CN101833638A - 无源超高频电子标签芯片数字基带处理器及其控制方法 - Google Patents

无源超高频电子标签芯片数字基带处理器及其控制方法 Download PDF

Info

Publication number
CN101833638A
CN101833638A CN201010171413A CN201010171413A CN101833638A CN 101833638 A CN101833638 A CN 101833638A CN 201010171413 A CN201010171413 A CN 201010171413A CN 201010171413 A CN201010171413 A CN 201010171413A CN 101833638 A CN101833638 A CN 101833638A
Authority
CN
China
Prior art keywords
module
data
input
control machine
state control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010171413A
Other languages
English (en)
Inventor
文光俊
朱学勇
何珠玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201010171413A priority Critical patent/CN101833638A/zh
Publication of CN101833638A publication Critical patent/CN101833638A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无源超高频电子标签芯片数字基带处理器及其控制方法。无源超高频电子标签芯片数字基带处理器,包括状态控制机模块、解码器模块、编码器模块、循环校验模块、存储器访问控制模块、输入预处理模块、输出预处理模块、伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块;所述状态控制机模块与输入预处理模块、循环校验模块、输出预处理模块、存储器访问控制模块、伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块直接连接。本发明的有益效果是:可以有效的降低数字基带处理器的功耗。

Description

无源超高频电子标签芯片数字基带处理器及其控制方法
技术领域
本发明属于射频识别技术领域,尤其涉及一种射频识别系统中面向超高频(UHF)频段的射频识别(RFID)电子标签芯片数字基带处理器。
背景技术
射频识别(RFID,Radio Frequency Identification)技术是利用射频方式进行远距离的通信以达到物品识别的目的,可用来追踪和管理几乎所有物理对象,在工业自动化,商业自动化,交通运输控制管理,防伪等众多领域,甚至军事用途具有广泛的应用前景,目前已引起了广泛的关注。
为了适应远距离识别应用的需要,ISO/IEC推出了针对频率为超高频(UHF)频段(860~960MHz),用于物品管理的无接触通信空气接口参数的ISO/IEC18000-6系列标准,该系列标准包括了ISO/IEC 18000-6A,ISO/IEC 18000-6B,ISO/工EC 18000-6C三种类型的无源超高频电子标签。
无源超高频电子标签具有作用距离远,成本低的特点,典型的无源超高频电子标签的芯片包括三个主要部分,分别为射频模拟前端,数字基带处理器和多次性编程(MTP,Multi-Time Program)存储器。
射频模拟前端主要包括整流电路、基准稳压电路、调制电路、解调电路、复位电路和时钟电路。其中整流电路是将接收下来的射频信号转化为所需要的直流电源,基准稳压电路是在不同的距离下,为后级模块和数字基带处理器提供稳定的电压输入,解调电路从射频信号恢复出数字基带处理器所需的幅移键控(ASK,Amplitude Shift Keying)信号输出已解调数据到数字基带处理器,调制电路采用反向散射调制的方法对数字基带处理器输出的待调制数据进行调制,实现标签到阅读器的数据传输,时钟电路为数字基带处理器提供稳定的时钟输入信号,复位电路为数字基带处理器提供所需的复位输入信号。
在无源超高频电子标签芯片的设计中,为了实现更远的作用距离,需要提高射频模拟前端的整流电路的整流效率,同时降低电路各部分的功耗,传统的无源超高频电子标签芯片设计主要集中在射频模拟前端的整流电路的高效率设计以及整个射频模拟前端电路的低功耗设计,然而数字基带处理器作为实现电子标签芯片功能的主要逻辑模块,电路规模非常大,其功耗已经可以与射频模拟前端的功耗相比拟,甚至大于射频模拟前端的功耗,占据整个电子标签芯片的功耗的主要部分,因此,降低数字基带处理器的功耗也成为电子标签芯片设计的主要问题。
现有的电子标签芯片数字基带处理器如图1所示,包括一个解码器模块、编码器模块、循环校验模块、状态控制机模块和存储器访问控制模块。当电子标签芯片数字基带处理器接收到从射频模拟前端的解调电路传送过来的已解调数据时,解码器模块接收已解调数据,对已解调数据进行解码,输出已解码数据到状态控制机模块,状态控制机模块接收到已解码数据后,将已解码数据发送给循环校验模块完成对已解码数据的循环校验,同时状态控制机模块对已解码数据进行指令分析和数据处理,并根据指令分析和数据处理结果要求通过存储器访问控制模块访问MTP存储器,将读取后的MTP存储器的数据发送给编码器模块,经编码器模块进行编码然后输出待调制数据到射频模拟前端的调制电路。在该系统方案中,数字基带处理器芯片中所有模块电路采用一个相同时钟频率的系统时钟,即采用射频模拟前端时钟电路提供的时钟输入,为了满足较低的解码误码率,该系统时钟频率一般较高,因此,现有的电子标签芯片数字基带处理器中,采用该系统时钟的所有模块电路均工作在高速状态下,数字基带处理器所有模块电路功耗较大。另外,现有的数字基带处理器所有模块均在射频模拟前端复位电路提供的复位输入信号有效的情况下同时进行复位,复位完成后所有模块电路均一直处于工作状态,直到数字基带处理器断电,数字基带处理器工作状态中所有模块电路均消耗功率,数字基带处理器的功耗过大。
