CN101819449B - Subthreshold MOSFET band-gap reference source - Google Patents

Subthreshold MOSFET band-gap reference source Download PDF

Info

Publication number
CN101819449B
CN101819449B CN2010101503457A CN201010150345A CN101819449B CN 101819449 B CN101819449 B CN 101819449B CN 2010101503457 A CN2010101503457 A CN 2010101503457A CN 201010150345 A CN201010150345 A CN 201010150345A CN 101819449 B CN101819449 B CN 101819449B
Authority
CN
China
Prior art keywords
pmosfet
nmosfet
terminal
voltage
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101503457A
Other languages
Chinese (zh)
Other versions
CN101819449A (en
Inventor
虞春英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN2010101503457A priority Critical patent/CN101819449B/en
Publication of CN101819449A publication Critical patent/CN101819449A/en
Application granted granted Critical
Publication of CN101819449B publication Critical patent/CN101819449B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种抗工艺涨落的亚阈值MOSFET带隙基准源,它由负温度系数电流产生电路和启动电路、正温度系数电流产生电路、基准电压产生电路组成,其中本发明的负温度系数电流产生电路采用了体电位调制技术,将其中亚阈值NMOSFET(用于产生负温度系数电压)的体端从衬底独立出来,与本发明的调制电压发生器的输出端相连。根据实际工艺涨落情况,通过调整调制电压发生器中的变阻器,产生合适的调制电压来补偿由于工艺涨落导致的亚阈值NMOSFET阈值电压的变化,进而大大降低工艺涨落对亚阈值MOSFET带隙基准源的输出基准电压的不利影响。

The invention discloses a sub-threshold MOSFET bandgap reference source that is resistant to process fluctuations. It is composed of a negative temperature coefficient current generation circuit, a start-up circuit, a positive temperature coefficient current generation circuit, and a reference voltage generation circuit. The negative temperature coefficient of the present invention is The coefficient current generating circuit adopts the body potential modulation technology, and the body terminal of the subthreshold NMOSFET (used to generate the negative temperature coefficient voltage) is separated from the substrate and connected to the output terminal of the modulation voltage generator of the present invention. According to the actual process fluctuations, by adjusting the rheostat in the modulation voltage generator, an appropriate modulation voltage is generated to compensate the change of the threshold voltage of the sub-threshold NMOSFET due to process fluctuations, thereby greatly reducing the impact of process fluctuations on the sub-threshold MOSFET bandgap detrimental effect on the output reference voltage of the reference source.

Description

亚阈值MOSFET带隙基准源Subthreshold MOSFET Bandgap Reference

所属技术领域 Technical field

本发明涉及一种亚阈值MOSFET带隙基准源,属于集成电路技术领域。The invention relates to a sub-threshold MOSFET bandgap reference source, which belongs to the technical field of integrated circuits.

背景技术 Background technique

在带隙基准电压源方面,需要解决的问题包括:1、随着CMOS工艺尺寸不断缩小,传统带隙基准源中的双极晶体管的性能退化和兼容性问题日趋严重;2、当电源电压低于带隙电压值(1.26V)时,传统电压模式的带隙基准源电路难以适用。鉴于上述问题,一种亚阈值MOSFET带隙基准源结构被人们提出并得到了广泛研究。例如,Xia Xiaojuan,Xie Liang and Sun Weifeng,“A CMOS Voltage Reference Based on VGS and ΔVGS in the Weak InversionRegion,”Chinese Journal of Semiconductors,vol.29(8),pp.1523-1528,2008.由于MOSFET在亚阈值区的传输特性与双极晶体管类似,上述结构采用亚阈值MOSFET代替了双极晶体管,大大降低了电路复杂度和功耗。同时,亚阈值MOSFET带隙基准源可以采用电流模式,实现任意低的基准输出电压,而不受带隙电压的限制。另外,与传统的带隙基准源一样,亚阈值MOSFET带隙基准源的输出电压能够实现良好的温度系数。In terms of bandgap reference voltage sources, the problems that need to be solved include: 1. With the continuous shrinking of CMOS process size, the performance degradation and compatibility problems of bipolar transistors in traditional bandgap reference sources are becoming more and more serious; 2. When the power supply voltage is low When the bandgap voltage value (1.26V), the traditional voltage mode bandgap reference source circuit is difficult to apply. In view of the above problems, a sub-threshold MOSFET bandgap reference source structure has been proposed and widely studied. For example, Xia Xiaojuan, Xie Liang and Sun Weifeng, "A CMOS Voltage Reference Based on V GS and ΔV GS in the Weak InversionRegion," Chinese Journal of Semiconductors, vol.29(8), pp.1523-1528, 2008. Since The transmission characteristics of MOSFET in the subthreshold region are similar to those of bipolar transistors. The above structure uses subthreshold MOSFETs instead of bipolar transistors, which greatly reduces circuit complexity and power consumption. At the same time, the sub-threshold MOSFET bandgap reference source can use current mode to achieve an arbitrarily low reference output voltage without being limited by the bandgap voltage. In addition, like traditional bandgap references, the output voltage of subthreshold MOSFET bandgap references can achieve good temperature coefficient.

