CN101809514A - 用于舒适控制的微系统的应用 - Google Patents
用于舒适控制的微系统的应用 Download PDFInfo
- Publication number
- CN101809514A CN101809514A CN200680031922A CN200680031922A CN101809514A CN 101809514 A CN101809514 A CN 101809514A CN 200680031922 A CN200680031922 A CN 200680031922A CN 200680031922 A CN200680031922 A CN 200680031922A CN 101809514 A CN101809514 A CN 101809514A
- Authority
- CN
- China
- Prior art keywords
- index
- controller
- comfort
- temperature
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/0008—Control or safety arrangements for air-humidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/76—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/20—Feedback from users
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种设备包括多个无线微系统(12)。每个微系统(12)可操作来测量至少相对湿度和温度,并且可操作来将温度和相对湿度信息以无线方式传送给网络装置(16)。该网络装置(16)可操作来将温度和相对湿度信息传送给至少第一处理器(17,18),该至少第一处理器(17,18)被配置来根据该信息引起建筑物控制条件的变化。
Description
本申请要求于2006年8月30日提交的、序列号为60/713,042的美国临时专利申请的权益,该美国临时专利申请通过引用结合于此。
技术领域
本发明涉及室内环境控制,并且更特别地涉及至少部分基于相对湿度和温度的HVAC控制。
背景技术
人们工作和生活的建筑物具有监控和支撑建筑物环境的舒适水平的系统。这样的系统包括:加热、通风和空调(HVAC)系统、照明系统以及其它系统。HVAC和照明系统都至少以某种水平已存在了数千年。
HVAC和照明系统已变得精密,并且在建筑物内常常能够维持湿度和温度的审慎平衡,以及提供清新的空气和足够的光。合适的温度、湿度、光和氧气水平有助于建筑物或者工作场所的室内环境质量。良好的环境质量能够转化为更好的生产力和居住者的健康。大多数建筑物控制系统通过简单地维持空间温度来维持居住者舒适,空间温度利用位于墙上的温度调节器或者温度传感器来测量。虽然在温度与人体舒适之间存在强的相关性,但是当温度与相对湿度结合时,可以测量到更好的舒适指数。
组合的温度和湿度水平是房间内热或者热能容量(content)的更好的量度,并且是热能需要被移除(即被冷却)或者补充更多能量(即被加热),以将居住者维持在舒适的水平。组合的温度和湿度水平常常被气象媒体称为“酷热指数(heat index)”。
然而,至今在建筑物控制或者HVAC产业中已存在组合的酷热/湿度指数的有限应用。涉及在综合规模上感测温度和相对湿度的费用阻碍了这些应用。
因此,需要用于实现建筑物内的舒适控制的有成本效益的解决方案,该解决方案既考虑了相对湿度又考虑了温度。
发明内容
本发明通过采用无线MEMS微系统来解决上述需求以及其他需求,该无线MEMS微系统可以批量制造,并且测量温度和相对湿度,以及将代表所测量的信息的信息(优选地以无线方式)传送给数据处理设备。
本发明的第一实施例是一种设备,该设备包括多个无线微系统,每个微系统可操作来测量至少相对湿度和温度。每个微系统优选地可操作来计算和传送组合的温度和相对湿度指数并且将酷热指数以无线方式传送给网络装置。在其他实施例中,微系统发送温度和相对湿度测量到的数据,并且指数在该系统的另一部分被计算。无论是这样还是那样,网络装置可操作来将参数传送给一个或者多个控制器,所述控制器可以根据酷热指数调节到房间的被加热的或者被冷却的空气的流量。
在某些情况下,当被加热和/或被冷却的空气经由通风系统被提供给每个房间时,已冷的和/或被冷却的空气的酷热指数也是通过使用微系统而得知或者获得的。在这样的情况下,当控制器调节流量时,控制器考虑了进风(supply air)的温度/相对湿度信息以及每个房间的温度/相对湿度信息。
在其他实施例中,一些或者所有微系统都不必是无线的。然而,使用无线微系统是有利的,因为这减小了与工作线路相关联的人工和材料成本。
参照以下的详细说明和附图,上述特征和优点以及其他方面对本领域的普通技术人员而言将变得更为显而易见。
附图说明
图1示出了根据本发明的设备的示例性实施例的示意性方框图;
图2示出了可被用在图1的设备中的示例性微系统装置的方框图;
图3示出了根据本发明的一个实施例的可由用于空间的通风风闸(ventilation damper)控制器使用的示例性操作集(set ofoperations)的流程图;
图4示出了标识示例性舒适区的温度对相对湿度曲线图;以及
图5示出了根据本发明的一个实施例的利用舒适水平而由建筑物的中央控制器使用的示例性操作集的流程图。
具体实施例
图1示出了设备10,该设备10包括多个无线微系统12,每个微系统12可操作来至少测量建筑物环境14中的相对湿度和温度参数,并且还可操作来将这些参数(单独地或者组合地形成舒适指数)以无线方式传送给网络装置16。网络装置16可操作来将来自多个微系统12的舒适指数信息传送给房间控制器17。房间控制器17可操作来生成控制信号,所述控制信号使得通风井风闸30进一步打开或者关闭,以便调节到建筑物环境14的不同房间中的(可以被加热或者是已冷的)进风流。
舒适指数是代表基于相对湿度和温度的理论舒适水平的变量。公知的是,相同的温度在50%的相对湿度时可以感觉令人舒适,但是在过高或者过低的湿度值时感觉不那么令人舒适。将在下面进一步详细讨论的图4示出了温度对相对湿度的曲线图。图4的曲线图包括通过舒适区周长404限定的舒适区402。当温度和相对湿度是在落入舒适区402之内的值时,这些条件被认为是令人舒适的。舒适区402基于ASHRAE舒适指数标准。
在此所描述的一些实施例中,舒适指数可以适合的是两个单元向量(element vector)(t,rh),其中t是“干球温度计”温度而rh是相对湿度。因此,每个舒适向量(t,rh)标识图4的曲线图上的特定点。例如,舒适指数/向量(77,35)被表示为图4的曲线图上的点408,并且因此落入舒适区402之内。
在其他实施例中,基于温度和相对湿度的每个组合处的感觉到的舒适,图4的曲线图的向量点可以被转化为或者映射到单个舒适值(例如从1-10)。例如,Bill Gnerre和Kevin Fuller所著的出版物“AreYour Customers Comfortable?How Do You Know”(2006年7月在AutomatedBuildings.com上)说明了一种创建将温度对相对湿度曲线图上的点转化成舒适指数值的表格的方法,该出版物通过引用结合于此。这种表格能够被存储并且由微系统12用来生成单个舒适指数值。在其他实施例中,诸如控制器17或18的控制器可以将舒适向量(t,rh)转化成如所需的或者所希望的单个值。
在任何情况下,网络装置16和/或房间控制器17进一步可操作来将来自一个或者多个房间或者微系统12的舒适指数信息传送给中央数据处理器18,该中央数据处理器18能够生成关于建筑物14的舒适指数的信息,用于显示、数据记录或者用于更复杂的控制操作。如果舒适指数信息是(t,rh)向量的形式,那么中央数据处理器18可以可选地将该信息变换成用于显示或者数据记录的单个指数值。
参照图2,微系统的当前现有技术足以创建微系统,该微系统可操作来测量和/或监控温度和相对湿度参数。每个微系统12因此可以采用MEMS传感器组件(suite)20,所述MEMS传感器组件20包括MEMS湿度传感器和MEMS温度传感器。如果流被用作舒适指数中的参数,则其他实施例可以包括MEMS流量传感器。微系统12也可以合并处理电路22以及射频传输电路24。具有处理电路和RF能力的MEMS装置的通常的例子在于2003年1月28日提交的、标题为“Building System withReduced Wiring Requirements and Apparatus for Use Therein”的、序列号为10/353142的美国专利申请和于2003年9月26日提交的、标题为“Building Control System Using Integrated MEMS Device”的、序列号为10/672,527的美国专利申请中被讨论,这两个美国专利申请都通过引用结合于此。其他这个种类的装置是公知的。
在一个实施例中,处理电路22被编程或者以其他方式被配置来基于由MEMS传感器组件20所获得的相对湿度测量结果和温度测量结果而生成酷热或者舒适指数。处理电路22还可操作来使得RF电路24将该指数以无线方式传送给网络装置16。在其他实施例中,处理电路22仅获得传感器值和将(优选地带有某个低通滤波的)那些值提供给RF电路24,用于发送给网络装置16。RF电路24可以合适地采用蓝牙或者短距离RF传输技术。微系统12还可以包括电池(未示出),以给操作供电。
再次参照图1,网络装置16可适合的是连接到建筑物控制系统有线或者无线网络26的RF收发器,该建筑物控制系统有线或者无线网络26诸如在序列号为10/353142的美国专利申请中进行了说明,该美国专利申请的公开内容通过引用结合于此。在一些实施例中,网络装置16与一个或者多个控制器17在传统领域控制器面板中位于同一地点,如本领域所公知的那样。然而,在所公开的实施例中,控制器17位于它们控制的风闸30附近,并且可以被硬连接或者被无线连接到网络装置16。本发明的该实施例的原理相对于其他并不要求任一选项。