发明内容
本发明的目的是针对现有技术中的无源超高频电子标签芯片的数字基带处理器功耗过大的缺点,提出了一种无源超高频电子标签芯片数字基带处理器及其控制方法。
为了实现上述目的,本发明的技术方案是:无源超高频电子标签芯片数字基带处理器,包括状态控制机模块、解码器模块、编码器模块、循环校验模块和存储器访问控制模块,其特征在于,还包括输入预处理模块、输出预处理模块、伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块;所述状态控制机模块与输入预处理模块、循环校验模块、输出预处理模块、存储器访问控制模块、伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块直接连接,所述解码器模块分别与输入预处理模块和循环校验模块连接,所述循环校验模块和输出预处理模块和编码器模块连接,所述存储器访问控制模块与输出预处理模块连接;所述解码器模块接收已解调数据后,经解码器模块解码,输出已解码数据,已解码数据分两路,一路到输入预处理模块,一路到循环校验模块;所述输入预处理模块完成对已解码数据的输入预处理,生成待处理数据和待处理命令输出到状态控制机模块;同时循环校验模块完成对已解码数据的循环校验后,生成循环校验结果输出到状态控制机模块;状态控制机模块检测循环校验结果并接收待处理数据和待处理命令,经状态控制机模块分析和处理后,生成五路控制信号分别到伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块,生成地址信号到存储器访问控制模块,并输出待发送伪随机数到输出预处理模块;存储器访问控制模块根据地址信号通过MTP存储器输入输出接口访问MTP存储器并输出待发送存储器数据到输出预处理模块;所述的输出预处理模块接收待发送伪随机数和待发送存储器数据,经输出预处理模块生成待发送数据到循环校验模块;循环校验模块完成对待发送数据的循环码编码,生成待编码数据并输出到编码器模块;所述编码器模块完成待编码数据的编码,生成待调制数据并输出到射频模拟前端的调制电路;所述时钟产生模块对时钟输入端的时钟信号进行分频产生各个模块所需的时钟信号,复位产生模块对复位输入端的复位信号进行同步处理产生各个模块所需的复位信号。
上述解码器模块、编码器模块、循环校验模块、存储器访问控制模块、输入预处理模块、输出预处理模块、伪随机数发生器模块、碰撞计数器模块或定时计数器模块包括正边沿门控逻辑单元。
上述正边沿门控逻辑单元包括三个输入端和一个输出端,三个输入端分别为使能输入端、复位输入端和时钟输入端,输出端为门控时钟输出端,使能输入端与复位输入端通过或门与锁存器的数据输入端连接,时钟输入端分为两路,一路与锁存器的低电平有效使能输入端连接,另一路和锁存器的数据输出端同与门连接,与门的输出端即为门控时钟输出端;本正边沿门控逻辑只有当使能输入端或者复位输入端为高电平时,时钟输入端的时钟信号输出到门控时钟输出端。
上述状态控制机模块包括负边沿门控逻辑单元。
上述负边沿门控逻辑单元包括三个输入端和一个输出端,三个输入端分别为使能输入端、复位输入端和时钟输入端,输出端为门控时钟输出端,使能输入端与复位输入端通过输入端的或门与锁存器的数据输入端连接,时钟输入端分为两路,一路与锁存器的高电平有效使能输入端连接,另一路和锁存器的数据取反输出端同输出端的或门连接,输出端的或门的输出端即为门控时钟输出端。
上述输入预处理模块包括正边沿门控逻辑单元、再同步电路单元、串并变换单元和命令解析单元;正边沿门控逻辑单元的门控时钟输出端与再同步电路单元、串并变换单元和命令解析单元连接用于对再同步电路单元、串并变换单元和命令解析单元进行选择性开启和关闭;所述的再同步单元接收已解码数据,经再同步单元生成两路已同步数据,一路已同步数据到串并变换单元,一路已同步数据到命令解析单元;串并变换单元对已同步数据进行串并变换,输出待处理数据到状态控制机模块;命令解析单元对已同步数据进行命令解析,输出待处理命令到状态控制机模块。
上述输出预处理模块包括正边沿门控逻辑单元、输入选择单元和并串变换单元;正边沿门控逻辑单元的门控时钟输出端与并串变换单元连接用于对并串变换单元进行选择性开启和关闭;所述的输入选择单元接收待发送伪随机数和待发送存储器数据,经输入选择单元选择,输出到并串变换单元,经并串变换单元进行并串变换输出待发送数据到循环校验模块进行循环码编码。
为了实现本发明的目的,本发明还提供了无源超高频电子标签芯片数字基带处理器控制方法,包括步骤:
步骤(a):复位产生模块对所有模块进行复位后,状态控制机模块开启解码器模块,然后关断状态控制机模块自身时钟,状态控制机模块处于休眠状态;
步骤(b):解码器模块开始检测已解调数据,当检测到有效帧数据时,解码器模块唤醒状态控制机模块;
步骤(c):状态控制机模块开启输入预处理模块和循环校验模块,解码器模块接收已解调数据,经解码器模块解码,输出已解码数据,已解码数据分两路,一路到输入预处理模块,一路到循环校验模块;输入预处理模块完成对已解码数据的输入预处理,生成待处理数据和待处理命令输出到状态控制机模块;同时循环校验模块完成对已解码数据的循环校验,生成循环校验结果输出到状态控制机模块;