但是,由于亚阈值MOSFET结构中MOSFET的阈值电压等参数受工艺涨落影响较大,所以在不同工艺角下基准输出电压值存在较大偏差(最大偏差达到±13.1%),难以适用于很多对电路精度要求较高的场合。However, since the threshold voltage and other parameters of the MOSFET in the sub-threshold MOSFET structure are greatly affected by process fluctuations, there is a large deviation in the reference output voltage value under different process corners (the maximum deviation reaches ±13.1%), which is difficult to apply to many pairs. It is suitable for occasions where high circuit accuracy is required.

发明内容 Contents of the invention

本发明要解决的技术问题是,提出一种抗工艺涨落的亚阈值MOSFET带隙基准源,以克服现有技术的亚阈值MOSFET带隙基准源的输出电压受工艺偏差影响较大,难以适用于很多对电路精度要求较高的场合的不足。The technical problem to be solved by the present invention is to propose a sub-threshold MOSFET bandgap reference source that is resistant to process fluctuations, so as to overcome the fact that the output voltage of the sub-threshold MOSFET bandgap reference source in the prior art is greatly affected by process deviation and is difficult to apply It is a shortcoming in many occasions that require high circuit precision.

本发明的亚阈值MOSFET带隙基准源采取以下技术方案,它由本发明的负温度系数电流产生电路和现有技术的启动电路、正温度系数电流产生电路、基准电压产生电路组成。启动电路保证上电后整个基准电压源时刻处于导通工作状态,正温度系数电流产生电路用于产生一个与绝对温度成正比的电流支路,负温度系数电流产生电路用于产生一个与绝对温度成反比的电流支路,上述两条支路电流在基准电压产生电路中汇合并相互抵消温度的影响(即电流模式),最终通过电阻产生一个零温度系数的基准电压。其中本发明的负温度系数电流产生电路采用了体电位调制技术,它包括现有技术的一个用于监视的NMOSFET、一个偏置电阻、二个电流镜和一个极点调节电容,其特征在于它还包括:The sub-threshold MOSFET bandgap reference source of the present invention adopts the following technical scheme, which is composed of the negative temperature coefficient current generating circuit of the present invention, the prior art starting circuit, the positive temperature coefficient current generating circuit, and the reference voltage generating circuit. The start-up circuit ensures that the entire reference voltage source is in the on-state at all times after power-on. The positive temperature coefficient current generation circuit is used to generate a current branch proportional to the absolute temperature, and the negative temperature coefficient current generation circuit is used to generate a current branch proportional to the absolute temperature. Inversely proportional to the current branch, the above two branch currents converge in the reference voltage generating circuit and cancel the influence of temperature (that is, the current mode), and finally generate a reference voltage with zero temperature coefficient through the resistance. Wherein the negative temperature coefficient current generating circuit of the present invention adopts the body potential modulation technology, and it includes an NMOSFET for monitoring, a bias resistor, two current mirrors and a pole adjustment capacitor in the prior art, and is characterized in that it also include:

一个体电位可调的NMOSFET,工作在亚阈值区,用于产生负温度系数电压;A bulk potential-tunable NMOSFET operating in the subthreshold region for generating a negative temperature coefficient voltage;

一个调制电压发生器,用于产生调制电压。A modulation voltage generator for generating the modulation voltage.

所述的用于产生负温度系数电压的NMOSFET的体端从衬底独立出来,与所述的调制电压发生器的输出端相连。The body terminal of the NMOSFET used to generate the negative temperature coefficient voltage is separated from the substrate and connected to the output terminal of the modulation voltage generator.

所述的调制电压发生器由一个变阻器、一个运算放大器和二个滤波电容组成,其中变阻器用于改变调制电压发生器的输出电压,运算放大器用于电压缓冲,而二个滤波电容用于滤除电路引入的噪声和其他干扰。The modulation voltage generator is composed of a rheostat, an operational amplifier and two filter capacitors, wherein the rheostat is used to change the output voltage of the modulation voltage generator, the operational amplifier is used for voltage buffering, and the two filter capacitors are used to filter out Noise and other disturbances introduced by circuits.

将调制电压发生器输出的调制电压接入亚阈值NMOSFET(用于产生负温度系数电压)的体端,能够改变该NMOSFET的阈值电压等参数,进而改变其产生的负温度系数电压及其所在模块产生的负温度系数电流值,最终达到改变带隙基准源的输出基准电压的目的。实际应用中,可根据由于工艺涨落导致的输出基准电压偏差情况,针对性地调整调制电压发生器中的变阻器,产生合适的调制电压,大大降低工艺涨落对亚阈值MOSFET带隙基准源的输出基准电压的不利影响。The modulation voltage output by the modulation voltage generator is connected to the body terminal of the sub-threshold NMOSFET (used to generate negative temperature coefficient voltage), which can change the parameters such as the threshold voltage of the NMOSFET, and then change the negative temperature coefficient voltage generated by it and the module in which it is located The generated negative temperature coefficient current value finally achieves the purpose of changing the output reference voltage of the bandgap reference source. In practical applications, according to the deviation of the output reference voltage due to process fluctuations, the rheostat in the modulation voltage generator can be adjusted in a targeted manner to generate a suitable modulation voltage, which greatly reduces the impact of process fluctuations on the sub-threshold MOSFET bandgap reference source adverse effect on the output reference voltage.