通风风闸30是耦合到已冷的或者被加热的进风井(未示出)的装置,并且这些装置被配置来可控制地允许进风进入建筑物环境14的房间,如本领域所公知的那样。控制器17可操作地通过执行器(未示出)被耦合,以使得通风风闸30打开或者关闭,从而调节进入房间的(被加热的或者是已冷的)进风的量。在此所述的实施例中,微系统12还被设置在通风风闸30处或者附近,该通风风闸30可以测量进风的舒适指数相关的特征(例如温度和/或相对湿度)。控制器17因此可以使用来自与特定通风风闸30相关联的房间的舒适指数信息和进风的条件,以确定通风风闸30应被打开多大来帮助使舒适指数达到适当的水平。在一些情况下,控制器17不要求进风的湿度和温度。
房间或者空间的所希望的舒适指数可以通过由中央数据处理器18所提供的设定点来确定。该设定点可以是单个舒适水平值,然后将该单个舒适水平值与被表示为上述的单个值(也就是不被表示为二维向量)的所测量的舒适水平比较。
中央数据处理器18可以适合的是计算机工作站,该计算机工作站被连接到建筑物控制系统网络26。在设备10使用建筑物控制系统网络的实施例中,中央数据处理器18于是可以适合的是建筑物控制或者自动化系统的控制站,诸如是可从美国伊利诺斯州的Buffalo Grove的西门子楼宇科技公司获得的INSIGHTTM工作站,并且该工作站被用于商标为APOGEETM的自动化系统。
中央数据处理器18可以协调来自多个房间的微系统的接收到的舒适指数信息,以执行更精密的控制模式。为了执行更精密的控制模式,中央数据处理器18可以为每个控制器17重新计算或者调节舒适指数的设定点,并且将被调节的设定点经由建筑物网络26传送给控制器17。还在下面被讨论的图5示出了操作集,中央数据处理器18可以利用来自多个房间的舒适指数信息来执行该操作集。
本发明的一些实施例的一个优点是,微系统12可以以合理的成本被广泛用于整个建筑物,因为能够大量生产这些装置。将MEMS装置至少用作传感器减少了相对湿度和温度感测的功耗。此外,由于MEMS装置的低功耗,采用MEMS装置的微系统的使用能够使微系统被实现为无线装置。通过消除配线,使用这种无线装置极大地减少了与安装相关联的人工和成本。此外,微系统12是小的并且可以被置于墙上、定位器上、地板上并且甚至被置于可移动的物体上。
将舒适指数用作控制设定点可以以不同的其他方式来执行。在一种模式下,控制器17从传感器12接收温度和湿度信息(也就是作为向量或者以其他方式),并且基于该信息来控制风闸30。在该模式下,控制器17搜索沿着舒适区的周长的房间条件,以使能耗最小。(参看图4)。舒适区是被组合的湿度和温度组合的范围,这些湿度和温度组合满足人类居住者的ASHRAE舒适准则(comfort guideline)。然而,舒适区的其他标准也可以使用。在经济模式下,控制器17可以确定湿度和温度的组合,在给出房间和进风的温度和湿度的情况下,最经济地实现该组合。
这种模式有时被称为浮点(floating point)设定点控制,因为不同的房间或者空间可以基于它们的湿度水平被控制到不同的温度。
图3示出了基于舒适指数信息在建筑物的房间内采用简化类型的浮点设定点控制的示例性操作集。在图3的操作集中,将假设,该房间具有多个类似于图1和2的微系统12的舒适测量微系统。还假设,控制舒适的主要方法是经由通风风闸30及其相关的控制器17来调节进入该房间的已冷的空气流。(参见图1)。xxx
图3的操作通过现场控制器(诸如图1的控制器17)来执行。在图1的实施例中,每个控制器17分离地针对每个房间执行图3的操作,控制器对于该每个房间控制通风风闸30。
在步骤302,控制器17获得了与风闸30相关的房间或者空间中的每个传感器12的舒适指数信息。在该实施例中,每个空间或者房间优选地具有三个到六个微系统装置12。(参看图1)。因此,控制器17接收到一样多的舒适指数值。在图3的操作中,假设,舒适指数信息是向量(t,rh),该向量(t,rh)包括温度值和相对湿度值。控制器17可以无线地适当接收传感器值,如上面结合图1所讨论的那样。
在步骤304,控制器17生成并执行对指数值(t,rh)的滤波,以获得房间的舒适值或者舒适向量。滤波可以获得指数值的平均、指数值的平均值或者除了最高和最低指数值以外的所有指数值的平均或者平均值。其他滤波机制可以适当地被使用。控制器17在步骤304之后具有空间或者房间的单个舒适值或者舒适向量(tsp,rhsp)。在该例子中,tsp=平均值(所有来自房间中的微系统12的t值),而rhsp=平均值(所有来自房间中的微系统12的rh值)。
在步骤306,控制器确定房间的舒适值是否在舒适区阈值内。特别是,控制器确定向量值(tsp,rhsp)是否落入预定的舒适区窗口内。为此,控制器17可以相对于图4的曲线图有效地绘制向量值(tsp,rhsp)。如果向量值(tsp,rhsp)落入舒适区402内,则处理电路进行到步骤308。如果未落入,则控制器进行到步骤310。
因此,例如,如果向量值(tsp,rhsp)是(77,56),诸如图4的点406,则该向量值落在舒适区402之外并且控制器进行到步骤310。然而,如果向量(tsp,rhsp)是(77,35),诸如图4的点408,则该向量值落在舒适区402之内并且控制器进行到步骤308。确定特定点是否落入舒适区402内可以以多种方式来完成,这些方式包括确定向量值是否落在限定周长404的每条线或者每个斜面的正确侧上。
再次参照图3,在步骤310(向量在舒适区402之外),控制器17适当地执行控制操作,以试图改变舒适向量值,使得舒适向量值朝舒适区402移动。通常,控制器17在步骤310将使得风闸30进一步打开,以允许更多的已冷的空气送进房间。然而,控制器17可以根据温度信息tsp来确定房间太冷,并且因此控制器会使得风闸关闭,以减小已冷的空气送进房间的量。控制器17可以适当地使用PI或者PID控制技术,以根据舒适指数值确定调节空气流多少,并且确定其相对舒适区402的位置。
再次参照步骤308(向量值在舒适区402中),控制器17确定舒适值向量(tsp,rhsp)(其已经被确定在舒适区402内)是否大于距舒适区402的周长404的阈值距离Dthresh。通常,如果向量值标识舒适区的内部点(诸如点410),该点位于大于距舒适区402的周长404的阈值距离Dthresh的距离d处,则已知的是,较少的已冷的空气可以被送进房间内,而不会使得房间舒适指数完全移出舒适区。换句话说,空调可以被降低,因此导致温度上升,但仅仅使得舒适水平保持在舒适区402的边界内。
如果向量值(tsp,rhsp)大于距周长404的阈值距离Dthresh,则HVAC系统可以无效地操作,因为足够的舒适可以被维持,而利用较小的能量。因此,例如如果当前的舒适值向量在点410处,则冷空气可以被减少,从而使得舒适值向量从点410朝向75°F与78°F之间的斜线移动。虽然温度(并且可能是相对湿度)由于减少的冷空气而升高,舒适指数仍然可以在可接受的范围内。
因此,在步骤308,控制器17确定房间的舒适向量值是否大于距周长的距离Dthresh。如果大于,则控制器17进行到步骤312。如果不大于,则控制器17可以适当地返回到步骤302并且重复该过程,优选地在预定时间间隔之后重复该过程。
应注意,可能的是,即使向量值在周长404上,如果该向量值位于该周长的“错误”侧,则无效性仍然存在。例如,如果在夏季房间的向量值是(69,40),并且因此该向量值非常接近或者在周长404的左边界上,则仍然可能显著地减少进入房间的冷空气,而没有移出舒适区的危险。在这样的情况下,尽管向量值非常接近周长404,但是HVAC系统正无效地操作。因此,虽然确定舒适值向量是否大于距周长404的阈值距离可以标识无效的情况,但仍不能标识无效的所有情况。
本领域的普通技术人员可以容易地设想步骤308中的另外的或者可替换的确定,以检测这种无效的条件并且因此移到步骤312。然而,在此所述的基本实例中,最简单的是确定舒适向量是否在距周长404的任何部分的有效距离处,并且因此减小通过风闸30的空气流。
无论无何,在步骤312,控制器17使得风闸30减小进入房间的已冷的空气的流。该减小可以是微小的,以便保证舒适指数并不落在舒适区402之外。控制器17然后返回到步骤302。
虽然图3示出可以被执行来根据舒适指数调节风闸以实现舒适环境和有效系统的示例性操作集,但是也使用由其他建筑物控制操作中的微系统聚集的舒适信息。例如,图5示出了其他控制器(例如诸如中央数据处理器18的中央控制站)可以用来根据舒适水平值而控制建筑物控制操作的其他方面的示例性操作集。
现在参照图5,在此所述的操作可以适当地由处理装置执行,该处理装置可操作地被连接来将控制消息或者信号提供给多个HVAC装置。通常,诸如图1的中央控制处理器18的中央控制处理器会执行这些操作。
在步骤502,处理器获得针对设施的多个位置的舒适指数值。例如,处理器可以获得建筑物内的每个房间或者空间的舒适向量值(tsp,rhsp)。
在步骤504,处理器确定建筑物的整个舒适水平是否在可容忍的范围之外。为此,处理器首先根据建筑物中的所有(或者许多)空间的接收到的向量值来确定整个舒适水平。整个舒适水平可以包括平均的舒适值或者所有房间和空间的舒适值的某些被加权地或者以统计学方式调节的平均。应理解的是,在确定整个建筑物舒适性时,舒适向量(tsp,rhsp)的每个tsp、rhsp值的平均值不是作为有用的。平均温度和平均相对湿度并不是最有用的,而是平均的“舒适水平”。因此,更有用的是,在确定整个建筑物舒适水平之前,将舒适向量(tsp,rhsp)量化为单个舒适值,诸如上面进一步讨论的那样。
为此,如在上面和在Gnerre文章中所讨论的那样,每个(tsp,rhsp)向量值可以被映射到单个对应的舒适水平(例如从1-10的值)。舒适水平值在此被称为CL。值CL被表示为CL=F(tsp,rhsp),其中F是包括分配给每个潜在向量值(tsp,rhsp)的CL值的查找表的函数。通过举例,该表格可以表示图4的舒适区402之内的所有舒适向量映射到为9或者10的CL值。正好位于周长404之外的向量可以映射到从6到8的CL值,并且向量还远离地可以映射到5或者更低的CL值。舒适向量值(tsp,rhsp)到CL值的适当映射可以以实验方式来确定,或者利用可在Web上得到的各种研究来确定,这些研究包括Gnerre的文章。Gnerre的文章中的图2和3示出了一种可被使用的映射方案。
因此,对于图5的讨论的剩余部分,将假设,每个房间的舒适值已经被变换为与二维向量(tsp,rhsp)相对的单个舒适值CL。