步骤(d):当状态控制机模块检测到循环校验模块对已解码数据的循环校验完成时,状态控制机模块关断解码器模块、输入预处理模块和循环校验模块,同时状态控制机模块接收待处理数据和待处理命令,经状态控制机模块分析和处理后生成控制信号,根据控制信号开启并对伪随机数发生器模块、碰撞计数器模块和定时计数器模块进行操作,并在操作完成后关闭伪随机数发生器模块、碰撞计数器模块和定时计数器模块;
步骤(e):状态控制机模块开启输出预处理模块和存储器访问控制模块,状态控制机模块输出地址信号到存储器访问控制模块,并输出待发送伪随机数到输出预处理模块;存储器访问控制模块根据地址信号通过MTP存储器输入输出端口访问MTP存储器,输出待发送存储器数据到输出预处理模块;
步骤(f):状态控制机模块开启循环校验码模块和编码器模块,输出预处理模块接收待发送伪随机数和待发送存储器数据,经输出预处理模块生成待发送数据到循环校验模块;循环校验模块完成对待发送数据的循环码编码,并将循环码编码后的待编码数据输出到编码器模块;编码器模块完成对循环码编码后的待编码数据的编码,输出待调制数据到射频模拟前端的调制电路;
步骤(g):当编码器模块编码完成后,状态控制机模块关闭输出预处理模块、循环校验模块、存储器访问控制模块和编码器模块。
本发明的有益效果:由于本发明所述数字基带处理器的各个功能模块被进一步的细化,新增加的时钟产生模块对时钟输入端的时钟信号进行分频产生各个模块的时钟信号,因而可以根据各个模块自身的性质选择不同的频率,例如解码器模块、编码器模块、时钟产生模块和复位产生模块的时钟频率可以采用1.28MHz,其它模块的时钟频率则可以选择320KHz或640KHz,因此部分模块相对现有技术可以在较低的时钟频率下工作,因此降低了相应模块的功耗。相应的,本发明的数字基带处理器控制方法由于可以选择性的对各个模块进行开启和关闭,同一时刻数字基带处理器只有少数几个模块电路处于工作状态,而现有技术中所有模块电路均一直处于工作状态直到数字基带处理器断电,因此本发明的控制方法的数字基带处理器相对现有技术具有更低的功耗。
附图说明
图1是现有的电子标签芯片数字基带处理器的结构原理图。
图2是本发明的电子标签芯片数字基带处理器的结构原理图。
图3是本发明的数字基带处理器的解码器模块的结构原理图。
图4是本发明的数字基带处理器的循环校验模块的结构原理图。
图5是本发明的数字基带处理器的输入预处理模块的结构原理图。
图6是本发明的数字基带处理器的状态控制机模块的结构原理图。
图7是本发明的数字基带处理器的输出预处理模块的结构原理图。
图8是本发明的数字基带处理器的编码器模块的结构原理图。
图9是本发明的数字基带处理器的存储器访问控制模块的结构原理图。
图10是本发明的数字基带处理器的伪随机数发生器模块的结构原理图。
图11是本发明的数字基带处理器的碰撞计数器模块的结构原理图。
图12是本发明的数字基带处理器的定时计数器模块的结构原理图。
图13是本发明的数字基带处理器的时钟产生模块的结构原理图。
图14是本发明的数字基带处理器的复位产生模块的结构原理图。
图15是本发明的数字基带处理器的的正边沿门控逻辑单元的结构原理图。
图16是本发明的数字基带处理器的的负边沿门控逻辑单元的结构原理图。
附图标记说明:解码器模块101、循环校验模块102、输入预处理模块103、状态控制机模块104、输出预处理模块105、编码器模块106、存储器访问控制模块107、伪随机数发生器模块108、碰撞计数器模块109、定时计数器模块110、时钟产生模块111、复位产生模块112。
具体实施方式
下面结合附图和具体的具体实施例对本发明做进一步的说明:
如图2所示,无源超高频电子标签芯片数字基带处理器,包括:状态控制机模块104、解码器模块101、编码器模块106、循环校验模块102、存储器访问控制模块107、输入预处理模块103、输出预处理模块105、伪随机数发生器模块108、碰撞计数器模块109、定时计数器模块110、时钟产生模块111和复位产生模块112。所述状态控制机模块104与输入预处理模块103、循环校验模块102、输出预处理模块105、存储器访问控制模块107、伪随机数发生器模块108、碰撞计数器模块109、定时计数器模块110、时钟产生模块111和复位产生模块112直接连接,所述解码器模块101分别与输入预处理模块103和循环校验模块102连接,所述循环校验模块102和输出预处理模块105和编码器模块106连接,所述存储器访问控制模块107与输出预处理模块105连接;解码器模块101接收已解调数据,经解码器模块101解码,输出已解码数据,已解码数据分两路,一路到输入预处理模块103,一路到循环校验模块102。输入预处理模块103完成对已解码数据的输入预处理,生成待处理数据和待处理命令输出到状态控制机模块104。同时,循环校验模块102完成对已解码数据的循环校验,生成循环校验结果输出到状态控制机模块104。状态控制机模块104检测循环校验结果,并接收待处理数据和待处理命令,经状态控制机模块104分析和处理后,生成五路控制信号分别到伪随机数发生器模块108、碰撞计数器模块109、定时计数器模块110、时钟产生模块111和复位产生模块112,并输出地址信号到存储器访问控制模块107,和输出待发送伪随机数到输出预处理模块105。存储器访问控制模块107根据地址信号通过MTP存储器输入输出接口访问MTP存储器,输出待发送存储器数据到输出预处理模块105。所述的输出预处理模块105接收待发送伪随机数和待发送存储器数据,经输出预处理模块105生成待发送数据到循环校验模块102。循环校验模块102完成对待发送数据的循环码编码,生成待编码数据并输出到编码器模块107。所述的编码器模块107完成对循环码编码后的待编码数据的编码,生成待调制数据并输出到射频模拟前端的调制电路。所述时钟产生模块111对时钟输入端的时钟信号进行分频产生各个模块所需的时钟信号,复位产生模块112对复位输入端的复位信号进行同步处理产生各个模块所需的复位信号。
下面结合具体的附图对每个具体的模块进行详细的描述。