本发明的优点和积极效果:通过调制电压发生器输出电压对亚阈值NMOSFET(用于产生负温度系数电压)的体电位调制作用,最终使得亚阈值MOSFET带隙基准源的输出基准电压在不同工艺角情况下较为一致,从而避免了工艺偏差的不利影响,在不明显增加电路复杂度的情况极大地提高电路的稳定性和鲁棒性。The advantages and positive effects of the present invention: by modulating the output voltage of the voltage generator to the body potential modulation of the sub-threshold NMOSFET (used to generate negative temperature coefficient voltage), the output reference voltage of the sub-threshold MOSFET bandgap reference source is finally made in different processes It is relatively consistent in the corner case, thereby avoiding the adverse effects of process deviations, and greatly improving the stability and robustness of the circuit without significantly increasing the circuit complexity.

附图说明 Description of drawings

图1为现有技术的亚阈值MOSFET带隙基准源电路图;Fig. 1 is the sub-threshold MOSFET bandgap reference source circuit diagram of prior art;

图2为现有技术带隙基准源在不同工艺角下的基准电压随温度变化曲线图;FIG. 2 is a curve diagram of the reference voltage variation with temperature of the prior art bandgap reference source under different process angles;

图3为本发明的亚阈值MOSFET带隙基准源(未包含调制电压发生器)电路图;Fig. 3 is the circuit diagram of sub-threshold MOSFET bandgap reference source (not including modulation voltage generator) of the present invention;

图4为本发明的调制电压发生器电路图;Fig. 4 is the modulation voltage generator circuit diagram of the present invention;

图5为本发明的带隙基准源在不同工艺角下的基准电压随温度变化曲线图。FIG. 5 is a graph showing the variation of the reference voltage with temperature at different process angles of the bandgap reference source of the present invention.

具体实施方式Detailed ways

本发明的实施例:Embodiments of the invention:

现有技术的亚阈值MOSFET带隙基准源电路图如图1所示,它由启动电路11、正温度系数电流产生电路12、负温度系数电流产生电路13和基准电压产生电路14组成。The prior art subthreshold MOSFET bandgap reference source circuit diagram is shown in FIG. 1 , which consists of a start-up circuit 11 , a positive temperature coefficient current generation circuit 12 , a negative temperature coefficient current generation circuit 13 and a reference voltage generation circuit 14 .

启动电路11由PMOSFET MP1、MP2和NMOSFET MN1组成,用于保证上电后整个带隙基准源时刻处于导通工作状态。若电路进入零电流状态,MP1、MP2和MN1的栅端均处于高电平,此时MP1和MN1组成的反相器将MP1漏端(MP2栅端)强行下拉至低电平,MP2导通并将电流注入正温度系数电流产生电路12,整个带隙基准源随即重新开启。开启后,MP3栅端电位下降,MP1导通,MP2截止,这样带隙基准源正常工作时可以忽略启动电路11的影响。The start-up circuit 11 is composed of PMOSFET MP1, MP2 and NMOSFET MN1, which is used to ensure that the entire bandgap reference source is in the conduction working state at all times after power-on. If the circuit enters the zero current state, the gate terminals of MP1, MP2 and MN1 are all at high level, at this time, the inverter composed of MP1 and MN1 will forcibly pull down the drain terminal of MP1 (gate terminal of MP2) to low level, and MP2 is turned on And the current is injected into the positive temperature coefficient current generating circuit 12, and the entire bandgap reference source is restarted immediately. After being turned on, the potential of the gate terminal of MP3 drops, MP1 is turned on, and MP2 is turned off, so that the influence of the start-up circuit 11 can be ignored when the bandgap reference source is working normally.

正温度系数电流产生电路12由PMOSFET MP3、MP4,NMOSFET MN2、MN3和电阻R1组成,其中MP3、MP4构成电流镜结构,而MN2、MN3工作在亚阈值区,其传输特性(ID-VGS)与双极型晶体管类似,因此能够替代传统带隙基准源中的双极型晶体管,其传输特性(ID-VGS)满足关系式(1):Positive temperature coefficient current generation circuit 12 is made up of PMOSFET MP3, MP4, NMOSFET MN2, MN3 and resistor R1, wherein MP3, MP4 form current mirror structure, and MN2, MN3 work in the sub-threshold region, its transmission characteristics (I D -V GS ) is similar to a bipolar transistor, so it can replace a bipolar transistor in a traditional bandgap reference, and its transfer characteristic ( ID -V GS ) satisfies the relationship (1):

II DD. == II DOdo SexpSex (( VV GSGS -- || VV ththe th || nno VV TT )) -- -- -- (( 11 ))