再次参照步骤504,控制器17确定整个建筑物舒适指数是否低于第一阈值。该确定标识整个建筑物舒适水平是否太低。如果是太低,则处理器进行到步骤506。如果不是太低,则处理器进行到步骤508。
在步骤506(整个建筑物舒适性低),处理器响应于低的整个建筑物舒适性而引起进风变化。如本领域所公知的进风是被提供给建筑物的每个通风风闸30的空气。最终,HVAC系统的冷却和/或加热能力大部分取决于进风的温度。虽然各个房间舒适性可以通过允许更多或者更少已冷的或者被加热的进风进入房间来控制,但是减小(或者增加)进风的温度(流)可以极大地增强HVAC系统维持遍及整个建筑物的所希望的舒适水平的能力。因此,如果整个建筑物舒适水平太低,则有助于增加进风的冷却(或者加热)能力。因此在步骤506,处理器响应于低的舒适指数而引起进风温度变化。为此,合适的控制信号可以被提供给空气处理单元(未示出),但是这在本领域是公知的。建筑物的空气处理单元控制进风流和进风温度。
参照步骤508(整个建筑物舒适水平不低),处理器确定各个区域或者房间是否低于第二舒适阈值,该第二舒适阈值可以合适地与第一阈值相同或者不同。如果这样,则表示该建筑物的大部分具有可接受的舒适水平,但某些区域并不是具有可接受的舒适水平。如果某些局部区域具有低的舒适水平CL,则处理器进行到步骤510。如果不是,则处理器进行到步骤512。
在步骤510,处理器使得低舒适的区域中的本地控制器试图利用本地控制来解决低的舒适水平。这可以包括代替设定点和/或调节局部水平上的风闸,或者甚至利用局部冷却或加热装置。这种局部控制装置是本领域公知的。然而,如果局部控制选项被耗尽和/或并不是有效的,则处理器在步骤510作为替换方案以类似于上面结合步骤506所述的方式来调节进风。为此,应注意,即使大多数区域具有足够的舒适水平,仍必需改变进风温度,以确保问题区域具有充分的机会来实现所希望的舒适水平。无论这样或那样,在步骤510之后,处理器返回到步骤502。
现在参照步骤512(没有单个区域具有低的舒适性),处理器确定整个建筑物舒适值是否超过第三阈值。第三阈值超过第一阈值。如果整个建筑物舒适性超过第三阈值,则表示整个建筑物的舒适水平高,该高水平又可以指示HVAC系统的无效操作。通过类推,如果人在75°F时舒适,则无效的是将空调温度调节器设置到70°F。如果舒适水平相对高,则可能的是冷却(或者加热)设备不太必要(more thannecessary)运行。
因此,如果整个建筑物舒适水平并未超过第三阈值,则处理器简单地返回到步骤502。然而,如果整个建筑物舒适水平超过更高的第三阈值,则处理器进行到步骤514,以尝试解决潜在的无效操作。
在步骤514,处理器为进风提供控制信号,这些控制信号导致减小功耗。通过举例,如果是在夏季,则处理器可以减小进风的冷却。在冬季,处理器可以减小进风的加热。在某些情况下,进风的整个流可以被减小。进风的这种改变可以在最经济地得到的空气处理单元中来执行。流、或者加热或者冷却的减小通过HVAC系统的空气处理单元而导致较少的能耗。因为建筑物的整个舒适水平相对高,所以可能减小进风的冷却(或者加热)能力,同时减小了使建筑物不舒适的风险。
上述操作至少部分得益于以下事实,即建筑物舒适性并不必要求维持整个建筑物的严格温度。而是,如果组合的温度和湿度提供了舒适的环境,则更高的温度或者更低的温度可以被容忍。将注意的是,上述系统可以被修改来在舒适计算和控制中考虑房间空气流。公知的是,增加的房间空气流对于给定温度和湿度点能够增加舒适性。
应该理解的是,上述实施例是示例性的,并且本领域的普通技术人员很容易想到他们自己的实现方案和修改方案,这些实现方案和修改方案合并本发明的原理并且落入本发明的精神和范围内。
Claims (8)
1.一种设备,其包括:
多个无线微系统(12),每个微系统(12)可操作来测量至少相对湿度和温度,以生成组合的温度和相对湿度指数并且以无线方式发送该指数,
网络装置(16),该网络装置(16)可操作地被耦合来从至少一个微系统(12)接收所发送的指数并且作为对应于接收到的指数的输出信息来提供;
控制器(17,18),该控制器(17,18)可操作地被耦合来从网络装置(16)接收对应于指数的信息,该控制器可操作来至少部分根据该信息而引起建筑物控制条件的变化。
2.根据权利要求1所述的设备,其中,指数包括向量,所述向量包括相对湿度和温度信息。
3.根据权利要求1所述的设备,其中,指数包括代表组合的相对湿度和温度指数的单个值。
4.根据权利要求1所述的设备,其中,对应于接收到的指数的信息是接收到的指数。
5.根据上述权利要求中任一项所述的设备,其中,网络装置(16)经由有线通信网络(26)被耦合到控制器(17,18)。
6.根据权利要求1至4中任一项所述的设备,其中,网络装置(16)与控制器(17)位于同一地点。
7.根据上述权利要求中任一项所述的设备,其中,建筑物控制条件构成进入至少第一空间的空气流。
8.根据权利要求1至6中任一项所述的设备,其中,建筑物控制条件构成进风参数,进风被提供给建筑物中的多个空间。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71304205P | 2005-08-30 | 2005-08-30 | |
US60/713,042 | 2005-08-30 | ||
PCT/US2006/033566 WO2007027632A2 (en) | 2005-08-30 | 2006-08-30 | Application of microsystems for comfort control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101809514A true CN101809514A (zh) | 2010-08-18 |
CN101809514B CN101809514B (zh) | 2012-09-05 |
Family
ID=37526979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800319222A Active CN101809514B (zh) | 2005-08-30 | 2006-08-30 | 用于舒适控制的微系统的应用 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7854389B2 (zh) |
EP (1) | EP1932065B1 (zh) |
CN (1) | CN101809514B (zh) |
WO (1) | WO2007027632A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103425096A (zh) * | 2012-05-25 | 2013-12-04 | Abb股份公司 | 楼宇自动化系统 |
WO2015014229A1 (en) * | 2013-07-29 | 2015-02-05 | Ambi Labs Limited | Climate controller |
CN105387557A (zh) * | 2014-09-02 | 2016-03-09 | 三星电子株式会社 | 用于控制室内温度和湿度的方法和装置 |
Families Citing this family (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7623028B2 (en) | 2004-05-27 | 2009-11-24 | Lawrence Kates | System and method for high-sensitivity sensor |
US8033479B2 (en) | 2004-10-06 | 2011-10-11 | Lawrence Kates | Electronically-controlled register vent for zone heating and cooling |
EP1866575B1 (en) * | 2004-11-09 | 2011-01-26 | Truveon Corporation | Method and system for controlling a climate in a building |
US9037152B1 (en) | 2005-11-12 | 2015-05-19 | Alberto Herrera | Small footprint real-time operating system for reactive systems |
US7784704B2 (en) | 2007-02-09 | 2010-08-31 | Harter Robert J | Self-programmable thermostat |
US8160752B2 (en) | 2008-09-30 | 2012-04-17 | Zome Networks, Inc. | Managing energy usage |
US20090242651A1 (en) * | 2008-03-31 | 2009-10-01 | Computime, Ltd. | Local Comfort Zone Control |
US8356760B2 (en) * | 2008-04-17 | 2013-01-22 | Riley Jr Claude Roger | Apparent temperature controller |
KR101679840B1 (ko) * | 2008-07-18 | 2016-11-25 | 삼성전자주식회사 | 공기조화기의 제어방법 |
US8346398B2 (en) * | 2008-08-08 | 2013-01-01 | Siemens Industry, Inc. | Data center thermal performance optimization using distributed cooling systems |