如图15所示,正边沿门控逻辑单元包括三个输入端和一个输出端,三个输入端分别为使能(en)输入端、复位(rst)输入端和时钟(clk)输入端,输出端为门控时钟(clk-gated)输出端,使能(en)输入端与复位(rst)输入端通过或门(OR)与锁存器(Latch)的数据输入端(D)连接,时钟(clk)输入端分为两路,一路与锁存器的低电平有效使能(EN)输入端连接,另一路和锁存器的数据输出端(Q)通过与门(AND)连接,与门的输出端即为门控时钟(clk-gated)输出端。本正边沿门控逻辑只有当使能输入端或者复位输入端为高电平时,时钟输入端的具有正边沿有效的特点的时钟信号输出到门控时钟输出端,如此,可以使得具有正边沿门控逻辑的各个模块可以通过关闭模块的时钟信号有选择性的被开启和关闭,因而这些模块不必一直处于工作状态直到数字基带处理器断电,因此可以降低功耗,本实施例中,解码器模块101、编码器模块107、循环校验模块102、存储器访问控制模块107、输入预处理模块103、输出预处理模块105、伪随机数发生器模块107、碰撞计数器模块108和定时计数器模块109均采用正边沿门控逻辑单元,当然,上述模块也可以有选择性的采用正边沿门控逻辑单元。
如图16所示,负边沿门控逻辑单元包括三个输入端和一个输出端,三个输入端分别为使能(en)输入端、复位(rst)输入端和时钟(clk)输入端,输出端为门控时钟(clk-gated)输出端,时钟输入端与复位输入端通过输入端的或门(OR1)与锁存器(Latch)的数据输入端(D)连接,时钟(clk)输入端分为两路,一路与锁存器的高电平有效使能(E)输入端连接,另一路和锁存器的数据取反输出端(QN)通过输出端的或门(OR2)连接,输出端的或门(OR2)的输出端即为门控时钟(clk-gated)输出端。本负边沿门控逻辑单元只有当en输入端或者rst输入端为高电平时,时钟输入端的具有负边沿有效的特点的时钟信号输出到门控时钟(clk-gated)输出端,如此,可以使得具有负边沿门控逻辑单元的各个模块可以通过关闭模块的时钟信号有选择性的被开启和关闭,因而这些模块不必一直处于工作状态直到数字基带处理器断电,因此可以降低功耗,本实施中,只有状态控制机模块104采用负边沿门控逻辑。
如图3所示,解码器模块101包括正边沿门控逻辑单元和解码器单元,解码器模块101用于对射频模拟前端的解调电路的已解调数据进行解码。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与解码器单元连接用于对解码器单元进行选择性开启和关闭;解码器单元接收来自射频模拟前端的解调电路输出的已解调数据;经解码器单元解码,输出已解码数据,已解码数据分两路,一路到输入预处理模块103,一路到循环校验模块102。
如图4所示,循环校验模块102包括正边沿门控逻辑单元、循环校验单元和输入选择单元,循环校验模块102用于对已解码数据进行循环码校验,和对待发送数据进行循环码编码。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与循环校验单元连接用于对循环校验单元进行选择性开启和关闭;所述的输入选择单元接收已解码数据和待发送数据,对已解码数据和待发送数据进行选择,输出到循环校验单元。循环校验单元输出分为两路,一路输出循环校验结果到状态控制机模块104,一路输出待编码数据到编码器模块106。
如图5所示,输入预处理模块103包括正边沿门控逻辑单元、再同步电路单元、串并变换单元和命令解析单元。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与再同步电路单元、串并变换单元和命令解析单元连接用于对再同步电路单元、串并变换单元和命令解析单元进行选择性开启和关闭;所述的再同步单元接收已解码数据,经再同步单元生成两路已同步数据,一路已同步数据到串并变换单元,一路已同步数据到命令解析单元。串并变换单元对已同步数据进行串并变换,输出待处理数据到状态控制机模块104。命令解析单元对已同步数据进行命令解析,输出待处理命令到状态控制机模块104。
如图6所示,状态控制机模块104包括负边沿门控逻辑单元、自关断电路单元和状态控制机单元。负边沿门控逻辑单元的使能(en)输入端与自关断电路单元输出端连接,负边沿门控逻辑单元的门控时钟(clk-gated)输出端与状态控制机单元连接,用于状态控制机模块104对状态控制机模块104自身进行选择性开启和关闭;状态控制机模块104检测循环校验结果,并接收待处理数据和待处理命令,经状态控制机模块104分析和处理后,生成五路控制信号分别到伪随机数发生器模块108、碰撞计数器模块109和定时计数器模块110,时钟产生模块111和复位产生模块112,并输出地址信号到存储器访问控制模块107,和输出待发送伪随机数到输出预处理模块105。
如图7所示,输出预处理模块105包括正边沿门控逻辑单元、输入选择单元和并串变换单元。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与并串变换单元连接用于对并串变换单元进行选择性开启和关闭;所述的输入选择单元接收待发送伪随机数和待发送存储器数据,经输入选择单元选择,输出到并串变换单元,经并串变换单元进行并串变换输出待发送数据到循环校验模块102进行循环码编码。
如图8所示,编码器模块106包括正边沿门控逻辑单元和编码器单元,编码器模块106用于对待编码数据进行编码输出待调制数据到射频模拟前端的调制电路。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与编码器单元连接用于对编码器单元进行选择性开启和关闭;编码器单元接收待编码数据,经编码器单元编码输出待调制数据到射频模拟前端的调制电路。