其中VGS,Vth和S分别是MOSFET的栅源电压、阈值电压和宽长比,VT=kT/q为热电压,n为斜率因子,ID0为VGS=Vth,S=1时的漏电流。根据式(1)可推导出R1上电流IR1(即正温度系数电流产生电路12的输出电流IPTAT)为:Where V GS , V th and S are the gate-source voltage, threshold voltage and width-to-length ratio of the MOSFET respectively, V T =kT/q is the thermal voltage, n is the slope factor, I D0 is V GS =V th , S=1 time leakage current. According to the formula (1), the current I R1 on R1 (that is, the output current I PTAT of the positive temperature coefficient current generating circuit 12 ) can be deduced as:

II PTATPTAT == II RR 11 == VV GSNGSN 22 -- VV GSNGSN 33 RR 11 ≅≅ nno kTkT qRQUR 11 lnln (( SS PP 33 SS NN 33 SS PP 44 SS NN 22 )) -- -- -- (( 22 ))

其中VGSN2,VGSN3分别为MN2、MN3的栅源电压,SP3、SP4、SN2和SN3分别是MP3、MP4、MN2和MN3的宽长比。由式(2)可知,正温度系数电流产生电路12的输出电流IPTAT与温度成正比。Where V GSN2 and V GSN3 are the gate-source voltages of MN2 and MN3 respectively, and SP3 , SP4 , SN2 and SN3 are the width-to-length ratios of MP3, MP4, MN2 and MN3 respectively. It can be known from formula (2) that the output current I PTAT of the positive temperature coefficient current generating circuit 12 is proportional to the temperature.

负温度系数电流产生电路13由PMOSFET MP5、MP6、MP7,NMOSFETMN4、MN5,偏置电阻R2和极点调节电容C1组成。其中MP5与正温度系数电流产生电路12中MP3、MP4构成一组电流镜结构,MP6、MP7构成另一组电流镜结构,MN5用于监视(下详),而MN4工作在亚阈值区,它的传输特性(ID-VGS)满足式(1),由此可推导出MN4的栅源电压VGSN4为:The negative temperature coefficient current generating circuit 13 is composed of PMOSFETs MP5, MP6, MP7, NMOSFETMN4, MN5, a bias resistor R2 and a pole adjustment capacitor C1. Wherein MP5 and MP3, MP4 in the positive temperature coefficient current generation circuit 12 constitute a group of current mirror structures, MP6, MP7 constitute another group of current mirror structures, MN5 is used for monitoring (detailed below), and MN4 works in the subthreshold region, it The transmission characteristic ( ID -V GS ) of the MN4 satisfies the formula (1), and it can be deduced that the gate-source voltage V GSN4 of MN4 is:

VV GSNGSN 44 ≅≅ VV ththe th ++ nno kTkT qq lnln (( II DD. II DD. 00 SS NN 44 )) -- -- -- (( 33 ))

其中VGSN4为MN4的栅源电压,SN4为MN4的宽长比。由于MOSFET在亚阈值区时ID肯定小于ID0SN4,所以MN4的栅源电压VGSN4随温度增加而减小,负温度系数电流产生电路13的输出电流ICTAT与温度成反比,见式(4):Among them, V GSN4 is the gate-source voltage of MN4, and S N4 is the width-to-length ratio of MN4. Since ID is definitely smaller than I D0 S N4 when the MOSFET is in the sub-threshold region, the gate-source voltage V GSN4 of MN4 decreases with the increase of temperature, and the output current I CTAT of the negative temperature coefficient current generation circuit 13 is inversely proportional to the temperature, see the formula (4):

II CTATCTAT == VV GSNGSN 44 SS PP 77 RR 22 ·&Center Dot; SS PP 66 -- -- -- (( 44 ))

其中SP6、SP7分别是MP6和MP7的宽长比。另外,负温度系数电流产生电路13中存在一个负反馈:由于MN4上的漏电流是由MP3、MP4和MP5组成的电流镜提供,电流值比较固定,所以MN5可通过栅端电位监视偏置电阻R2上的电压,一旦发生错误,MN5将通过MP6、MP7组成的电流镜来调整R2上的电流和电压。极点调节电容C1用于调节反馈环路上的主极点。Where S P6 and S P7 are the width-to-length ratios of MP6 and MP7 respectively. In addition, there is a negative feedback in the negative temperature coefficient current generation circuit 13: since the leakage current on MN4 is provided by the current mirror composed of MP3, MP4 and MP5, the current value is relatively fixed, so MN5 can monitor the bias resistance through the gate terminal potential The voltage on R2, once an error occurs, MN5 will adjust the current and voltage on R2 through the current mirror composed of MP6 and MP7. The pole adjustment capacitor C1 is used to adjust the dominant pole on the feedback loop.