US8548630B2 (en) | 2008-10-27 | 2013-10-01 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8437878B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8725298B2 (en) | 2008-10-27 | 2014-05-13 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network |
US8239066B2 (en) | 2008-10-27 | 2012-08-07 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8352081B2 (en) | 2008-10-27 | 2013-01-08 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9432208B2 (en) | 2008-10-27 | 2016-08-30 | Lennox Industries Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8744629B2 (en) | 2008-10-27 | 2014-06-03 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8255086B2 (en) | 2008-10-27 | 2012-08-28 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8762666B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries, Inc. | Backup and restoration of operation control data in a heating, ventilation and air conditioning network |
US9651925B2 (en) | 2008-10-27 | 2017-05-16 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US8892797B2 (en) | 2008-10-27 | 2014-11-18 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8564400B2 (en) | 2008-10-27 | 2013-10-22 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8452456B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8977794B2 (en) | 2008-10-27 | 2015-03-10 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8437877B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8452906B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8694164B2 (en) | 2008-10-27 | 2014-04-08 | Lennox Industries, Inc. | Interactive user guidance interface for a heating, ventilation and air conditioning system |
US8352080B2 (en) | 2008-10-27 | 2013-01-08 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8442693B2 (en) | 2008-10-27 | 2013-05-14 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8661165B2 (en) | 2008-10-27 | 2014-02-25 | Lennox Industries, Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8788100B2 (en) | 2008-10-27 | 2014-07-22 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US8463442B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8543243B2 (en) | 2008-10-27 | 2013-09-24 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9268345B2 (en) | 2008-10-27 | 2016-02-23 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8600559B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | Method of controlling equipment in a heating, ventilation and air conditioning network |
US8798796B2 (en) | 2008-10-27 | 2014-08-05 | Lennox Industries Inc. | General control techniques in a heating, ventilation and air conditioning network |
US8855825B2 (en) | 2008-10-27 | 2014-10-07 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US9377768B2 (en) | 2008-10-27 | 2016-06-28 | Lennox Industries Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US8433446B2 (en) | 2008-10-27 | 2013-04-30 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8994539B2 (en) | 2008-10-27 | 2015-03-31 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8655491B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8615326B2 (en) | 2008-10-27 | 2013-12-24 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9261888B2 (en) | 2008-10-27 | 2016-02-16 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8655490B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9152155B2 (en) | 2008-10-27 | 2015-10-06 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US9678486B2 (en) | 2008-10-27 | 2017-06-13 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8600558B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8295981B2 (en) | 2008-10-27 | 2012-10-23 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
US8463443B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US9632490B2 (en) | 2008-10-27 | 2017-04-25 | Lennox Industries Inc. | System and method for zoning a distributed architecture heating, ventilation and air conditioning network |
US8874815B2 (en) | 2008-10-27 | 2014-10-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network |
US8560125B2 (en) | 2008-10-27 | 2013-10-15 | Lennox Industries | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9325517B2 (en) | 2008-10-27 | 2016-04-26 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8802981B2 (en) | 2008-10-27 | 2014-08-12 | Lennox Industries Inc. | Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system |
US8774210B2 (en) | 2008-10-27 | 2014-07-08 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