如图9所示,存储器访问控制模块107包括正边沿门控逻辑单元和存储器访问控制单元。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与存储器访问控制单元连接用于对存储器访问控制单元进行选择性开启和关闭;存储器访问控制单元接收状态控制机模块104输出的地址信号,生成MTP存储器访问信号,输出到MTP存储器输入输出端口,通过MTP存储器输入输出端口访问MTP存储器,输出待发送存储器数据到输出预处理模块105。
如图10所示,伪随机数发生器模块108包括正边沿门控逻辑单元和伪随机数发生器单元。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与伪随机数发生器单元连接用于对伪随机数发生器单元进行选择性开启和关闭;伪随机数发生器单元接收状态控制机控制信号,在状态控制机模块104控制信号控制下生成伪随机数输出到状态控制机模块104。
如图11所示,碰撞计数器模块109包括正边沿门控逻辑单元和碰撞计数器单元。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与碰撞计数器单元连接用于对碰撞计数器单元进行选择性开启和关闭;碰撞计数器单元接收状态控制机控制信号,在状态控制机模块104控制信号控制下对碰撞计数器单元进行加减操作,在碰撞计数器单元计数值为零时,输出计数器为0信号到状态控制机模块104。
如图12所示,定时计数器模块110包括正边沿门控逻辑单元和定时计数器单元。正边沿门控逻辑单元的门控时钟(clk-gated)输出端与定时计数器单元连接用于对定时计数器单元进行选择性开启和关闭;定时计数器单元接收状态控制机控制信号,在状态控制机模块104控制信号控制下启动对定时计数器单元的定时,在定时计数器单元计数器值为零时,输出定时信号到状态控制机模块104。
如图13所示,时钟产生模块111包括分频电路单元和时钟输出选择单元。分频电路单元接收射频模拟前端时钟电路输出的时钟输入信号,生产多路分频时钟信号到时钟输出选择单元。时钟输出选择单元在状态控制机模块104控制信号的控制下,输出各模块所需时钟信号。
如图14所示,复位产生模块112包括延迟同步计数器单元和复位产生单元。延迟同步计数器单元接收射频模拟前端的复位电路输出的复位输入信号,经延迟同步计数器单元输出到复位产生单元,复位产生单元在状态控制机模块104控制信号的控制下输出各模块所需复位信号。
下面对本具体实施例所述的数字基带处理器对应的具体控制方法做进一步的说明,一种无源超高频电子标签芯片数字基带处理器控制方法,包括步骤:
步骤(a):复位产生模块112对所有模块进行复位后,状态控制机模块104开启解码器模块101,然后关断状态控制机模块104自身时钟,状态控制机模块104处于休眠状态;
步骤(b):解码器模块101开始检测已解调数据,当检测到有效帧数据时,解码器模块101唤醒状态控制机模块104;
步骤(c):状态控制机模块104开启输入预处理模块103和循环校验模块102,解码器模块101接收已解调数据,经解码器模块101解码,输出已解码数据,已解码数据分两路,一路到输入预处理模块103,一路到循环校验模块102。输入预处理模块103完成对已解码数据的输入预处理,生成待处理数据和待处理命令输出到状态控制机模块104。同时,循环校验模块102完成对已解码数据的循环校验,生成循环校验结果输出到状态控制机模块104。
步骤(d):当状态控制机模块104检测到循环校验模块102对已解码数据的循环校验完成时,状态控制机模块104关断解码器模块101、输入预处理模块103和循环校验模块102,同时状态控制机模块104接收待处理数据和待处理命令,经状态控制机模块104分析和处理后生成控制信号,根据控制信号开启并对伪随机数发生器模块108、碰撞计数器模块109和定时计数器模块110进行操作,并在操作完成后关闭伪随机数发生器模块108、碰撞计数器模块109和定时计数器模块111;
步骤(e):状态控制机模块104开启输出预处理模块105和存储器访问控制模块107,状态控制机模块104输出地址信号到存储器访问控制模块107,并输出待发送伪随机数到输出预处理模块。存储器访问控制模块107根据地址信号通过MTP存储器输入输出端口访问MTP存储器,输出待发送存储器数据到输出预处理模块105
步骤(f):状态控制机模块104开启循环校验码模块102和编码器模块106,输出预处理模块105接收待发送伪随机数和待发送存储器数据,经输出预处理模块105生成待发送数据到循环校验模块102。循环校验模块102完成对待发送数据的循环码编码,并将循环码编码后的待编码数据输出到编码器模块106。编码器模块106完成对循环码编码后的待编码数据的编码,输出待调制数据到射频模拟前端的调制电路。
步骤(g):当编码器模块106编码完成后,状态控制机模块104关闭输出预处理模块105、循环校验模块102、存储器访问控制模块107和编码器模块106。
综上所述,由于本发明所述数字基带处理器的各个功能模块被进一步的细化,新增加的时钟产生模块111对时钟输入端的时钟信号进行分频产生各个模块的时钟信号,因而可以根据各个模块自身的性质选择不同的频率,例如解码器模块101、编码器模块106、时钟产生模块111和复位产生模块112的时钟频率可以采用1.28MHz,其它模块的时钟频率则可以选择320KHz或640KHz,因此部分模块相对现有技术可以在较低的时钟频率下工作,因此降低了相应模块的功耗。相应的,本发明的数字基带处理器控制方法由于可以选择性的对各个模块进行开启和关闭,同一时刻数字基带处理器只有少数几个模块电路处于工作状态,而现有技术中所有模块电路均一直处于工作状态直到数字基带处理器断电,因此本发明的控制方法的数字基带处理器相对现有技术具有更低的功耗。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (8)

