CN101851742A - 一种化合物半导体薄膜的制备方法 - Google Patents

一种化合物半导体薄膜的制备方法 Download PDF

Info

Publication number
CN101851742A
CN101851742A CN200910106258.9A CN200910106258A CN101851742A CN 101851742 A CN101851742 A CN 101851742A CN 200910106258 A CN200910106258 A CN 200910106258A CN 101851742 A CN101851742 A CN 101851742A
Authority
CN
China
Prior art keywords
substrate
preparation
evaporation
evaporation source
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910106258.9A
Other languages
English (en)
Other versions
CN101851742B (zh
Inventor
钟北军
曹文玉
周勇
姜占锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN200910106258.9A priority Critical patent/CN101851742B/zh
Priority to PCT/CN2010/071333 priority patent/WO2010111927A1/en
Priority to US13/258,174 priority patent/US8470692B2/en
Priority to EP10758029.2A priority patent/EP2414556A4/en
Publication of CN101851742A publication Critical patent/CN101851742A/zh
Application granted granted Critical
Publication of CN101851742B publication Critical patent/CN101851742B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池技术领域。本发明提供了一种化合物半导体薄膜的制备方法,其包括:在真空条件下,加热蒸发源中的源材料,使其蒸镀到基片上;所述基片绕其几何中心,在所述基片所在的平面内旋转,所述基片相对水平面倾斜。本发明所提供制备方法制出的化合物半导体薄膜厚度均匀性好,且薄膜面积大;并且工艺简单高效、容易实现,同时本发明能够直接适用于工业生产,具有巨大的商业价值。