WO2010050953A1 (en) * | 2008-10-30 | 2010-05-06 | Hewlett-Packard Development Company, L.P. | Multi-stage humidity control system and method |
US8754775B2 (en) | 2009-03-20 | 2014-06-17 | Nest Labs, Inc. | Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms |
US9020647B2 (en) | 2009-03-27 | 2015-04-28 | Siemens Industry, Inc. | System and method for climate control set-point optimization based on individual comfort |
CA2661261A1 (en) * | 2009-04-03 | 2010-10-03 | Brian Larson | System, apparatus and method for monitoring various environmental conditions surrounding an animal and communicating same to a remote device |
USD648642S1 (en) | 2009-10-21 | 2011-11-15 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
USD648641S1 (en) | 2009-10-21 | 2011-11-15 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
US8260444B2 (en) | 2010-02-17 | 2012-09-04 | Lennox Industries Inc. | Auxiliary controller of a HVAC system |
EP2372483B1 (de) * | 2010-03-16 | 2012-10-31 | Siemens Aktiengesellschaft | Verfahren zur Regelung von Raumkomfortgrössen |
JP5535320B2 (ja) * | 2010-08-18 | 2014-07-02 | 三菱電機株式会社 | 空調制御装置、空調制御方法及びプログラム |
US8606374B2 (en) | 2010-09-14 | 2013-12-10 | Nest Labs, Inc. | Thermodynamic modeling for enclosures |
US8950686B2 (en) | 2010-11-19 | 2015-02-10 | Google Inc. | Control unit with automatic setback capability |
US8510255B2 (en) | 2010-09-14 | 2013-08-13 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US8918219B2 (en) | 2010-11-19 | 2014-12-23 | Google Inc. | User friendly interface for control unit |
US8727611B2 (en) | 2010-11-19 | 2014-05-20 | Nest Labs, Inc. | System and method for integrating sensors in thermostats |
US9104211B2 (en) | 2010-11-19 | 2015-08-11 | Google Inc. | Temperature controller with model-based time to target calculation and display |
US9256230B2 (en) | 2010-11-19 | 2016-02-09 | Google Inc. | HVAC schedule establishment in an intelligent, network-connected thermostat |
US9075419B2 (en) | 2010-11-19 | 2015-07-07 | Google Inc. | Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements |
US10346275B2 (en) | 2010-11-19 | 2019-07-09 | Google Llc | Attributing causation for energy usage and setpoint changes with a network-connected thermostat |
US9459018B2 (en) | 2010-11-19 | 2016-10-04 | Google Inc. | Systems and methods for energy-efficient control of an energy-consuming system |
US9453655B2 (en) | 2011-10-07 | 2016-09-27 | Google Inc. | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
US9046898B2 (en) | 2011-02-24 | 2015-06-02 | Google Inc. | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
US11334034B2 (en) | 2010-11-19 | 2022-05-17 | Google Llc | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US9448567B2 (en) | 2010-11-19 | 2016-09-20 | Google Inc. | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US8195313B1 (en) | 2010-11-19 | 2012-06-05 | Nest Labs, Inc. | Thermostat user interface |
US9714772B2 (en) | 2010-11-19 | 2017-07-25 | Google Inc. | HVAC controller configurations that compensate for heating caused by direct sunlight |
US9268344B2 (en) | 2010-11-19 | 2016-02-23 | Google Inc. | Installation of thermostat powered by rechargeable battery |
US8850348B2 (en) | 2010-12-31 | 2014-09-30 | Google Inc. | Dynamic device-associated feedback indicative of responsible device usage |
WO2012092622A2 (en) | 2010-12-31 | 2012-07-05 | Nest Labs, Inc. | Inhibiting deleterious control coupling in an enclosure having multiple hvac regions |
US9342082B2 (en) | 2010-12-31 | 2016-05-17 | Google Inc. | Methods for encouraging energy-efficient behaviors based on a network connected thermostat-centric energy efficiency platform |
US9417637B2 (en) | 2010-12-31 | 2016-08-16 | Google Inc. | Background schedule simulations in an intelligent, network-connected thermostat |
US8560127B2 (en) | 2011-01-13 | 2013-10-15 | Honeywell International Inc. | HVAC control with comfort/economy management |
US8944338B2 (en) | 2011-02-24 | 2015-02-03 | Google Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
US8511577B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
JP5908676B2 (ja) * | 2011-03-30 | 2016-04-26 | ソニー株式会社 | 制御装置、制御方法、プログラムおよびシステム |
US9115908B2 (en) | 2011-07-27 | 2015-08-25 | Honeywell International Inc. | Systems and methods for managing a programmable thermostat |
US8930030B2 (en) * | 2011-09-30 | 2015-01-06 | Siemens Industry, Inc. | Method and system for improving energy efficiency in an HVAC system |