基准电压产生电路14由PMOSFET MP8、MP9,电阻R3和电容C2组成。正温度系数电流产生电路12的输出电流IPTAT和负温度系数电流产生电路13的输出电流ICTAT分别通过MP8和MP9镜像到基准电压产生电路14中,相互抵消温度的影响,并通过电阻R3产生最终的基准电压Vref,见式(5)The reference voltage generating circuit 14 is composed of PMOSFETs MP8 and MP9, a resistor R3 and a capacitor C2. The output current I PTAT of the positive temperature coefficient current generation circuit 12 and the output current I CTAT of the negative temperature coefficient current generation circuit 13 are respectively mirrored to the reference voltage generation circuit 14 through MP8 and MP9 to cancel the influence of temperature and generate The final reference voltage Vref, see formula (5)

VV refref == RR 33 [[ nno VV TT RR 11 lnln (( SS PP 33 SS NN 33 SS PP 44 SS NN 22 )) ++ VV GSNGSN 44 SS PP 77 RR 22 ·&Center Dot; SS PP 66 ]] -- -- -- (( 55 ))

由式(5)可知,通过合理调整R1、R2和R3的比例,最终能够获得一个接近于零温度系数的基准电压Vref。电容C2用于滤除高频噪声对基准电压Vref的影响。It can be seen from formula (5) that by adjusting the ratio of R1, R2 and R3 reasonably, a reference voltage Vref close to zero temperature coefficient can be obtained finally. Capacitor C2 is used to filter out the influence of high frequency noise on the reference voltage Vref.

在0.13μm CMOS混合信号工艺下,电源电压Vdd=1.2V,现有技术带隙基准源在不同工艺角下的基准电压随温度变化曲线图如图2所示。由图2可知,在各工艺角(ss,tt和ff)下,基准电压Vref均具备较好的温度系数,温度系数TC分别为30.38ppm,31.35ppm和44.33ppm。但是,不同工艺角下的基准电压值相差接近±100mV,偏差达到±13.1%,难以适用于很多对电路精度要求较高的场合。Under the 0.13μm CMOS mixed-signal process, the power supply voltage Vdd = 1.2V, and the reference voltage variation curves of the existing bandgap reference source at different process angles with temperature are shown in Figure 2. It can be seen from FIG. 2 that under each process corner (ss, tt and ff), the reference voltage Vref has a good temperature coefficient, and the temperature coefficient TC is 30.38ppm, 31.35ppm and 44.33ppm respectively. However, the difference of reference voltage values under different process angles is close to ±100mV, and the deviation reaches ±13.1%, which is difficult to apply to many occasions that require high circuit accuracy.

本发明的亚阈值MOSFET带隙基准源(未包含调制电压发生器)电路图如图3所示,其中启动电路31、正温度系数电流产生电路32和基准电压产生电路34与现有技术的11、12和14相同,创新之处在于负温度系数电流产生电路33中,亚阈值NMOSFET MN4(用于产生负温度系数电压)的体端从衬底独立出来,用于体电位调制,调制电压定义为Vadjust,与本发明新增的调制电压发生器的输出端相连。Sub-threshold MOSFET bandgap reference source (not including modulation voltage generator) circuit diagram of the present invention as shown in Figure 3, wherein start-up circuit 31, positive temperature coefficient current generation circuit 32 and reference voltage generation circuit 34 and prior art 11, 12 and 14 are the same, the innovation is that in the negative temperature coefficient current generation circuit 33, the body terminal of the subthreshold NMOSFET MN4 (used to generate the negative temperature coefficient voltage) is independent from the substrate, and is used for body potential modulation, and the modulation voltage is defined as Vadjust is connected with the output end of the modulation voltage generator newly added in the present invention.

本发明的调制电压发生器电路图如图4所示,它由变阻器41、运算放大器42和滤波电容C3、C4组成。其中变阻器41使得调制电压发生器输出的调制电压能在0~Vdd范围内变化,运算放大器42可增强调制电压发生器的负载能力,保证调制电压Vadjust的精确性,滤波电容C3、C4用于滤除电路引入的噪声和其他干扰,其中考虑到运算放大器42的电容负载效应,滤波电容C4值不宜过大,一般在几百fF至几nF之间,而C3值一般在几百nF至几μF之间。The modulation voltage generator circuit diagram of the present invention is shown in Fig. 4, and it is made up of rheostat 41, operational amplifier 42 and filter capacitance C3, C4. Among them, the variable resistor 41 enables the modulation voltage output by the modulation voltage generator to vary within the range of 0-Vdd, the operational amplifier 42 can enhance the load capacity of the modulation voltage generator, and ensure the accuracy of the modulation voltage Vadjust, and the filter capacitors C3 and C4 are used for filtering In addition to the noise and other interferences introduced by the circuit, the value of the filter capacitor C4 should not be too large, generally in the range of several hundred fF to several nF, and the value of C3 is generally in the range of several hundred nF to several μF in consideration of the capacitive load effect of the operational amplifier 42 between.