Description

一种化合物半导体薄膜的制备方法
技术领域
本发明属于太阳能电池技术领域,特别是涉及太阳能电池中化合物半导体薄膜的制备方法。
背景技术
化合物半导体薄膜系列太阳能电池是各种薄膜太阳能电池中效率最高、最有发展前途的薄膜太阳电池之一,化合物半导体材料由于是已知的半导体材料中光吸收系数最高的,最高达到105/cm;并且没有光致衰退效应的半导体,此外光照甚至会提高其转换效率,因此此类太阳能电池的工作寿命长。有实验结果说明化合物半导体薄膜太阳能电池寿命比寿命较长的单晶硅电池的寿命(一般为40年)还长。而且化合物半导体是直接带隙的半导体材料,最适合薄膜化。
目前制备化合物薄膜半导体方法很多,为了克服现有方法的缺陷,出现了真空蒸发镀膜法。
真空蒸发镀膜法是指在真空条件下,加热蒸发容器中源材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到基片表面,凝结成固态薄膜。采用此法制备的化合物半导体薄膜太阳电池,转化效率高,但是所制备电池面积远小于1cm2,这主要是受蒸发源的发射特性的限制,在制备大面积薄膜时,镀料分布不均匀现象严重,面积愈大不均匀表现愈突出。由于太阳电池要求的面积较大,因此不具有商业应用价值。
为了改进该方法,有人采用基片直线运动,并通过棒状蒸发源蒸发镀膜,这样虽然能够在一定程度上制备较大面积的半导体薄膜,但是其均匀程度还是较低,一般在±10%左右,并且棒状蒸发源很难制备,这是用于为了使蒸发源能够均匀蒸发,必须是棒状蒸发源在蒸发的过程中各个位置温度相同,不存在任何的位置出现过慢或者过快蒸发,甚至蒸发源内部的缺陷分布也会影响蒸发源,使蒸发源某些位置出现过快或者过慢蒸发,因此棒状蒸发源在理论上需要复杂的计算,在工艺加工上也非常困难;整套设备控制精密及价格昂贵。
发明内容
本发明所要解决的技术问题是:现有真空蒸发镀膜法,蒸发源难加工,薄膜不均匀的现象。
本发明提供了一种简单方便、蒸镀均匀的真空蒸镀方法。
一种化合物半导体薄膜的制备方法,其包括:
在真空条件下,加热蒸发源中的源材料,使其蒸镀到基片上;所述基片绕其几何中心,在所述基片所在的平面内旋转,所述基片相对水平面倾斜。
本发明所提供制备方法制出的化合物半导体薄膜厚度均匀性好,且薄膜面积大;并且工艺简单高效、容易实现,同时本发明能够直接适用于工业生产,具有巨大的商业价值。此外本发明可以在原有蒸镀设备上直接改装实施,且改装容易,投入也较低,能够实现较小的设备制备较大尺寸的基片,在实际生产中更具有可实施性。
具体实施方式
一种化合物半导体薄膜的制备方法,其包括:
在真空条件下,加热蒸发源中的源材料,使其蒸镀到基片上;所述基片绕其几何中心,在所述基片所在的平面内旋转,所述基片相对水平面倾斜。
所述化合物半导体薄膜为本领域技术人所公知的,例如CIS薄膜、CIGS薄膜、CuInS2薄膜、CIGSS薄膜、CdS薄膜、CdTe薄膜等。
所述真空条件为本领域技术人员所公知的,一般是指3.0×10-3Pa以下。本发明该优选对蒸镀系统进行烘烤,进一步提高真空度。
所述源材料为本领域技术人所公知,一般为根据所要制得的化合物半导体薄膜选取相应的金属单质或者合金的粉末状固体,例如制备铜铟镓硒半导体薄膜所用的源材料可以为Cu、In、Ga和Se;也可以是CuSe合金、InSe合金、GaSe合金;或者直接使用铜铟镓硒作源材料等。还例如制备CdTe半导体薄膜,可以选取Cd粉和Te粉,也可以选取CdTe作源材料。
所述蒸发源为本领域技术人员所公知的,为源材料的加热蒸发容器,将上述源材料置入蒸发源中,加热蒸发源,源材料受热蒸发。蒸发源按其加热方式的不同有电阻蒸发源、电子束蒸发源、高频感应蒸发源、激光束蒸发源等。