1.无源超高频电子标签芯片数字基带处理器,包括状态控制机模块、解码器模块、编码器模块、循环校验模块和存储器访问控制模块,其特征在于,还包括输入预处理模块、输出预处理模块、伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块;所述状态控制机模块与输入预处理模块、循环校验模块、输出预处理模块、存储器访问控制模块、伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块直接连接,所述解码器模块分别与输入预处理模块和循环校验模块连接,所述循环校验模块和输出预处理模块和编码器模块连接,所述存储器访问控制模块与输出预处理模块连接;所述解码器模块接收已解调数据后,经解码器模块解码,输出已解码数据,已解码数据分两路,一路到输入预处理模块,一路到循环校验模块;所述输入预处理模块完成对已解码数据的输入预处理,生成待处理数据和待处理命令输出到状态控制机模块;同时循环校验模块完成对已解码数据的循环校验后,生成循环校验结果输出到状态控制机模块;状态控制机模块检测循环校验结果并接收待处理数据和待处理命令,经状态控制机模块分析和处理后,生成五路控制信号分别到伪随机数发生器模块、碰撞计数器模块、定时计数器模块、时钟产生模块和复位产生模块,生成地址信号到存储器访问控制模块,并输出待发送伪随机数到输出预处理模块;存储器访问控制模块根据地址信号通过MTP存储器输入输出接口访问MTP存储器并输出待发送存储器数据到输出预处理模块;所述的输出预处理模块接收待发送伪随机数和待发送存储器数据,经输出预处理模块生成待发送数据到循环校验模块;循环校验模块完成对待发送数据的循环码编码,生成待编码数据并输出到编码器模块;所述编码器模块完成待编码数据的编码,生成待调制数据并输出到射频模拟前端的调制电路;所述时钟产生模块对时钟输入端的时钟信号进行分频产生各个模块所需的时钟信号,复位产生模块对复位输入端的复位信号进行同步处理产生各个模块所需的复位信号。
2.根据权利要求1所述的无源超高频电子标签芯片数字基带处理器,其特征在于,所述解码器模块、编码器模块、循环校验模块、存储器访问控制模块、输入预处理模块、输出预处理模块、伪随机数发生器模块、碰撞计数器模块或定时计数器模块包括正边沿门控逻辑单元。
3.根据权利要求2所述的无源超高频电子标签芯片数字基带处理器,其特征在于,所述正边沿门控逻辑单元包括三个输入端和一个输出端,三个输入端分别为使能输入端、复位输入端和时钟输入端,输出端为门控时钟输出端,使能输入端与复位输入端通过或门与锁存器的数据输入端连接,时钟输入端分为两路,一路与锁存器的低电平有效使能输入端连接,另一路和锁存器的数据输出端同与门连接,与门的输出端即为门控时钟输出端;本正边沿门控逻辑只有当使能输入端或者复位输入端为高电平时,时钟输入端的时钟信号输出到门控时钟输出端。
4.根据权利要求1所述的无源超高频电子标签芯片数字基带处理器,其特征在于,所述状态控制机模块包括负边沿门控逻辑单元。
5.根据权利要求4所述的无源超高频电子标签芯片数字基带处理器,其特征在于,所述负边沿门控逻辑单元包括三个输入端和一个输出端,三个输入端分别为使能输入端、复位输入端和时钟输入端,输出端为门控时钟输出端,使能输入端与复位输入端通过输入端的或门与锁存器的数据输入端连接,时钟输入端分为两路,一路与锁存器的高电平有效使能输入端连接,另一路和锁存器的数据取反输出端同输出端的或门连接,输出端的或门的输出端即为门控时钟输出端。