US8893032B2 (en) | 2012-03-29 | 2014-11-18 | Google Inc. | User interfaces for HVAC schedule display and modification on smartphone or other space-limited touchscreen device |
CN105487395B (zh) | 2011-10-21 | 2018-10-26 | 谷歌有限责任公司 | 提供到目标状态的时间的智能控制器 |
WO2013059671A1 (en) | 2011-10-21 | 2013-04-25 | Nest Labs, Inc. | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US8622314B2 (en) | 2011-10-21 | 2014-01-07 | Nest Labs, Inc. | Smart-home device that self-qualifies for away-state functionality |
CN103890667B (zh) | 2011-10-21 | 2017-02-15 | 谷歌公司 | 用户友好、网络连接的学习型恒温器及相关系统和方法 |
US9890970B2 (en) | 2012-03-29 | 2018-02-13 | Google Inc. | Processing and reporting usage information for an HVAC system controlled by a network-connected thermostat |
US9091453B2 (en) | 2012-03-29 | 2015-07-28 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US20150167994A1 (en) * | 2012-05-30 | 2015-06-18 | Carrier Corporation | Hvac control system |
MX350468B (es) | 2012-08-28 | 2017-09-07 | Delos Living Llc | Sistemas, metodos y articulos para mejorar el bienestar asociado con ambientes habitables. |
US8620841B1 (en) | 2012-08-31 | 2013-12-31 | Nest Labs, Inc. | Dynamic distributed-sensor thermostat network for forecasting external events |
US8994540B2 (en) | 2012-09-21 | 2015-03-31 | Google Inc. | Cover plate for a hazard detector having improved air flow and other characteristics |
US8630741B1 (en) | 2012-09-30 | 2014-01-14 | Nest Labs, Inc. | Automated presence detection and presence-related control within an intelligent controller |
US8554376B1 (en) | 2012-09-30 | 2013-10-08 | Nest Labs, Inc | Intelligent controller for an environmental control system |
US8630742B1 (en) | 2012-09-30 | 2014-01-14 | Nest Labs, Inc. | Preconditioning controls and methods for an environmental control system |
US8600561B1 (en) | 2012-09-30 | 2013-12-03 | Nest Labs, Inc. | Radiant heating controls and methods for an environmental control system |
US9595070B2 (en) | 2013-03-15 | 2017-03-14 | Google Inc. | Systems, apparatus and methods for managing demand-response programs and events |
US9810442B2 (en) | 2013-03-15 | 2017-11-07 | Google Inc. | Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat |
US20140277765A1 (en) * | 2013-03-15 | 2014-09-18 | University Of Southern California | Human-building interaction framework for personalized comfort driven system operations in buildings |
US9807099B2 (en) | 2013-03-15 | 2017-10-31 | Google Inc. | Utility portals for managing demand-response events |
US10775814B2 (en) | 2013-04-17 | 2020-09-15 | Google Llc | Selective carrying out of scheduled control operations by an intelligent controller |
US9298197B2 (en) | 2013-04-19 | 2016-03-29 | Google Inc. | Automated adjustment of an HVAC schedule for resource conservation |
US9910449B2 (en) | 2013-04-19 | 2018-03-06 | Google Llc | Generating and implementing thermodynamic models of a structure |
US9696735B2 (en) | 2013-04-26 | 2017-07-04 | Google Inc. | Context adaptive cool-to-dry feature for HVAC controller |
US9360229B2 (en) | 2013-04-26 | 2016-06-07 | Google Inc. | Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components |
US9996091B2 (en) | 2013-05-30 | 2018-06-12 | Honeywell International Inc. | Comfort controller with user feedback |
DE102013019305B4 (de) * | 2013-11-16 | 2024-10-02 | HELLA GmbH & Co. KGaA | Verfahren und Vorrichtung zur Bestimmung mindestens eines Steuersignals zur Steuerung einer Klimatisierungseinrichtung und Fahrzeug damit |
US10712722B2 (en) | 2014-02-28 | 2020-07-14 | Delos Living Llc | Systems and articles for enhancing wellness associated with habitable environments |
US9857238B2 (en) | 2014-04-18 | 2018-01-02 | Google Inc. | Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics |
FR3020476B1 (fr) * | 2014-04-25 | 2016-04-15 | Somfy Sas | Dispositif et un systeme de commande et/ou de controle |
US10915669B2 (en) | 2014-06-20 | 2021-02-09 | Ademco Inc. | HVAC zoning devices, systems, and methods |
US20160098026A1 (en) * | 2014-10-02 | 2016-04-07 | Mohamed Farouk SALEM | Temperature control system and methods of performing the same |
US10802459B2 (en) | 2015-04-27 | 2020-10-13 | Ademco Inc. | Geo-fencing with advanced intelligent recovery |
US10055781B2 (en) | 2015-06-05 | 2018-08-21 | Boveda Inc. | Systems, methods and devices for controlling humidity in a closed environment with automatic and predictive identification, purchase and replacement of optimal humidity controller |