所述基片亦为本领域技术人员所公知的,一般为正方形,材料可以选自各种玻璃和高分子有机物制备的柔性基片,而本发明工艺所使用的基片为普通钠钙玻片上磁控溅射一层1μm的Mo电极层基片。
所述基片在使用前需经过超声波清洗,以保证基片洁净。
所述蒸发源根据所述源材料的选取的不同,可以设置一个或者多个。若直接选取铜铟镓硒作源材料,即可设置一个蒸发源。若选取Cu、In、Ga和Se作为源材料,就分别设置Cu蒸发源、In蒸发源、Ga蒸发源和Se蒸发源四个蒸发源。
所述蒸镀为本领域技术人员所公知的。
本发明具体的步骤如下:
首先将经过超声波清洗的基片倾斜固定在蒸发源的正上方,向各蒸发源中铺入源材料;然后将体系抽真空,加热基片加热到300-600℃并恒温保持,加热蒸发源,并逐渐调整各个蒸发源的蒸镀速度;调整基片旋转速度,打开挡板,开始蒸镀;蒸镀结束后,关闭挡板,继续给基片加热一段时间,使化合物半导体薄膜反应更充分;然后基片自然冷却到常温,关闭抽真空系统并向体系中内缓慢充入保护气。在体系内气压达到大气压时,将基片取出,基片上就蒸镀上了一层化合物半导体薄膜。
所述基片的旋转速度优选为3-100r/min。
所述基片与水平面的夹角优选为5-30度。更优选为7-8度。
本发明所述与水平面的夹角指锐角夹角。
若为多个蒸发源,本发明还优选多个蒸发源位于同一水平圆的圆周等分点上。
所述基片的几何中心位于所述水平圆的圆心处的垂线上。
所述水平圆的半径优选为基片边长的8~10倍。
这样,由于蒸发源的均匀分布,基片在旋转过程中可以实现多种元素的同时蒸镀,并根据蒸发源蒸发的蒸发流分布特点,使基片倾斜一定的角度,这样基片上薄膜的厚度可以实现一定的补偿作用,因此这样制备的薄膜化学成分均匀性更好,并且在较大面积上可以实现均匀镀膜。
一般控制各蒸发源的蒸镀速率在0.3-16nm/min。
所述保护气为本领域技术人员所公知的,一般为高纯氩气或者氮气。
本发明制出的化合物半导体薄膜,按照其边长三等分将其均匀分成形状相同9个区域,之后测量该整片薄膜的均匀性,测试结果表明薄膜厚度的均匀性均在±5%以内;而使用现有蒸镀法制备相当面积基片的薄膜均匀性一般在±17.5%,最好的也只能能够达到±10%。
本发明制出的化合物半导体薄膜,各元素比例分布均匀,能够较好的控制较大面积上薄膜的成分,用EDS分析基片各区域的各组成元素比例,其结果说明基片各个区域成分几乎相同,本发明特别适合于制备对成分比例控制要求严格的化合物半导体薄膜材料,如多晶薄膜太阳电池CIS层、CIGS层、CuInS2层、CIGSS层、CdS、CdTe等。
本发明制出的化合物半导体薄膜具有优良的光电性能,制备的CIGS太阳电池(电池尺寸15×15cm2)在AM1.5光强条件下测试,其最高电池转换效率达到14.93%,已经具有商业生产价值。
本发明继承了真空蒸发工艺的优点,可以很好的控制薄膜的晶体质量和电学性质,并且工艺简单高效、容易实现,此外本发明可以在原有蒸镀设备上直接改装,且改装容易,投入也较低,能够实现较小的设备制备较大尺寸的基片(15×15cm2),在实际生产中更具有可实施性。
以下结合具体实施例对本发明作进一步的阐述。
实施例1
(1)将经过超声波清洗的基片,牢固夹持在基片夹具上,使基片与水平面的夹角为8度。所述基片为15×15cm2的普通钠钙玻璃上磁控溅射一层1μm的Mo电极层基片。
(2)将分别盛有Cu、In、Ga和Se的蒸发源均匀固定在同一水平圆周上,即将水平圆周四等分,四个蒸发圆位于四个等分点上。所述水平圆周的半径为基片边长的9.0倍。
(3)将体系抽真空到3.0×10-3Pa,之后对整个蒸镀系统进行烘烤除气,进一步提高真空度到2.0×10-4Pa,同时加热基片到500℃并保持该温度。
(4)调整各个蒸发源到一定的蒸镀速度,Cu蒸发源的蒸镀速度为15nm/min,In蒸发源的蒸镀速度为12nm/min、Ga蒸发源的蒸镀速度为7nm/min、Se蒸发源的蒸镀速度为35nm/min。
(5)调整基片旋转转速,设定基片旋转转速5rad/min。在调整好各个设定的参数后打开各个蒸发源的蒸发挡板开始蒸镀,蒸镀50min,达到蒸镀时间后关闭蒸发挡板,继续加热3分钟之后停止基片加热,待基片自然冷却到常温;
(6)最后,关闭抽真空系统并向真空腔内缓慢充入高纯氮气使真空腔内气压达到大气压,将基片取出,在基片上就蒸镀上了一层薄膜。产品记作A1。
实施例2
与实施例1所不同的是,基片与水平面的夹角为5度。所述水平圆周的半径为基片长边长的8.0倍,基片旋转转速20rad/min,其他部分同实施例1。产品记作A2。
实施例3
与实施例1所不同的是,基片与水平面的夹角为30度,所述水平圆周的半径为基片长边长的10倍,基片旋转转速90rad/min。其他部分同实施例1。产品记作A3。
实施例4
本实施例制备工艺与实施例1基本相同,只是将基片改换成CBD沉积法沉积一层CdS层的基片,此外将蒸发源材料换成金属Cd和Te,并且其蒸发速率调整为32nm/分和47nm/分,转速调整为90转每分,蒸镀时间为33分钟;其他部分同实施例1。产品记作A4。
实施例5
与实施例4所不同的是,设定基片旋转转速5rad/min,倾角调整到30度。其他部分同实施例4。产品记作A5。
对比例1
与实施例1所不同的是,所述基片不倾斜,于水平面无夹角。其他部分同实施例1。产品记作D1。
对比例2
与实施例1所不同的是,所述基片倾斜35度,即于水平面的夹角为35度。其他部分同实施例1。产品记作D2。
对比例3
与实施例4所不同的是,所述基片倾斜35度,即于水平面的夹角为35度。其他部分同实施例4。产品记作D3。
性能测试:
薄膜厚度均匀性
将薄膜A1-A5以及D1-D3按照图1分区,分别用Xp-2台阶仪测定各个分区薄膜厚度。其厚度分别记作x1、x2、x3、x4、x5、x6、x7、x8、x9。其平均数为x0,本发明选用(xi-x0)/x0(i=1~9)的最大值和最小值,来评价薄膜厚度均匀性。
光转换效率
光电转换效率的测量是通过首先测量电池的J-V特性,然后计算出来的,电池的J-V特性的测试是在实验室太阳光模拟器(AM1.5)下进行的,采用氙灯作为光源。模拟器的光强采用天津电子18所205计量站提供的单晶Si标准电池进行校准,调节模拟器光源的输出功率,使标准电池的短路电流达到标定值,电池的测试温度为25℃。
薄膜化学成分均匀性
薄膜化学成分均匀性是将薄膜A1-A5以及D1-D3按照图1分区,分别用美国NORAN公司QUEST型X-射线能谱仪测定各个分区薄膜的原子比值。其原子比值分别记作y1、y2、y3、y4、y5、y6、y7、y8、y9。其平均数为y0,本发明选用(yi-y0)/y0(i=1~9)的最大值和最小值,来评价薄膜成分均匀性。
表1
  实施例   厚度均匀性   光转换效率
  A1   ±1.2%   14.939%
  A2   ±3.17%   10.930%
  A3   ±2.56%   11.341%
  D1   -8.36%~8.07%   2.419%
  D2   -9.07%~7.56%   2.851%
表2
  实施例   厚度均匀性   化学成分均匀性
  A4   ±2.8%   -1.35%~2.8%
  A5   ±4.7%   -3.98%~4.77%
  D3   -9.65%~8.07%   -11.3%~35.8%
从表1可以看出本发明在制备铜铟镓锡时,通过实施例和对比例比较,薄膜厚度的均匀性有了明显的提高。而且其光转化效率也有较大幅度提高。
从表2可以看出本发明在制备硫化镉时,通过实施例和对比例比较,薄膜厚度的均匀性有了明显的提高。而且薄膜化学成分均匀性有了一定提高。

Claims (10)

1.一种化合物半导体薄膜的制备方法,其包括:在真空条件下,加热蒸发源中的源材料,使其蒸镀到基片上;其特征在于:所述基片绕其几何中心,在所述基片所在的平面内旋转,所述基片相对水平面倾斜。
2.根据权利要求1所述的制备方法,其特征在于:所述基片与水平面的夹角为5-30度。
3.根据权利要求2所述的制备方法,其特征在于:所述基片与水平面的夹角为7-8度。
4.根据权利要求1所述的制备方法,其特征在于:所述基片的旋转速度为3-100r/min。
5.根据权利要求1所述的制备方法,其特征在于:所述蒸发源的个数为至少两个,所述蒸发源位于同一水平圆的圆周等分点上。
6.根据权利要求5所述的制备方法,其特征在于:所述基片为正方形,所述水平圆的半径为基片的边长的8~10倍。
7.根据权利要求5所述的制备方法,其特征在于:所述基片的几何中心位于所述水平圆的圆心处的垂线上。
8.根据权利要求1所述的制备方法,其特征在于:所述蒸发源的蒸发速度为0.3-16nm/min。
9.根据权利要求1所述的制备方法,其特征在于:所述蒸镀的时间为30-60min。
10.根据权利要求1所述的制备方法,其特征在于:蒸镀时,所述基片的温度为300-600℃。
CN200910106258.9A 2009-03-31 2009-03-31 一种化合物半导体薄膜的制备方法 Expired - Fee Related CN101851742B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200910106258.9A CN101851742B (zh) 2009-03-31 2009-03-31 一种化合物半导体薄膜的制备方法
PCT/CN2010/071333 WO2010111927A1 (en) 2009-03-31 2010-03-25 Method and device for preparing compound semiconductor film
US13/258,174 US8470692B2 (en) 2009-03-31 2010-03-25 Method and device for preparing compound semiconductor film
EP10758029.2A EP2414556A4 (en) 2009-03-31 2010-03-25 METHOD AND DEVICE FOR PRODUCING A COMPOSITE SURFACE LAYER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910106258.9A CN101851742B (zh) 2009-03-31 2009-03-31 一种化合物半导体薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN101851742A true CN101851742A (zh) 2010-10-06
CN101851742B CN101851742B (zh) 2012-07-04

Family

ID=42803417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910106258.9A Expired - Fee Related CN101851742B (zh) 2009-03-31 2009-03-31 一种化合物半导体薄膜的制备方法

Country Status (4)

Country Link
US (1) US8470692B2 (zh)
EP (1) EP2414556A4 (zh)
CN (1) CN101851742B (zh)
WO (1) WO2010111927A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194726A (zh) * 2013-04-08 2013-07-10 无锡舒玛天科新能源技术有限公司 一种铜铟镓硒薄膜的制造工艺
CN106517147A (zh) * 2016-12-09 2017-03-22 北京科技大学 制备高纯度高导热碳纳米管阵列热界面材料的方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2966282B1 (fr) * 2010-10-18 2013-02-15 Nexcis Controle de la stoechiometrie de couches i-iii-vi pour des applications photovoltaiques a partir de conditions d'electrolyse perfectionnees.
KR101397451B1 (ko) * 2013-01-16 2014-05-21 한국과학기술연구원 Cu(In,Ga)Se2 나노로드 또는 나노와이어의 제조방법 및 이를 포함하는 재료
TWI580807B (zh) * 2016-10-28 2017-05-01 財團法人工業技術研究院 蒸鍍設備與利用此設備之蒸鍍方法
CN107248534B (zh) * 2017-05-27 2018-10-16 华中科技大学 一种成分连续渐变的半导体合金薄膜及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3623292B2 (ja) * 1995-11-21 2005-02-23 株式会社アルバック 真空蒸着用基板傾斜自公転装置
KR20020088091A (ko) 2001-05-17 2002-11-27 (주)한백 화합물 반도체 제조용 수평 반응로
CN2583111Y (zh) * 2002-12-04 2003-10-29 新知科技股份有限公司 选择性镀膜装置
JP2004231993A (ja) 2003-01-28 2004-08-19 Murata Mfg Co Ltd 成膜装置
US7229669B2 (en) * 2003-11-13 2007-06-12 Honeywell International Inc. Thin-film deposition methods and apparatuses
CN100500931C (zh) * 2004-04-30 2009-06-17 鸿富锦精密工业(深圳)有限公司 真空镀膜装置
JP4974504B2 (ja) * 2005-10-13 2012-07-11 株式会社半導体エネルギー研究所 成膜装置、発光装置の作製方法
JP2009041040A (ja) * 2007-08-06 2009-02-26 Ulvac Japan Ltd 真空蒸着方法および真空蒸着装置
CN100575539C (zh) * 2008-03-21 2009-12-30 南开大学 多元共蒸发制备铟镓锑类多晶薄膜的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194726A (zh) * 2013-04-08 2013-07-10 无锡舒玛天科新能源技术有限公司 一种铜铟镓硒薄膜的制造工艺
CN106517147A (zh) * 2016-12-09 2017-03-22 北京科技大学 制备高纯度高导热碳纳米管阵列热界面材料的方法及装置
CN106517147B (zh) * 2016-12-09 2018-07-27 北京科技大学 制备高纯度高导热碳纳米管阵列热界面材料的方法及装置

Also Published As

Publication number Publication date
EP2414556A1 (en) 2012-02-08
US20120015505A1 (en) 2012-01-19
WO2010111927A1 (en) 2010-10-07
CN101851742B (zh) 2012-07-04
US8470692B2 (en) 2013-06-25
EP2414556A4 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
Razykov et al. Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells
Dimmler et al. Scaling‐up of CIS technology for thin‐film solar modules
Chen et al. A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga) Se2 absorbers without extra Se supply
Lin et al. Preparation of Cu2ZnSnS4 (CZTS) sputtering target and its application to the fabrication of CZTS thin-film solar cells
Frantz et al. Cu (In, Ga) Se2 thin films and devices sputtered from a single target without additional selenization
Li et al. Fabrication of Cu (In, Ga) Se2 thin films solar cell by selenization process with Se vapor
CN101851742B (zh) 一种化合物半导体薄膜的制备方法
Lammer et al. Sodium co-evaporation for low temperature Cu (In, Ga) Se2 deposition
Akcay et al. Development of a CZTS solar cell with CdS buffer layer deposited by RF magnetron sputtering
US20100006426A1 (en) Method for depositing an oxide layer on absorbers of solar cells
Feng et al. Fabrication and characterization of Cu2ZnSnS4 thin films for photovoltaic application by low-cost single target sputtering process
Choi et al. Influences of thickness-uniformity and surface morphology on the electrical and optical properties of sputtered CdTe thin films for large-area II–VI semiconductor heterostructured solar cells
Liang et al. Optimizing the ratio of Sn4+ and Sn2+ in Cu2ZnSn (S, Se) 4 precursor solution via air environment for highly efficient solar cells
Ouyang et al. Annealing treatment of Cu (In, Ga) Se2 absorbers prepared by sputtering a quaternary target for 13.5% conversion efficiency device
Zhao et al. Fabrication and characterization of Cu2ZnSnS4 thin films by sputtering a single target at different temperature
Zeng et al. Effect of S/(S+ Se) ratio during the annealing process on the performance of Cu2ZnSn (S, Se) 4 solar cells prepared by sputtering from a quaternary target
Gremenok et al. Preparation of Cu (In, Ga) Se2 thin film solar cells by two-stage selenization processes using N2 gas
Hu et al. Pulsed laser deposited and sulfurized Cu2ZnSnS4 thin film for efficient solar cell
Rockett et al. Growth of CuInSe2 by two magnetron sputtering techniques
Wei et al. Fabrication of in-situ Ti-doped CuGaS2 thin films for intermediate band solar cell applications by sputtering with CuGaS2: Ti targets
Malaquias et al. Controlled bandgap CuIn1− xGax (S0. 1Se0. 9) 2 (0.10≤ x≤ 0.72) solar cells from electrodeposited precursors
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
Zhang et al. Fabrication of 4.9% efficient Cu2ZnSnS4 solar cell using electron-beam evaporated CdS buffer layer
CN103548153A (zh) 具有均匀的Ga分布的CIGS薄膜的制造方法
Yang et al. Compositional, structural, morphological, and optical characterization of magnetron sputtered CZTS thin films from various argon flow rate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20200331

CF01 Termination of patent right due to non-payment of annual fee