我们知道,MOSFET的阈值电压Vth和体电位之间存在关系如式(6)We know that there is a relationship between the threshold voltage V th of the MOSFET and the body potential as in formula (6)

VV ththe th == VV ththe th 00 ++ γγ (( 22 || φφ Ff || ++ vv SBSB -- 22 || φφ Ff || )) -- -- -- (( 66 ))

其中vSB是MOSFET的源体电压,Vth0是vSB=0时的阈值电压,γ是体效应系数,φF是费米势。由上式可知,通过体电位调制(调整vSB)可以改变MOSFET的阈值电压。Where v SB is the source-to-body voltage of the MOSFET, V th0 is the threshold voltage when v SB =0, γ is the body effect coefficient, and φ F is the Fermi potential. It can be known from the above formula that the threshold voltage of the MOSFET can be changed through body potential modulation (adjusting v SB ).

因此,将调制电压Vadjust接入亚阈值NMOSFET MN4的体端,可以有效地改变MN4的阈值电压,由式(3)~(5)可知,MN4阈值电压的变化将导致MN4栅源电压VGSN4的变化,进而改变带隙基准源输出的基准电压Vref。利用这一特性,我们可以通过调整调制电压发生器中的变阻器41,产生合适的调制电压Vadjust来补偿由于工艺涨落导致的MN4阈值电压的变化,进而大大降低工艺涨落对亚阈值MOSFET带隙基准源输出的基准电压Vref的不利影响。Therefore, connecting the modulation voltage Vadjust to the body terminal of the sub-threshold NMOSFET MN4 can effectively change the threshold voltage of MN4. From equations (3) to (5), it can be seen that the change of the threshold voltage of MN4 will lead to a decrease in the gate-source voltage V GSN4 of MN4 Change, and then change the reference voltage Vref output by the bandgap reference source. Utilizing this feature, we can adjust the rheostat 41 in the modulation voltage generator to generate a suitable modulation voltage Vadjust to compensate the change of the threshold voltage of MN4 due to process fluctuations, thereby greatly reducing the impact of process fluctuations on the sub-threshold MOSFET bandgap Adverse effects of the reference voltage Vref output by the reference source.

本发明的带隙基准源在不同工艺角下的基准电压随温度变化曲线图如图5所示。由于体电位调制技术的引入,不同工艺角下的基准电压值相差仅为±25mV,偏差为±3.2%,改善效果显著。本发明的带隙基准源在ff和ss工艺角下温度系数TC比现有技术略差,原因在于MN4经体电位调制后与正温度系数电流产生电路12中的MN2和MN3的对称性有所变差,但本发明的带隙基准源的温度系数指标仍然适用于绝大多数高精度电路场合。Fig. 5 shows the variation curves of the reference voltage versus temperature of the bandgap reference source of the present invention under different process angles. Due to the introduction of body potential modulation technology, the difference of reference voltage values under different process angles is only ±25mV, and the deviation is ±3.2%, which shows a significant improvement. The temperature coefficient TC of the bandgap reference source of the present invention is slightly worse than that of the prior art at the ff and ss process angles, because the symmetry between MN4 and MN2 and MN3 in the positive temperature coefficient current generation circuit 12 is different after MN4 is modulated by the body potential. becomes worse, but the temperature coefficient index of the bandgap reference source of the present invention is still applicable to most high-precision circuit occasions.

综上所述,仅为本发明的较佳实施例而已,并非用来限定本发明的实施范围,即凡依本发明申请专利范围的内容所作的等效变化与修饰,都应为本发明的技术范畴。In summary, it is only a preferred embodiment of the present invention, and is not used to limit the implementation scope of the present invention, that is, all equivalent changes and modifications made according to the content of the patent scope of the present invention shall be included in the scope of the present invention. technology category.

Claims (1)