US10909607B2 (en) | 2015-06-05 | 2021-02-02 | Boveda Inc. | Systems, methods and devices for controlling humidity in a closed environment with automatic and predictive identification, purchase and replacement of optimal humidity controller |
US9702582B2 (en) | 2015-10-12 | 2017-07-11 | Ikorongo Technology, LLC | Connected thermostat for controlling a climate system based on a desired usage profile in comparison to other connected thermostats controlling other climate systems |
US10101050B2 (en) | 2015-12-09 | 2018-10-16 | Google Llc | Dispatch engine for optimizing demand-response thermostat events |
US11668481B2 (en) | 2017-08-30 | 2023-06-06 | Delos Living Llc | Systems, methods and articles for assessing and/or improving health and well-being |
US11009248B2 (en) | 2018-04-10 | 2021-05-18 | Air2O Inc. | Adaptive comfort control system |
EP3850458A4 (en) * | 2018-09-14 | 2022-06-08 | Delos Living, LLC | AIR CLEANING SYSTEMS AND PROCEDURES |
US11002455B2 (en) | 2018-11-14 | 2021-05-11 | Air2O Inc. | Air conditioning system and method |
US11844163B2 (en) | 2019-02-26 | 2023-12-12 | Delos Living Llc | Method and apparatus for lighting in an office environment |
WO2020198183A1 (en) | 2019-03-25 | 2020-10-01 | Delos Living Llc | Systems and methods for acoustic monitoring |
US11761823B2 (en) * | 2020-08-28 | 2023-09-19 | Google Llc | Temperature sensor isolation in smart-home devices |
US11885838B2 (en) | 2020-08-28 | 2024-01-30 | Google Llc | Measuring dissipated electrical power on a power rail |
US11726507B2 (en) | 2020-08-28 | 2023-08-15 | Google Llc | Compensation for internal power dissipation in ambient room temperature estimation |
US11781766B2 (en) * | 2020-11-25 | 2023-10-10 | Research Products Corporation | System and method for humidification temperature compensation |
US11815275B2 (en) * | 2022-01-18 | 2023-11-14 | Radiant Innovation Inc. | Portable electronic device for providing graphical information obtained by combining temperature humidity index with comfortability index |
US11808467B2 (en) | 2022-01-19 | 2023-11-07 | Google Llc | Customized instantiation of provider-defined energy saving setpoint adjustments |
JP7386364B1 (ja) | 2023-01-10 | 2023-11-24 | 旭化成エレクトロニクス株式会社 | 情報処理装置、情報処理方法、及びプログラム |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD205017A5 (de) | 1981-06-16 | 1983-12-14 | Os Bad Roz Automat Proc Chemi | Verfahren zur steuerung von chemischen prozessen und eine anordnung zur durchfuehrung des verfahrens |
JPH05187695A (ja) * | 1992-01-13 | 1993-07-27 | Hitachi Ltd | アメニティセンシング装置 |
US5346129A (en) * | 1993-05-17 | 1994-09-13 | Honeywell Inc. | Indoor climate controller system adjusting both dry-bulb temperature and wet-bulb or dew point temperature in the enclosure |
US6116512A (en) * | 1997-02-19 | 2000-09-12 | Dushane; Steven D. | Wireless programmable digital thermostat system |
US5562537A (en) | 1995-05-11 | 1996-10-08 | Landis & Gyr Powers, Inc. | Networked fume hood monitoring system |
US5853020A (en) | 1995-06-23 | 1998-12-29 | Widner; Ronald D. | Miniature combination valve and pressure transducer and system |
EP0786712B1 (de) * | 1996-01-29 | 2001-04-04 | Siemens Building Technologies AG | Verfahren und Vorrichtung zur Regelung der Lufttemperatur und der Luftfeuchte in einer Vollklimaanlage |
US5950442A (en) * | 1996-05-24 | 1999-09-14 | Ebara Corporation | Air conditioning system |
US5737934A (en) * | 1996-06-12 | 1998-04-14 | Honeywell Inc. | Thermal comfort controller |
US5711480A (en) * | 1996-10-15 | 1998-01-27 | Carrier Corporation | Low-cost wireless HVAC systems |
US5915473A (en) * | 1997-01-29 | 1999-06-29 | American Standard Inc. | Integrated humidity and temperature controller |
AU3772799A (en) | 1998-05-01 | 1999-11-23 | Abb Power T & D Company Inc. | Wireless area network communications module for utility meters |
US6437692B1 (en) | 1998-06-22 | 2002-08-20 | Statsignal Systems, Inc. | System and method for monitoring and controlling remote devices |
US6252510B1 (en) | 1998-10-14 | 2001-06-26 | Bud Dungan | Apparatus and method for wireless gas monitoring |
US6137403A (en) | 1998-12-10 | 2000-10-24 | Phoenix Controls Corporation | Sash sensor and method of sensing a sash using an array of multiplexed elements |
US6145751A (en) * | 1999-01-12 | 2000-11-14 | Siemens Building Technologies, Inc. | Method and apparatus for determining a thermal setpoint in a HVAC system |