6.根据权利要求1所述的无源超高频电子标签芯片数字基带处理器,其特征在于,所述输入预处理模块包括正边沿门控逻辑单元、再同步电路单元、串并变换单元和命令解析单元;正边沿门控逻辑单元的门控时钟输出端与再同步电路单元、串并变换单元和命令解析单元连接用于对再同步电路单元、串并变换单元和命令解析单元进行选择性开启和关闭;所述的再同步单元接收已解码数据,经再同步单元生成两路已同步数据,一路已同步数据到串并变换单元,一路已同步数据到命令解析单元;串并变换单元对已同步数据进行串并变换,输出待处理数据到状态控制机模块;命令解析单元对已同步数据进行命令解析,输出待处理命令到状态控制机模块。
7.根据权利要求1所述的无源超高频电子标签芯片数字基带处理器,其特征在于,所述输出预处理模块包括正边沿门控逻辑单元、输入选择单元和并串变换单元;正边沿门控逻辑单元的门控时钟输出端与并串变换单元连接用于对并串变换单元进行选择性开启和关闭;所述的输入选择单元接收待发送伪随机数和待发送存储器数据,经输入选择单元选择,输出到并串变换单元,经并串变换单元进行并串变换输出待发送数据到循环校验模块进行循环码编码。
8.无源超高频电子标签芯片数字基带处理器控制方法,其特征在于,包括步骤:
步骤(a):复位产生模块对所有模块进行复位后,状态控制机模块开启解码器模块,然后关断状态控制机模块自身时钟,状态控制机模块处于休眠状态;
步骤(b):解码器模块开始检测已解调数据,当检测到有效帧数据时,解码器模块唤醒状态控制机模块;
步骤(c):状态控制机模块开启输入预处理模块和循环校验模块,解码器模块接收已解调数据,经解码器模块解码,输出已解码数据,已解码数据分两路,一路到输入预处理模块,一路到循环校验模块;输入预处理模块完成对已解码数据的输入预处理,生成待处理数据和待处理命令输出到状态控制机模块;同时循环校验模块完成对已解码数据的循环校验,生成循环校验结果输出到状态控制机模块;
步骤(d):当状态控制机模块检测到循环校验模块对已解码数据的循环校验完成时,状态控制机模块关断解码器模块、输入预处理模块和循环校验模块,同时状态控制机模块接收待处理数据和待处理命令,经状态控制机模块分析和处理后生成控制信号,根据控制信号开启并对伪随机数发生器模块、碰撞计数器模块和定时计数器模块进行操作,并在操作完成后关闭伪随机数发生器模块、碰撞计数器模块和定时计数器模块;
步骤(e):状态控制机模块开启输出预处理模块和存储器访问控制模块,状态控制机模块输出地址信号到存储器访问控制模块,并输出待发送伪随机数到输出预处理模块;存储器访问控制模块根据地址信号通过MTP存储器输入输出端口访问MTP存储器,输出待发送存储器数据到输出预处理模块;
步骤(f):状态控制机模块开启循环校验码模块和编码器模块,输出预处理模块接收待发送伪随机数和待发送存储器数据,经输出预处理模块生成待发送数据到循环校验模块;循环校验模块完成对待发送数据的循环码编码,并将循环码编码后的待编码数据输出到编码器模块;编码器模块完成对循环码编码后的待编码数据的编码,输出待调制数据到射频模拟前端的调制电路;
步骤(g):当编码器模块编码完成后,状态控制机模块关闭输出预处理模块、循环校验模块、存储器访问控制模块和编码器模块。
CN201010171413A 2010-05-13 2010-05-13 无源超高频电子标签芯片数字基带处理器及其控制方法 Pending CN101833638A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010171413A CN101833638A (zh) 2010-05-13 2010-05-13 无源超高频电子标签芯片数字基带处理器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010171413A CN101833638A (zh) 2010-05-13 2010-05-13 无源超高频电子标签芯片数字基带处理器及其控制方法

Publications (1)

Publication Number Publication Date
CN101833638A true CN101833638A (zh) 2010-09-15

Family

ID=42717703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010171413A Pending CN101833638A (zh) 2010-05-13 2010-05-13 无源超高频电子标签芯片数字基带处理器及其控制方法

Country Status (1)

Country Link
CN (1) CN101833638A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156899A (zh) * 2011-04-25 2011-08-17 广州中大微电子有限公司 Rfid标签芯片时钟管理单元
CN102479308A (zh) * 2010-11-23 2012-05-30 上海华虹Nec电子有限公司 射频识别防碰撞电路及其实现方法
CN106055026A (zh) * 2016-07-20 2016-10-26 深圳市博巨兴实业发展有限公司 一种微控制器soc中实时时钟单元
CN106954250A (zh) * 2017-03-14 2017-07-14 中国电子科技集团公司第五十四研究所 一种降低基带处理芯片功耗的装置
CN108171304A (zh) * 2017-12-19 2018-06-15 重庆湃芯微电子有限公司 一种基于epc/c-1/g-2标准的超高频rfid标签数字基带低功耗系统
CN108241877A (zh) * 2016-12-26 2018-07-03 航天信息股份有限公司 无源超声波标签及超声波信号处理方法
CN109871933A (zh) * 2019-01-21 2019-06-11 思力科(深圳)电子科技有限公司 射频识别电子标签的基带处理器
CN110929830A (zh) * 2019-11-01 2020-03-27 浙江悦和科技有限公司 一种uhf-rfid标签芯片的基带架构及状态控制方法
CN113411114A (zh) * 2021-05-10 2021-09-17 广州万协通信息技术有限公司 一种用于实现超高频通讯信号增强的系统及方法
CN113836960A (zh) * 2021-11-25 2021-12-24 广州智慧城市发展研究院 一种控制系统
CN114401014A (zh) * 2022-01-04 2022-04-26 电子科技大学 一种低功耗的并串转换电路

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479308A (zh) * 2010-11-23 2012-05-30 上海华虹Nec电子有限公司 射频识别防碰撞电路及其实现方法
CN102479308B (zh) * 2010-11-23 2014-10-08 上海华虹宏力半导体制造有限公司 射频识别防碰撞电路及其实现方法
CN102156899A (zh) * 2011-04-25 2011-08-17 广州中大微电子有限公司 Rfid标签芯片时钟管理单元
CN106055026A (zh) * 2016-07-20 2016-10-26 深圳市博巨兴实业发展有限公司 一种微控制器soc中实时时钟单元
CN106055026B (zh) * 2016-07-20 2019-04-12 深圳市博巨兴实业发展有限公司 一种微控制器soc中实时时钟单元
CN108241877A (zh) * 2016-12-26 2018-07-03 航天信息股份有限公司 无源超声波标签及超声波信号处理方法
CN106954250A (zh) * 2017-03-14 2017-07-14 中国电子科技集团公司第五十四研究所 一种降低基带处理芯片功耗的装置
CN108171304A (zh) * 2017-12-19 2018-06-15 重庆湃芯微电子有限公司 一种基于epc/c-1/g-2标准的超高频rfid标签数字基带低功耗系统
CN109871933A (zh) * 2019-01-21 2019-06-11 思力科(深圳)电子科技有限公司 射频识别电子标签的基带处理器
CN110929830A (zh) * 2019-11-01 2020-03-27 浙江悦和科技有限公司 一种uhf-rfid标签芯片的基带架构及状态控制方法
CN113411114A (zh) * 2021-05-10 2021-09-17 广州万协通信息技术有限公司 一种用于实现超高频通讯信号增强的系统及方法
CN113411114B (zh) * 2021-05-10 2022-08-09 广州万协通信息技术有限公司 一种用于实现超高频通讯信号增强的系统及方法
CN113836960A (zh) * 2021-11-25 2021-12-24 广州智慧城市发展研究院 一种控制系统
CN114401014A (zh) * 2022-01-04 2022-04-26 电子科技大学 一种低功耗的并串转换电路

Similar Documents

Publication Publication Date Title
CN101833638A (zh) 无源超高频电子标签芯片数字基带处理器及其控制方法
CN112232098B (zh) 基于超高频rfid标签芯片的超低功耗数字基带系统
CN108183731A (zh) 一种超高频无源rfid数字基带的低功耗架构系统
CN108171304A (zh) 一种基于epc/c-1/g-2标准的超高频rfid标签数字基带低功耗系统
CN203118006U (zh) 一种超高频rfid阅读器
CN101942936B (zh) 锁离合状态采集电路的控制方法
CN103095622B (zh) 一种适用于iso14443协议的bpsk信号恢复电路
CN201413526Y (zh) 一种新型的具有不同频率的射频识别芯片
CN101655922B (zh) 无源超高频射频识别芯片反向散射链路频率生成电路及方法
CN101915025B (zh) 锁离合状态采集电路及集成该电路的射频识别电子标签
CN102289708B (zh) 一种离合状态监控电路及采用该电路的电子标签
CN103065188A (zh) 一种非接触式ic卡的解码电路
CN204288323U (zh) Pke遥控感应锁
CN208298223U (zh) Uhf rfid 标签芯片电路
CN202502553U (zh) 一种基于物联网的射频识别技术的门禁识别系统
CN209625207U (zh) 一种物联网信息感知soc芯片系统
CN104850812B (zh) 一种射频卡的节能读卡电路、方法及系统
CN104639483B (zh) 基于14443‑bpsk副载波数字相关解调电路
CN103177285A (zh) 无源低功耗超高频电子标签芯片及低功耗控制方法
CN202189386U (zh) 一种离合状态监控电路及采用该电路的电子标签
CN203260043U (zh) 超高频rfid的pie解码与crc校验同步进行的电路
CN204667497U (zh) 一种nfc密码锁
CN202663410U (zh) 基于时分多址的可见光通信接收装置
CN101916353B (zh) 锁离合状态采集电路及采用该电路的射频识别装置
CN104573794B (zh) 一种用于无源射频卡的频率调制返回电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100915