1.一种亚阈值MOSFET带隙基准源,它包括1. A sub-threshold MOSFET bandgap reference source comprising 启动电路(31),保证上电后整个基准源时刻处于导通工作状态;Start the circuit (31) to ensure that the entire reference source is in a conduction working state at all times after power-on; 正温度系数电流产生电路(32),用于产生一个与绝对温度成正比的支路电流;A positive temperature coefficient current generating circuit (32), used to generate a branch current proportional to the absolute temperature; 负温度系数电流产生电路(33),用于产生一个与绝对温度成反比的支路电流;Negative temperature coefficient current generating circuit (33), used to generate a branch current inversely proportional to the absolute temperature; 基准电压产生电路(34),将上述两条支路电流汇合并相互抵消温度的影响,最终产生一个零温度系数的基准电压;The reference voltage generating circuit (34) merges the above two branch currents and offsets the influence of temperature, and finally generates a reference voltage with zero temperature coefficient; 其特征在于:所述的负温度系数电流产生电路(33)由第一PMOSFET(MP5)、第二PMOSFET(MP6)、第三PMOSFET(MP7),第一NMOSFET(MN4)、第二NMOSFET(MN5)、偏置电阻(R2)、极点调节电容(C1)和调制电压发生器电路组成,其中调制电压发生器电路由变阻器(41)、运算放大器(42)和第一滤波电容(C3)、第二滤波电容(C4)组成;第一NMOSFET(MN4)工作在亚阈值区域,第一NMOSFET(MN4)的体端与调制电压发生器中的运算放大器(42)的输出端相连,第一NMOSFET(MN4)的源端接参考地(GND),第一NMOSFET(MN4)的漏端与第一PMOSFET(MP5)的漏端、第二NMOSFET(MN5)的栅端、极点调节电容(C1)的一端相连,极点调节电容(C1)的另一端接参考地(GND),第一NMOSFET(MN4)的栅端与偏置电阻(R2)的一端、第二PMOSFET(MP6)的漏端相连,偏置电阻(R2)的另一端接参考地(GND),第二NMOSFET(MN5)的漏端与第三PMOSFET(MP7)的漏端、第三PMOSFET(MP7)的栅端相连,第二NMOSFET(MN5)的源端和体端均接参考地(GND),第一PMOSFET(MP5)的源端和体端均接参考电源(Vdd),第二PMOSFET(MP6)的栅端与第三PMOSFET(MP7)的漏端、第三PMOSFET(MP7)的栅端相连,第二PMOSFET(MP6)和第三PMOSFET(MP7)的源端和体端均接参考电源(Vdd);在所述的调制电压发生器电路中,变阻器(41)的第一端接参考电源(Vdd),第二端接参考地(GND),第三端与运算放大器(42)的正输入端、第一滤波电容(C3)的一端相连,第一滤波电容(C3)的另一端接参考地(GND),运算放大器(42)的输出端与自身负输入端、第二滤波电容(C4)的一端相连,运算放大器(42)的输出端亦为所述的调制电压发生器电路的输出端,第二滤波电容(C4)的另一端接参考地(GND)。It is characterized in that: the negative temperature coefficient current generating circuit (33) is composed of a first PMOSFET (MP5), a second PMOSFET (MP6), a third PMOSFET (MP7), a first NMOSFET (MN4), a second NMOSFET (MN5 ), a bias resistor (R2), a pole adjustment capacitor (C1) and a modulation voltage generator circuit, wherein the modulation voltage generator circuit is composed of a rheostat (41), an operational amplifier (42) and the first filter capacitor (C3), the first Two filter capacitors (C4) are formed; the first NMOSFET (MN4) works in the subthreshold region, and the bulk terminal of the first NMOSFET (MN4) is connected to the output terminal of the operational amplifier (42) in the modulation voltage generator, and the first NMOSFET ( The source terminal of MN4) is connected to the reference ground (GND), the drain terminal of the first NMOSFET (MN4) is connected to the drain terminal of the first PMOSFET (MP5), the gate terminal of the second NMOSFET (MN5), and one terminal of the pole adjustment capacitor (C1) The other end of the pole adjustment capacitor (C1) is connected to the reference ground (GND), the gate end of the first NMOSFET (MN4) is connected to one end of the bias resistor (R2) and the drain end of the second PMOSFET (MP6), and the bias The other end of the resistor (R2) is connected to the reference ground (GND), the drain end of the second NMOSFET (MN5) is connected to the drain end of the third PMOSFET (MP7) and the gate end of the third PMOSFET (MP7), and the second NMOSFET (MN5) ) are connected to the reference ground (GND), the source and body of the first PMOSFET (MP5) are connected to the reference power supply (Vdd), the gate of the second PMOSFET (MP6) is connected to the third PMOSFET (MP7 ) is connected to the drain terminal of the third PMOSFET (MP7), and the source terminal and body terminal of the second PMOSFET (MP6) and the third PMOSFET (MP7) are connected to the reference power supply (Vdd); when the modulation voltage occurs In the converter circuit, the first end of the rheostat (41) is connected to the reference power supply (Vdd), the second end is connected to the reference ground (GND), and the third end is connected to the positive input end of the operational amplifier (42) and the first filter capacitor (C3). One end of the first filter capacitor (C3) is connected to the reference ground (GND), the output terminal of the operational amplifier (42) is connected to its own negative input terminal and one end of the second filter capacitor (C4), and the operational amplifier (42) ) is also the output end of the modulation voltage generator circuit, and the other end of the second filter capacitor (C4) is connected to the reference ground (GND).
CN2010101503457A 2010-04-16 2010-04-16 Subthreshold MOSFET band-gap reference source Expired - Fee Related CN101819449B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101503457A CN101819449B (en) 2010-04-16 2010-04-16 Subthreshold MOSFET band-gap reference source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101503457A CN101819449B (en) 2010-04-16 2010-04-16 Subthreshold MOSFET band-gap reference source

Publications (2)

Publication Number Publication Date
CN101819449A CN101819449A (en) 2010-09-01
CN101819449B true CN101819449B (en) 2012-01-04

Family

ID=42654578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101503457A Expired - Fee Related CN101819449B (en) 2010-04-16 2010-04-16 Subthreshold MOSFET band-gap reference source

Country Status (1)