EP1169691A1 (en) | 1999-03-12 | 2002-01-09 | Graviton, Inc. | Systems and methods for network based sensing and distributed sensor, data and memory management |
US6625500B1 (en) | 1999-03-16 | 2003-09-23 | Chou H. Li | Self-optimizing method and machine |
AU7871800A (en) | 1999-10-06 | 2001-05-10 | Sensoria Corporation | Method for remote access of vehicle components |
US6934862B2 (en) | 2000-01-07 | 2005-08-23 | Robertshaw Controls Company | Appliance retrofit monitoring device with a memory storing an electronic signature |
WO2001093220A1 (en) | 2000-05-26 | 2001-12-06 | Royal Thoughts, L.L.C. | Modular communication and control system and method |
US6864802B2 (en) * | 2000-09-01 | 2005-03-08 | Ut-Battelle, Llc | Wireless spread-spectrum telesensor chip with synchronous digital architecture |
CA2363217A1 (en) * | 2001-11-22 | 2003-05-22 | Ian C. Campbell | System and method for environmental monitoring and energy control |
DE60330750D1 (de) * | 2002-01-28 | 2010-02-11 | Siemens Building Tech Ag | Gebaudeautomatisierungssystem und dafür entsprechendes rauchabzugssystem mit verminderten verdrahtungsanforderungen |
JP4043879B2 (ja) | 2002-07-24 | 2008-02-06 | 三菱電機株式会社 | プラント最適運転制御装置 |
FI20021901A0 (fi) | 2002-10-24 | 2002-10-24 | Liqum Oy | Menetelmä prosessin valvomiseksi |
US20040144849A1 (en) | 2003-01-28 | 2004-07-29 | Osman Ahmed | Building control system using integrated MEMS devices |
US6843068B1 (en) * | 2003-07-25 | 2005-01-18 | Honeywell International Inc. | Method and apparatus for adjusting the temperature set point based on humidity level for increased comfort |
JP2007018490A (ja) | 2005-02-23 | 2007-01-25 | Sony Corp | 行動制御装置および行動制御方法、並びに、プログラム |
-
2006
- 2006-08-30 EP EP06802508.9A patent/EP1932065B1/en active Active
- 2006-08-30 CN CN2006800319222A patent/CN101809514B/zh active Active
- 2006-08-30 WO PCT/US2006/033566 patent/WO2007027632A2/en active Search and Examination
- 2006-08-30 US US11/512,751 patent/US7854389B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103425096A (zh) * | 2012-05-25 | 2013-12-04 | Abb股份公司 | 楼宇自动化系统 |
WO2015014229A1 (en) * | 2013-07-29 | 2015-02-05 | Ambi Labs Limited | Climate controller |
CN105900035A (zh) * | 2013-07-29 | 2016-08-24 | 安比实验室有限公司 | 气候控制器 |
US11036245B2 (en) | 2013-07-29 | 2021-06-15 | Ambi Labs Limited | Climate controller |
CN105387557A (zh) * | 2014-09-02 | 2016-03-09 | 三星电子株式会社 | 用于控制室内温度和湿度的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
EP1932065A2 (en) | 2008-06-18 |
WO2007027632A3 (en) | 2010-05-06 |
CN101809514B (zh) | 2012-09-05 |
EP1932065B1 (en) | 2015-08-12 |
US20070084937A1 (en) | 2007-04-19 |
US7854389B2 (en) | 2010-12-21 |
WO2007027632A2 (en) | 2007-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101809514B (zh) | 用于舒适控制的微系统的应用 | |
CN102449406B (zh) | 用于基于个体舒适的气候控制设定点优化的系统和方法 | |
AU2008205868B2 (en) | Air conditioning blow-out panel, air conditioning control system including the same and air conditioning control method | |
US9702578B2 (en) | Air conditioning control system for controlling outside air control and return air control of air conditioning system | |
US20100250009A1 (en) | Control of conditioned environment by remote sensor | |
US20040144849A1 (en) | Building control system using integrated MEMS devices | |
WO2012023297A1 (ja) | 空調制御装置、空調制御方法及びプログラム | |
US11976833B2 (en) | Air conditioning system controller | |
KR20150011258A (ko) | 공기조화기 및 그 제어방법 | |
Nouvel et al. | A novel personalized thermal comfort control, responding to user sensation feedbacks | |
CN115190988A (zh) | 用于控制空调系统的方法及控制系统 | |
CN114963481A (zh) | 物联网电力载波节能控制器 | |
US11940166B2 (en) | Air conditioning system for transferring air in an air-conditioned room | |
Wang et al. | How the number and placement of sensors controlling room air distribution systems affect energy use and comfort | |
KR20150022256A (ko) | 공기조화기 및 그 제어방법 | |
JP7342598B2 (ja) | 空気調和システム | |
JP5016343B2 (ja) | 空調制御システム | |
KR102514463B1 (ko) | 쾌적존을 이용한 건물통합관리장치 | |
JP7392394B2 (ja) | 空気調和システム及び空気調和機 | |
KR20150022254A (ko) | 공기조화기 및 그 제어방법 | |
JPH07180887A (ja) | 空調制御システム | |
KR102521766B1 (ko) | 공조 관리 시스템 | |
KR20110116690A (ko) | 사무용 건물설비의 최적관리 및 에너지 절감을 위한 지능형 빌딩제어시스템 및 제어방법 | |
WO2021240604A1 (ja) | 空調制御装置、空調システム、空調方法及びプログラム | |
US20230358430A1 (en) | Heating, ventilation, and air conditioning system control leveraging future weather |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |