相集液管6、气相平衡管7、气体除雾器8、气相出口汇管9、旋流分离与重力分离气相连通管10、注水吹扫口11、人孔12、放空口13、安全阀口14、压力表口15、压力变送器口16、第一温度计口17、注氮口18、多功能气液平衡连通口19、液位计口20、重力分离降液连通口21、第二温度计口22、液相出口23、排污口24、掏沙口25。
入口流量均分装置1通过支座固定在管式液相缓冲储存分离段5左上方,入口流量均分装置1为整个装置的入口部分,由多个串联的“n”型对称管道布置而成,最后一组对称管道通过弯头与斜入式引流管2焊接(或法兰)连通;对称管道直径、斜入式引流管2直径均与段塞流捕集器整个装置入口管径相同。
一级切线斜入式旋流分离段3位于管式液相缓冲储存分离段5左上方,在斜入式引流管2之后,通过焊接方式(或法兰连接)与斜入式引流管2相连,并通过法兰方式与管式液相缓冲储存分离段5连接,气相出口通过旋流分离与重力分离气相连通管10连接,二级气相重力分离段4位于管式液相缓冲储存分离段5左上方,紧邻一级切线斜入式旋流分离段3之后,二级气相重力分离段4的气相入口连接旋流分离与重力分离气相连通管10,二级气相重力分离段4的底部通过重力分离降液连通口21及多功能气液平衡连通口19与管式液相缓冲储存分离段5连通,重力分离降液连通口21的上开口端面与二级气相重力分离段4的底面齐高,主要功能是将二级气相重力分离段4中液体导入管式液相缓冲储存分离段5;多功能气液平衡连通口19的上开口端面高于二级气相重力分离段4的底面,其上开口端面与二级气相重力分离段4底面的高度差可以根据段塞流量的大小设置为150mm-250mm的高度;在二级气相重力分离段4和管式液相缓冲储存分离段5之间还设置有支座,以便更好地支撑和加固二级气相重力分离段4。在二级气相重力分离段4气相出口内上部安装气体除雾器8,管式液相缓冲储存分离段5的气相平衡管7接入到二级气相重力分离段4的右上方,位于气体除雾器8之下。
气相出口汇管9位于二级气相重力分离段4右顶部,与各个二级气相重力分离段4的气相出口焊接连接,液相集液管6位于管式液相缓冲储存分离段5最右下底部,用于收集各储液段液体,以便液相通过液相出口23排入下游装置,液相集液管6上设排污口24、掏沙口25。
为了方便工人进入,还可在二级气相重力分离段4顶部设置人孔12,亦可在管式液相缓冲储存分离段5两端设置人孔;在二级气相重力分离段4上顶部还可设置其他附属构件,如注水吹扫口11、放空口13、安全阀口14、压力表口15、压力变送器口16、第一温度计口17等。在管式液相缓冲储存分离段5上还设置有第二温度计口22、注氮口18、液位计口20,注氮口18设置在左上部,第二温度计口22设置在最右端中线靠下的位置,主要用于测液体温度,液位计口20可以设置三个,分别在管式液相缓冲储存分离段5的左、中、右的适当位置开孔,用于指示储液段液位。
本新型高效旋流段塞流捕集器可以根据段塞流处理量对各主要构件的尺寸、容积、长度、直径、并列的列数等按需要进行详细设计调整。
本发明的工作原理是:入口流量均分装置1通过结构对称方式保证流量均匀分,通过斜入式引流管2的倾斜安装,改变入口气液流动状态,在斜入式引流管2中形成不满流,气液分层预分,引导流体向下流动,便于一级切线斜入式旋流分离段3形成向下螺旋旋流;在一级切线斜入式旋流分离段3通过斜入式引流管2经过气液初步分层后,使流体形成倾角向下,引导流体向下流动并沿切线方向向下进入一级切线斜入式旋流分离段3,在斜向下切线方向与重力共同作用下,产生向下旋流作用,在旋流分离段中,离心力、重力和浮力形成一个倒圆锥型的涡流面,其中:密度大的液相沿铅垂方向沿一级切线斜入式旋流分离段3的内壁流到管式液相缓冲储存分离段5,密度小的气相沿涡旋的中央上升至涡面并流至一级切线斜入式旋流分离段3顶部,气相和液相分别从分离段的顶部和底部排出。此外,由于一级切线斜入式旋流分离段3的筒体直接与管式液相缓冲储存分离段5连接,二者连接口直径相等或稍小于管式液相缓冲储存分离段5的直径;同时,由于一级切线斜入式旋流分离段3的筒体直径远大于其入口管径,加上旋流分离作用,不会形成气阻,液相很容易沿筒体内壁进入管式液相缓冲储存分离段5。由于多功能气液平衡连通口19伸入二级气相重力分离段4内一定高度,当二级气相重力分离段4内液量较小时,其作为管式液相缓冲储存分离段5的气相连通口,防止气阻,当二级气相重力分离段4内液量大、超过多功能气液平衡连通口19伸入二级气相重力分离段4的高度时,液体就通过多功能气液平衡连通口19流入管式液相缓冲储存分离段5中,此时多功能气液平衡连通口19就变成另一个降液连通口。清管时,段塞液相流量大,经入口引流段分层,旋流分离段预分后,此时气相流量相对较小,气相从一级切线斜入式旋流分离段3顶部进入二级气相重力分离段4,由于气相流量小,二级气相重力分离段4有充足的停留时间进行气液分离。