Country Link
CN (1) CN101819449B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279610B (en) * 2011-04-13 2013-08-21 清华大学 Sub-threshold reference voltage source with extremely low power consumption and wide temperature range
CN102981550A (en) * 2012-11-27 2013-03-20 中国科学院微电子研究所 Low-voltage low-power-consumption CMOS voltage source
CN104035471B (en) * 2014-06-27 2015-07-08 东南大学 A Current Mode Bandgap Voltage Reference with Subthreshold Current Compensation
CN106997221B (en) * 2016-01-22 2018-10-16 中芯国际集成电路制造(上海)有限公司 Band-gap reference circuit
CN105955384B (en) * 2016-07-19 2018-02-23 南方科技大学 Non-band-gap reference voltage source
KR102451873B1 (en) * 2016-12-13 2022-10-06 현대자동차 주식회사 APPARATUS FOR resistance measurement
CN107179798A (en) * 2017-07-10 2017-09-19 北京兆芯电子科技有限公司 Reference voltage generating circuit and method
CN107479616B (en) * 2017-08-08 2019-06-04 深圳市锦锐科技有限公司 A kind of super low-power consumption band-gap reference circuit
CN107291146A (en) * 2017-08-16 2017-10-24 何金昌 A kind of band-gap voltage source and chip system applied to microchip
CN107479606B (en) * 2017-08-28 2018-12-18 天津大学 Super low-power consumption low pressure bandgap voltage reference
CN107678480A (en) * 2017-11-13 2018-02-09 常州欣盛微结构电子有限公司 A kind of linear voltage manager for low-power consumption digital circuit
TWI669588B (en) * 2017-12-12 2019-08-21 大陸商常州欣盛半導體技術股份有限公司 Linear regulator for low-power digital circuit of chip
CN109491439B (en) * 2018-12-17 2020-12-11 暨南大学 A reference voltage source and its working method
CN110888485B (en) * 2019-10-09 2022-01-18 芯创智(北京)微电子有限公司 Self-biased band gap reference circuit
CN113741616B (en) * 2021-10-13 2022-11-08 南方电网数字电网研究院有限公司 Band-gap reference voltage source
CN113804319B (en) * 2021-10-15 2024-08-27 南方电网数字电网研究院有限公司 Temperature sensor and integrated circuit
CN115309227B (en) * 2022-08-04 2024-07-02 西安电子科技大学 Full-saturation MOSFET band-gap reference source
CN117873248A (en) * 2023-12-19 2024-04-12 无锡晟轶科技有限公司 PTAT current source, chip and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004619A (en) * 2006-01-20 2007-07-25 精工电子有限公司 Band gap circuit
CN101630176A (en) * 2009-07-28 2010-01-20 中国科学院微电子研究所 Low Voltage CMOS Bandgap Reference

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693332B2 (en) * 2001-12-19 2004-02-17 Intel Corporation Current reference apparatus
JP3818925B2 (en) * 2001-12-27 2006-09-06 富山県 MOS type reference voltage generator
EP1662660A3 (en) * 2004-11-29 2007-12-12 STMicroelectronics Pvt. Ltd Method and apparatus for providing compensation against temperature, process and supply voltage variation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004619A (en) * 2006-01-20 2007-07-25 精工电子有限公司 Band gap circuit
CN101630176A (en) * 2009-07-28 2010-01-20 中国科学院微电子研究所 Low Voltage CMOS Bandgap Reference

Also Published As

Publication number Publication date
CN101819449A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
CN101819449B (en) Subthreshold MOSFET band-gap reference source
CN102176185B (en) Sub-threshold CMOS (complementary metal-oxide-semiconductor transistor) reference source
CN106843358B (en) A kind of high PSRR whole CMOS reference voltage source
CN105099445B (en) The control method for frequency and circuit of a kind of ring oscillator
CN102386848B (en) Annular voltage-controlled oscillator
US11966245B2 (en) Voltage reference source circuit and low power consumption power supply system
CN104503530B (en) A High Performance and High Reliability Low Voltage CMOS Reference Voltage Source
CN100514249C (en) Band-gap reference source produce device
CN103389766B (en) Sub-threshold non-bandgap reference voltage source
US11175686B2 (en) Low-temperature drift ultra-low-power linear regulator
CN100489724C (en) CMOS reference voltage source
CN105242738B (en) A No-Resistor Reference Voltage Source
CN102495661B (en) A Bandgap Reference Circuit Based on Two Threshold Voltage MOS Devices
CN106527559B (en) A kind of low-voltage nanowatt magnitude whole CMOS current-mode reference voltage source
CN109782838A (en) A kind of fast transient response LDO regulator circuit based on phase inverter
CN108205353B (en) CMOS sub-threshold reference voltage source
CN104516391B (en) The CMOS votage reference source of a kind of low-power consumption low temperature drift
CN105320205A (en) Band-gap reference source with low offset voltage and high PSRR (power supply rejection ratio)
CN102279611A (en) Variable-curvature compensated bandgap voltage reference source
CN107272804A (en) A high-precision reference voltage source based on resistance of different materials
TW200925824A (en) Voltage generating apparatus
CN110320955B (en) Low-dropout linear voltage stabilizing circuit and integrated circuit
CN202261165U (en) Annular voltage-controlled oscillator
CN116466790A (en) Pseudo-resistance circuit
CN104216458B (en) A kind of temperature curvature complimentary reference source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120104

Termination date: 20140416