CN101795636A - Rf消融计划器 - Google Patents

Rf消融计划器 Download PDF

Info

Publication number
CN101795636A
CN101795636A CN200880003120A CN200880003120A CN101795636A CN 101795636 A CN101795636 A CN 101795636A CN 200880003120 A CN200880003120 A CN 200880003120A CN 200880003120 A CN200880003120 A CN 200880003120A CN 101795636 A CN101795636 A CN 101795636A
Authority
CN
China
Prior art keywords
ablation
ptv
candidate
ablation areas
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880003120A
Other languages
English (en)
Other versions
CN101795636B (zh
Inventor
K·I·特罗瓦托
D·萨默斯-斯特耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101795636A publication Critical patent/CN101795636A/zh
Application granted granted Critical
Publication of CN101795636B publication Critical patent/CN101795636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Laser Surgery Devices (AREA)

Abstract

在为消融过程制定计划时,输入被计划目标体积(PTV)(70、102),它通常是由医生选择的,但也可以是计算机确定的。计算覆盖PTV(40、70、102)的初始的一组候选消融区域(112)。计算避开关键结构(136)的消融探针轨迹,以便为安全进入点和角度提供外科手术的5个选择。优化组件(14)确定完全覆盖PTV(40、70、102)的消融区域的最小数量,并为每一个消融产生位置和方向。可以将这些消融目标提供给追踪系统,以使得外科医生能够更准确地控制探针达到预期位置。

Description

RF消融计划器
技术领域
本申请涉及射频消融(RFA),具体地涉及将RF电极“探针”插入到病人体内,以便覆盖预期的消融区(ablation zone),并通过提高其温度来杀死肿瘤。然而,会意识到,所述的技术还可以应用于其它消融技术、其它外科手术技术及其它放射治疗技术。
背景技术
探针可以在预定时间段(例如大约15分钟,或一些其它适合的时间段)内连接到电源,并且以各种形状(但通常是球体或椭圆体)进行消融。当前,外科医生可以在内心里做出与要消融的病变的位置有关的记号,并可以利用各种图像向导来插入探针。因为探针非常昂贵,因此阻止了外科医生使用多种探针尺寸和结构来支持尝试着使用最少数量的探针来消融组织块(mass)。
当肿瘤或病变超过了由单次消融所能够成功覆盖的尺寸时,治疗成功率就急剧下降。可以认为在肿瘤周围的、经常是1cm的边缘是为了杀死极微小的癌症细胞所必要的。遗留下肿瘤的任何部分不进行治疗,都会导致复发,并且常常是强烈的复发。此外,对肿瘤的覆盖区域的确定涉及复杂的3D几何运算和呈现,这即使是对于最好的外科医生来说也是困难的。再另外,每一次额外的消融都增加了外科手术、麻醉时间和花费,并提高了对病人的风险。
会发生的其它困难涉及在3维空间中单个目标位置在内心里的复杂呈现,以及在控制探针以使其准确地到达目标位置时的困难度,这种困难度增加了发生错误的额外可能性。另外,消融形状常常与肿瘤的形状或大小不匹配,这就导致消融了围绕肿瘤周围的健康组织。肿瘤还可以由两个或多个更小的肿瘤区组成,这些肿瘤区在位置上不相连的,但彼此足够靠近,从而应该一起治疗它们。消融还会损害“关键区域”,这会导致对病人严重的伤害。通常对探针进入角度进行选择,因为它们匹配成像系统,而不是因为它们使消融的数量最少或者减小了过程的风险。此外,由于每一个外科医生都在内心里创建一幅画面和计划,并手动地引导探针,因此就不存在再现的机会,而再现性是“基于证据的医学”(evidence based madicine)的一个重要方面。本申请提供了新的且改进的肿瘤消融系统和方法,克服了以上提及的以及其它的问题。
发明内容
根据一个方面,一种为用以对在病人体内的组织块进行消融的消融过程制定计划的系统,包括:对目标块的表示。目标体积包括肿瘤以及任何可任选的边缘。这个表示可以是诸如从CT图像分割出的区域之类的输入的体积。可替换地,其可以通过用户界面来指定,在用户界面中,用户使用绘图工具从图像数据的不同视图描绘出边界轮廓,并且系统计算相关的3D体素。优化组件接收与这个块相关的图像数据,并确定用以覆盖这个块的消融区域。可以对消融区域进行选择,以便它们使消融的数量最少(从而使过程时间最短),或者可以对消融区域进行选择以便使对相邻于目标体积的健康组织的损害最小。
在另一个方面,确定关键区域以便该计划制定能够避开它们。
在另一个方面,确定目标体积的由于与关键区域的相对位置的原因而难以达到的一个子集。这个子集可以用于建议外科医生考虑例如借助于盐水注射将目标与关键区域分离。
在另一个方面,可以确定可能的、避开了禁止区域的进入点和方向的组。其优点是将方向和进入向量的组缩小到仅包括切实可行的那些组。这允许系统能够为外科医生提供对于切实可行的入口的选择。可以提供对于每一个入口的消融及附带损害的数量,或者可以仅建议切实可行的入口中的最佳入口。
一个优点是可以确定在消融区域内的关键区域(例如骨骼、肠等),可以采取动作来避免其消融。
另一个优点在于使外科手术持续时间最短。
另一个优点在于使消融体积与目标准确地匹配。
另一个优点是确定了特定的、定量的目标位置及方向。这些特定值可以用于以诸如磁性追踪器的追踪设备指导外科医生。它们还可以用于控制需要定量数据的、诸如机器人之类的其它设备。
本领域普通技术人员在阅读并理解了以下详细描述后,会意识到本发明更多的优点。
附图说明
本发明可以采取各种组件和组件排列的形式,并可以采取各种步骤和步骤排列的形式。附图仅是为了图示说明多个方面的目的,不应解释为限制本发明。
图1示出了根据本文阐述的一个或多个方面的一种射频(RF)消融计划器系统,其用于产生一个用以执行一个或多个消融协议来治疗病人体内的肿瘤块或病变的计划。
图2示出了一种算法方法,其为每一次消融的消融探针和目标位置产生包括探针进入角度在内的定量计划。
图3A、3B和3C显示了主动脉附近的示例性PTV,以及根据与主动脉腔之间距离而造成的温度变化的曲线图。
图4A、4B、4C和4D示出了与消融计划制定相关的各种动作的图形表示。
图5示出了根据多个特征,一种用于产生消融计划制定解决方案的方法。
图6A和6B示出了在执行与消融计划制定相关的多个动作时,可以经由GUI显示给用户的图像。
图7示出了多个椭球形消融体积的图像。
图8示出了可以用于产生消融椭圆体的消融探针。
图9A和9B示出了被计划目标体积(PTV)以及与诸如骨骼之类的关键区域重叠的候选椭球形消融体积的计算机建模图像。
图10示出了一种使用多个重力点来进一步减小消融数量的方法。
具体实施方式
通常将诸如加长的细长探针之类的消融器械插入到肿瘤、病变或要消融的其它组织中,使用高射频来加热探针尖端,以便将周围的组织加热到足以杀死在其中的细胞的温度,该温度常常认为是50摄氏度。尽管本申请主要描述了可以用于包括肝脏、肾脏、胸部、肺部等在内的许多部位的射频(RF)消融技术,但会理解也可以类似地为冷冻消融术、微波及其它消融和治疗过程制定计划。
通常相对于探针尖端来定位消融区域,并且消融区域是球状体或椭圆体形状,注意球体是具有相等a、b、c轴的椭圆体。当肿瘤大于指定探针尺寸的消融区域时,外科医生就选择一个以上的探针位置来产生相互交叠以覆盖整个肿瘤块的多个消融区域。通常的消融过程包括:定义目标区域,将探针插入到预期位置,并对探针供电大约15分钟以使得探针尖端变热。
规定覆盖了整个肿瘤块以及在肿瘤周围的缓冲区域(例如通常是一厘米等)的被计划目标体积(PTV)。这确保了消融全部肿瘤细胞和在缓冲区域中发现的极微小的肿瘤细胞,以便减少肿瘤的复发。
根据本文提出的各个特征,通过确定探针在不穿过关键区域或骨骼组织的情况下到达肿瘤块所沿着的可能轨迹,来选择探针位置。随后由外科医生选择或者自动地选择一条或多条轨迹,以便优化用以消融整个肿瘤块而执行的消融的数量。
定义一系列椭圆体体积来包围PTV。如以下详细描述的,基于计算机的优化技术根据椭圆体的大小来覆盖PTV。另外,在仍然会覆盖整个PTV的同时,移动椭圆体以使得延伸到PTV之外的健康组织中的椭圆体消融区域的量最小。随着对椭圆体的移动,可以发现多余的椭圆体,并可以删除这些多余的椭圆体以减小消融PTV所需的消融的数量。此外,可以重复这个技术,以使得用于填充PTV空间的椭圆体的数量最少,从而使得所执行的消融数量最少。可以为用于探针插入的几条或全部可能的轨迹执行优化,以便确定使得所需消融数量最少或者减小了健康组织的附带损害的一个(或多个)插入角度。另外,这个技术可以确保所计划的消融椭圆体体积不会与诸如骨骼或其它敏感组织之类的关键区域相交。
图1示出了射频(RF)消融系统10,其有助于产生用于执行一个或多个消融协议以治疗病人体内的肿瘤块或病变的计划。可以通过准确地计划消融探针位置以使得没有剩余肿瘤的任何未治疗部分,并且准确地执行这个计划,来实现对于大肿瘤的成功治疗。系统10产生定量的消融计划,包括每一次消融的目标位置和方向。可任选地确定在身体外部上通向目标的一个或多个进入点。该消融计划确保覆盖了肿瘤的所有区域,并报告使用特定探针完成完整的消融所需的消融数量。系统10还利用优化技术来使得消融数量最少。由于该计划是定量的,因此可以用机器人和/或用登记的图像向导(例如通过定量地追踪消融探针)来执行该计划。
系统10包括消融组件12,其可操作地连接到优化组件14和诸如CT扫描器之类的成像组件16中的每一个。系统10可以进一步或者可替换地包括超声成像组件、X光透视成像组件、磁共振成像系统、影像存档和传输系统(picture archiving and communication system)(PACS)或任何其它适合的成像组件或传递系统。在一个实施例中,消融组件12是RF消融系统,其包括电源、射频发生器、可操作地与之耦合的探针等,以及有助于将探针插入肿瘤块中并将在相对于探针尖端的区域内的肿瘤块加热到足以杀死肿瘤细胞的温度(例如大约50摄氏度)的任何其它适合的组件。在可替换的实施例中,消融组件12包括高强度聚焦的超声组件(HIFU),其通过使用超声的机械振动和/或加热特性来消融特定区域内的组织。在一些实施例中,即使超声不是严格“聚焦的”,但使用换能器元件阵列也可以预测超声消融区域。成像组件16产生被重构为3-D图像的数据。可以使用多种算法来自动地分割诸如病变、器官、关键区域之类的对象,或者可以用绘图工具手动地沿着每一个轴进行分割。所述分割产生了与特定对象相关联的体积区域的描述。具体的,可任选地,可以经由图形用户界面18(GUI)将体积呈现给用户。可以以预期的距离对该体积进行“增长”,以便将肿瘤加上边缘都包括在结果产生的体积中。在本文中无论何时使用词语“肿瘤”,尤其是与优化有关的时候,都假定为意思是“被计划目标体积”(PTV),它覆盖了意图结合起来实现完全覆盖的特定肿瘤加上边缘。诸如Pinnacle之类的系统提供了从医学图像手动或半自动地分割出对象的能力。Pinnacle还允许用户能够设定边缘,在所述边缘上定义了新的体积(PTV)。优化组件14分析与PTV相关的信息,尤其是尺寸,并还以方向为给定消融探针定义了一组消融位置。在一个实施例中,优化组件14确定可以覆盖PTV的最少数量的消融。在另一个实施例中,优化组件14以方向确定避开了最健康的组织(即,使附带损害最小)的消融位置。在另一个示例中,分割出额外的对象体积,其表示不进行消融的组织的“关键区域”或骨骼,并且优化组件14在避开这些区域的同时,尝试产生最少的消融或使附带损害最小。然而在一些情况下,优化组件14产生未消融的区域,用户在这些区域上受到警告,并可以将这些区域显示在用户界面上。与消融技术、消融时间段、探针尺寸、温度、PTV、椭圆体体积、椭圆体中心、PTV减小和/或调整、用于使PTV最小化的协议、探针进入角度和/或位置相关的信息,以及与系统性能有关的任何其它适合的信息都存储在存储器20中,存储器20也可操作地耦合到优化组件14。另外,优化组件14包括处理器21,用于执行各种分析动作,执行一个或多个例程等。例如,处理器21可以执行诸如结合图2、5和10所述的那些例程。根据一些方面,优化组件包括计算机,其包括一个或多个处理器和用于存储与消融技术有关的信息的存储器。
可以由医生选择探针进入角度,并经由用户界面手动地或以图形方式输入。可替换的,随着探针穿过身体到达肿瘤,系统10可以有助于选择探针进入角度以避开“关键区域”。理论上,应避免受到消融的关键区域可以与会被探针进入路径穿透的其它关键区域不同。在RF消融中,当前探针需要在皮肤与目标之间的物理通路。然而在诸如HIFU之类的其它消融技术中,可以在不干扰中间组织的情况下到达目标。然而实际上,消融和进入路径的关键区域常常是相同的。优化组件14选择不与关键区域相交的消融体积。在一些情况下,关键区域可能会非常靠近肿瘤从而不容易到达肿瘤。在此情况下,高亮显示关键区域以警告用户:希望有或建议诸如盐水注射之类的额外准备过程,以便将肿瘤与关键区域分离或热隔绝。
由优化组件14执行对探针进入点(可任选的)和消融点的选择(例如为了实现预期的消融形状而以给定的偏移设置探针尖端的位置)。根据其它方面,优化组件14提供了多个建议的进入点和/或消融点,经由GUI 18向用户呈现这些进入点和/或消融点以便进行选择。以此方式,RF消融计划器系统10有助于通过精确地计划消融位置以便不遗留未治疗的肿瘤部分且不损害关键组织,来成功地治疗大肿瘤,这个计划制定产生了定量的目标,从而使得消融组件12能够使用追踪或控制来提高精度,以及以更多的可重复过程来改进总体系统。
根据其它实施例,预先产生并存储肿瘤块的PTV,并稍后将其输入到优化组件14,以便进行消融过程计划制定。输入的PTV是PTV的三维表示,其是用诸如CT扫描器、超声成像组件、X光透视成像组件、磁共振成像系统、影像存档和传输系统(PACS)或任何其它适合的成像组件或传递系统之类的成像组件16产生的。一旦接收到PTV,就为完全包围PTV的一个或多个消融体积确定消融体积中心。可以将目标消融点(例如这些中心)输出到追踪系统,追踪系统可以包括GUI,用以辅助外科医生沿着预期的插入轨迹来设置探针。附加地或者可替换地,可以将目标消融点输出到GUI 18(例如在有或没有追踪系统的情况下),用于在执行消融过程时由外科医生认可和/或使用。
图2示出了一种用于产生定量计划的算法方法22,该定量计划包括消融探针的进入角度和每一次消融的目标位置。该算法确保全部肿瘤区域都被覆盖,并确定使用特定探针进行完整肿瘤消融的多次消融。另外,该算法包括优化技术,其使得对给定肿瘤体积的消融数量最少。在一个示例中,该算法确定覆盖被计划目标体积(PTV)的多个消融椭圆形。将椭圆形的中心拉向置于中心的“重力点”,其位于质心处。通常,其会落在PTV内,然而对于例如“C”形的一些不常见的形状,这个点实际上会位于PTV之外。随着将椭圆形拉向重力点,删除了没有覆盖PTV的唯一性部分的那些消融椭圆体,以便确定最少数量的消融椭圆体及其各自的中心。在群集了足够多的椭圆形以致于一个椭圆形的关键覆盖区域已经被其它椭圆形覆盖的情况下,就会发生这种情况。一旦将这些椭圆形拉到一起,就可以使附带损害最小。
根据该方法,在24处,分割并确定肿瘤体积。肿瘤可以是任何形状,并且可以是不相连的区域的集合。随后为消融确定PTV,例如其可以是肿瘤体积加上约几厘米厚的周围体积。以下,图3显示了示例性肿瘤,它在所有维度上都增长了固定的尺寸。尽管为这个2D示例显示了一个圆形,但在3D示例中可以使用球形。沿着肿瘤的边缘设置该中心,从而构成了PTV边界。这也可以用其它技术来完成。如果是多个不相连的区域靠近在一起,理想情况下是通过边缘将这些区域相连接,就可以获得最佳结果。如果它们不相连,那么出于计划的目的,可以优选地将边缘相连的体积的每一个群集认为是单独的肿瘤。PTV表示具有围绕肿瘤而添加的边缘的体积。在24处,通常由本文献中所述的以及在产品中可获得的多种分割技术中的任何一种来确定接近肿瘤的关键区域和吸热体(heat sink)。每一个关键区域、吸热体、肿瘤、PTV等都是感兴趣区(ROI)。机器分割可以是自动进行的、由手工描绘轮廓执行的,或者采用这二者的组合执行的。关键区域是器官或生命关键的组织,热会对其造成不利影响。实际上有两类关键区域。第一类是接近PTV的不应被消融的那些关键区域。第二类是例如在RF消融探针进入身体时不应被穿透的那些关键区域。肠子是不应被穿透或消融的结构。然而主要影响是在工作流程上。外科医生可以计算一组消融,随后进行关于仅分割相关的(接近PTV或者接近插入路径)关键结构的额外工作,以确定他们如何改变所建议的过程。例如,可以随后增加接近所建议的消融区域的神经,以便查明该计划必须如何改变,并且确定该过程是否会严重威胁这些神经。分割其它结构,并确定为“吸热体”。例如,尽管看起来应保护诸如主动脉之类的关键区域免于消融,但实际上它可以保护其自身,因为血液流动非常迅速,以致于它“自我冷却”了。然而这种冷却为需要消融的附近结构带来了问题,因为冷却与加热过程是竞争的,结果导致未消融的区域和癌症复发的风险。在当前RF消融探针中,15分钟后接近探针处的温度高于消融区域边缘处的温度。因此,可取的是将探针移近主动脉3mm,以使得主动脉表面附近的温度更接近55摄氏度。可以使用基于描述液体和气体流动的Navier-Stokes等式的计算流体动力学来估计由于接近具有特定尺寸和血流速度的特定吸热体而损失的热量。
在26处,在病人皮肤上定义进入角度和/或一个或多个进入点。在一个实施例中,利用光线行进协议(ray marching protocol)来确定进入点。例采用二相体积,将CT体素标记为“自由的”或者标记为“关键区域”。使用诸如由Perlin介绍的光线行进协议算法(例如,见K.Perlin和E.M.Hoffert,“Hypertexture”,Computer Graphics,vol.23,issue 3,第253-261页,1989)来确定在皮肤上的允许沿着一条路径将探针插入PTV的多个位置,其中所述路径不穿过诸如骨骼之类的敏感区域或者关键区域。直观地,这类似于将光设置在肿瘤的中心处,使得关键区域(例如,诸如骨骼等之类的实体)阻碍该光,并确定该光到达皮肤的点。光线以线状射线形式从PTV的质量中心(质心)穿过3D图像“行进”,直到出现以下三种情形之一:
1)光线到达图像体积的边缘,于是它从PTV中心处在新方向上重新开始
2)光线到达皮肤或被认可作为进入点的另一个位置,于是指明x、y、z位置和光线方向。这是可能的进入点,其可以以图形方式显示,或者存储在列表以供选择,或者可以对其进行评估以确定从这个角度进行覆盖所需的消融数量。
3)光线到达被标记为“关键区域”的体素,于是从PTV中心处以一个新的方向开始新的光线。
这个过程持续进行,直到评估了所有预期的角度为止。对可能角度的选择可以基于对方向的强力离散化、随机选择、用传统协议缩小范围,或者仅由外科医生在GUI上进行简单的选取。该光线行进过程类似于将微小的光置于PTV质心位置处的观念,其中,例如,关键区域阻挡该光到达皮肤。因此,皮肤上被照亮的区域就是可能的进入点,而有阴影的区域就不是可能的进入点。接入角度在临床上和计算上都是重要的。进入角度应是安全的,如该步骤所述的,避开关键区域。在临床上,例如在肝脏中,优选的从一个外部位置仅刺穿肝脏囊一次,并产生基本上平行的消融来覆盖PTV。这同时减小了该问题的计算复杂度,因为可以在假定一个固定方向的情况下计算覆盖。由于光线行进比覆盖分析快,因此预先计算切实可行的进入点的子集限制了覆盖计算的数量。
在28处,定义一组椭圆中心,以使得与各个椭圆中心相对应的多个3-D椭圆体消融体积共同包围整个肿瘤块。椭圆具有由满足x2/a+y2/b+z2/c=1的标准a、b、c半轴值定义的、被平移到所确定的中心并被旋转了一个给定进入角度(例如由26定义的角度)的几何形状。例如,给定消融探针具有基于其a、b、c值和方向的已知的消融体积X。在一个实施例中,Y个具有已知体积X的消融完全覆盖PTV。可以由用户选择探针尺寸(例如根据探针的类型),且系统可以针对所分配的或所推导出的方向来优化探针的位置设置。用于确定椭圆中心的这个方法也防止了消融关键区域,并在图5中进一步进行描述。
在30处,将为给定探针尺寸确定的椭圆中心经由如图7所示的图形用户界面输出给诸如外科医生等的用户,以允许用户评估和/或执行该模型。以此方式,方法22有助于为消融过程制定计划,以便在不同点处执行多次消融,这进而允许对在空间上交叠的多个椭圆体体积进行消融,以确保对非均匀形状的肿瘤体积进行消融,同时避开了消融对其而言是有害的区域。外科医生还可以为没有在模型中表示的因素来调整椭圆。可以将椭圆中心连同所指定的消融探针几何形状和方向传输到消融组件12。消融组件12随后可以协同追踪系统或机器人系统一起使用。追踪系统向外科医生实时提供关于工具或工具尖端的位置与方向的可视化反馈。将目标连同实况追踪的位置一起进行显示,并且还常常是连同登记的病人图像一起进行显示。可替换地,使用来自追踪系统的反馈和外科医生批准的前进,为机器人提供了目标点,并且机器人可以实施机动。
设置多个消融椭圆的位置以使得它们完全覆盖PTV。这些椭圆通常与PTV重叠,并且可以延伸超出PTV的边缘。一旦例程28使得椭圆数量最少,这些椭圆的中心,即探针尖端位置就是被可视化传输给外科医生的探针位置的其他标识。
图3A显示了靠近主动脉44的示例性PTV 40。在此情况下,主动脉具有随着如42所示的距离而逐渐减弱的热效应。这个热变化是RF消融探针加热到至少50摄氏度的能力以及随着消融时间过去主动脉的37摄氏度的冷却效应的最终结果。图3B显示了作为与主动脉内腔之间的距离的函数的结果产生的温度变化的曲线图。内腔是血管的内部空间。计划器可以通过确保PTV实际上向吸热区域伸展一直到对应于较高预期温度的距离,来部分地应对这种吸热结构。在图3C中,调整PTV 40使其移近主动脉,造成了PTV的扩张46。这还可以通过手动地增加补偿“可视PTV”来完成,该补偿“可视PTV”根据外科医生的专家意见,在主动脉方向上将PTV扩展到一个位置。
图4A-D示出了与为具有另外的不宜手术的肿瘤的病人计划消融过程有关的各种操作的多个图示60。
图示60包括诸如用磁共振成像工具等产生的、具有腹部肿瘤的病人的多个视图。在图4A中,CT图像62示出了轴切面;图像64显示了病人胸腔和上腹部的弧矢视图(sagital view);图像66示出了病人胸腔和上腹部的冠状视图(coronal view)。
分割出肿瘤块体积68,并且其由被计划目标体积(PTV)70包围,PTV70是可视化的或者计算的肿瘤块68体积加上额外的安全边缘或者缓冲区72,所述安全边缘或者缓冲区72如在肿瘤块68与PTV 70的周边之间的空间所示的。在手术过程中,这个边缘72通常是超出肿瘤大约1cm,并可以由病理学家进行验证。一个良好的外科手术结果是“边缘干净的”情况的,换句话说,在病理学家检查时,通过手术去除的肿瘤的外边缘不存在癌细胞。然而当使用RF或其他最小侵入式消融技术时,病理学家就不能够对边缘进行评估。
实质上,边缘试图补偿不同的可能的错误来源,但可以针对特定病人解剖结构和诸如治疗是否是减轻的之类的问题对其进行调整。一些错误来源包括:
·在成像时间与介入时间之间的病人运动,
·定义肿瘤的准确边缘的困难性,
·不能够成像围绕肿瘤的极微小的癌症,
·难以量化覆盖肿瘤并使得附带损害最小的目标消融位置,以及
·难以执行针对特定目标的过程。
这个边缘由外科医生定义,但常常是大约1cm,无论如何都在0到大约1.5cm之间。以这些方式中的任意一种来减小错误都可以减小边缘。
由图2的例程26来计算消融探针对肿瘤68中心的一组可能的皮肤进入点78和方位角,或者可替换的,由外科医生手工输入该位置和方向。在图4B中示出了单个进入点74。在图像76的箭头78处的加黑的(以前是红色的)区域来显示表示成功地(例如安全地)穿过皮肤到达肿瘤68的皮肤表面点。
图5示出了由优化组件14执行的一种方法,用于产生消融计划制定解决方案,如本文结合在前附图并根据多个特点所述。在80处,例程28产生用以包围用于病人体内肿瘤的PTV的最初的一组候选消融椭圆体。用贪婪算法(greedy algorithm)来产生这组最初的候选消融区域,以便从N个边界侧获得最大的覆盖。例如,在N=6的情况下,PTV由具有6个侧面的盒体或立方体来限定。然而,会意识到PTV可以由任何适合的多面体来限定(包括但不限于四面体、八面体、十二面体、二十面体、kepler-Poinsot固体、阿基米德固体、正多面体、非正多面体等),以便进一步优化消融计划制定和为根除肿瘤和/或PTV而执行的消融的数量。
在82处,为PTV选择中心点或质心,它可以是由PTV(例如,肿瘤块加上缓冲区)包围的组织的质量中心。在84处,判断是否已经访问或评估了所有候选消融椭圆体。如果在84处确定已经评估了所有候选消融椭圆体,则该方法就跳到94,在94处,判断是否所有候选消融椭圆体都需要重新评估。如果在94处的判断是否定的,那么该方法结束。如果在94处的判断是肯定的,那么该方法就返回到84,重复进行候选消融椭圆体评估。
如果在84处判断一个或多个候选消融区域需要进行评估,那么就在86处选择后续的候选,并为其确定唯一性覆盖区(UCA)。UCA可以视为PTV中的仅仅或“唯一性地”由所评估的特定候选椭圆体体积所包围的一个范围或区域。在88处,判断UCA是否等于0。如果UCA等于0,那么所考虑的候选消融椭圆体就不会覆盖PTV中未被另一个候选体积覆盖的任何部分,并在90处将其从候选列表中删除。该方法随后返回到84,以便判断是否存在任何剩余的要评估的候选消融体积。
如果在88处的判断表明该候选体积的UCA不是0,那么该候选就是有效的,并将其保留在候选列表中,并且该方法前进到92。在92处,确定一个点,该点表示在该候选椭圆体仍包围UCA的同时,该候选椭圆体的中心可以占据的、距在82处所选择的中心点最近的位置。会意识到,可以进一步约束对于仍允许椭圆体覆盖UCA的、距离中心点最近的椭圆体中心位置的确定,以确保该椭圆体消融区域不覆盖诸如骨骼或其它如果被消融就会伤害病人的区域之类的关键区域。
如果椭圆体中心不在所确定的点处,那么就移动该候选椭圆体,这触发了对于仍在候选列表中的所有候选椭圆体的重新评估。在94处,判断在列表中的所有候选是否都要进行重新评估。如果是(例如如果候选列表中的一个或多个候选被移动),则就在96处重新访问所有候选,该方法返回到84,以便对消融计划制定解决方案进行进一步重复和优化。当所有候选的中心都尽可能地靠近中心点,同时仍覆盖它们各自的UCA时,该解决方案就稳定了,且该例程结束。
根据其它特征,在计划并优化消融点时,可以考虑例如与肿瘤密度和/或增长活动有关的功能数据。例如,如果在一个区域中的肿瘤的密度大于另一个区域,那么这个更密的区域就会比不太密的区域需要更多的消融。根据另一个示例,可以确定肿瘤中与其余部分相比呈现出更快增长的部分,并将该部分作为进行比肿瘤的剩余部分更强烈消融的目标,以确保根除它。因此,在优化消融计划时,可以使用与肿瘤有关的功能数据,以便应对肿瘤块中的相对强和弱。
再其它的变化例包括在优化期间执行自适应计划制定方案,其包括但不限于,考虑关于在关键区域与PTV之间的接近程度和/或距离的先验知识,作为与肿瘤块有关的功能数据的函数的、对于给定探针的消融温度和持续时间,在靠近PTV处的吸热体的影响(例如,会从消融区域吸走热量,从而影响PTV的消融的结构)等。
图6A,图像100示出了具有定义PTV 102的边缘的经3D分割的不规则形状的肿瘤。该PTV的形状的大小和不规则性造成了传统消融过程的问题,因为其不能被这种大小的单次消融所覆盖。即使足够大的消融是可能的,但如果没有理想地定形,它就会同时造成大量的附带损害、杀死健康的组织。由于消融探针数量有限,其每一个都具有固定消融带,因此该任务就是模拟每一种可能性,以便能够选择最佳的探针。然而,如图6B中图像106所示,为给定消融探针计算多个椭圆体消融区域108。确定椭圆中心以覆盖PTV 102与上述的图2的例程28有关。
产生第一组椭圆108,以覆盖与PTV的消融体积相对应的最可能的“叮咬(bites)”。在一个实施例中,针对PTV和PTV边界框的6个面每一个上的相切点来定义边界框或立方体。从这6个点中选择覆盖最大数量PTV体素(例如表示3-D空间中的点的体积像素)的最大的叮咬,并从要覆盖的PTV中删除相应的体素。重复这个动作,直到PTV不再有未覆盖的像素。至此产生的椭圆是用于消融的候选椭圆。
选择PTV 102中的一点,例如是质量中心,称为中心点104。例程28依次访问候选椭圆列表中的每一个椭圆。对于每一个候选,确定椭圆对覆盖做出贡献的唯一性体积,称为唯一性覆盖区(UCA)。如果UCA是零(0),那么该椭圆就没有覆盖PTV 102的任何唯一性的部分,这可以是由于其它椭圆的移动造成的。当出现这种情况时,就从候选列表中删除具有零UCA的椭圆,并评估下一个椭圆。如果椭圆具有非零UCA,就执行二分法搜索(binary search),以测试在当前椭圆中心与PTV 102的中心点104之间的位置,以找到椭圆可以移动到的、最接近中心点104的、同时仍覆盖UCA的位置。向中心点104移动椭圆中心确保了消融整个肿瘤块,同时使得对围绕肿瘤的组织的不希望有的消融最小。就是说,向中心点104移动椭圆中心收缩了PTV 102以匹配肿瘤,同时使得对接近PTV 102周边的健康组织的损害最小。如果任何椭圆都能够在仍覆盖其UCA的同时更加移近PTV102的中心点104,那么就重新检查所有候选椭圆的位置。当在不损害椭圆各自的UCA的覆盖的情况下,没有椭圆的中心能够更移近PTV 102的中心点104时,该消融计划解决方案就稳定了。可任选的,可以以初始的覆盖椭圆组重复这个过程,从而得到了更少数量的椭圆。
在图7中是多个椭圆体消融体积108的图像110,每一个椭圆体都具有中心114,如上结合在前附图所述的来确定该中心114,并且每一个椭圆体都具有作为所选择的探针大小和消融持续时间的函数的已知体积。参考图8,由椭圆形区域124描绘了消融探针120的消融图案。沿着从皮肤上的插入点到PTV的所选择轨迹将消融探针120插入到病人体内的肿瘤块或PTV中,以便于消融全部或一部分PTV。根据一个示例,探针尖端的目标位置超出了椭圆体的中点,因此将探针尖端的位置控制到超出椭圆中心114的距离122,以确保消融出现在预期的位置处。会意识到距离122通常随着探针与探针的不同而改变,并不是旨在限于图6中表示的实际和/或按比例缩放的距离。
图9A示出了PTV的计算机建模图像和覆盖了诸如骨骼之类的关键区域136的多个候选椭圆体消融体积。例如,在关键区域非常难以接近以致于不做出特别的努力就不能到达肿瘤的一些较小部分的情形下,就执行动作以确保在将消融数量保持为最小的同时,不消融关键区域136。在图像130中,区域134包含了多个区域,这些区域过于接近关键区域136,以致于不能进行消融。在图像132中(图9B),将不能消融的区域高亮呈现给外科医生(例如经由GUI 18等),以使得外科医生能够采取适当的动作。例如,外科医生可以选择另一不同的消融探针。在这个示例中,选择具有更小消融椭圆体体积的更小的探针,其椭圆体体积不会与高亮的关键体积相交。根据另一个示例,外科医生将盐水注射到肿瘤与关键区域136之间的空间中,以将肿瘤与关键区域136分离。如果为一个或多个消融选择了另一不同的探针,那么就有利地重复图2的优化例程28。类似的,如果注射盐水以增大在肿瘤与关键区域136之间的空间,那么就重新评估PTV,并重复优化例程28,以处理由盐水注射而引起的变化。
图10示出了根据一些实施例,由优化组件14执行的一种方法,其用于为消融过程制定计划。该方法允许将消融体积拉向质心点,就如同被重力拉一样,这有助于使得在典型病变之外的组织的过度消融最小,同时提供了对区域进行交叠以便进行合并的可能性。该方法可以通过创建额外的“重心”或点来进一步减小消融体积的数量,这进一步减小了椭圆的数量。
在140处,确定多个“重力点”。在142处,判断是否要分析更多候选消融体积。如果没有更多候选消融体积要进行评估,那么该方法结束。然而,如果剩余一个或多个其它消融体积要进行评估,那么在144处,就选择下一个候选,并且定义和/或确定其UCA。在146处,判断UCA是否等于0(例如,候选不具有唯一性覆盖区域)。如果是,那么就在148处从列表中删除该候选,并且方法返回到142。如果该候选具有UCA,那么就在150处,就确定与该候选消融体积的质心最接近的重力点。
在152处,确定最接近于重力点、同时仍覆盖UCA的消融体积。如果移动该消融体积以确保仍覆盖UCA,那么条件“重新访问所有候选”就为真。在154处,判断条件“重新访问所有候选”是否为真,如果是,则就在156处对候选消融体积的列表全部重新访问。在此情况下,该方法重复进行。如果没有移动候选消融体积,那么该方法就结束。
以下论述提供了用于确定重力点的一种方式的示例。“要消融的肿瘤”因子(TAfactor)可以定义为球形肿瘤半径/球形消融半径。因此,当TAfactor小于或等于1时,一个消融就会覆盖肿瘤。当1<TAfactor<=1.25时,那么6个消融覆盖肿瘤。当1.25<TAfactor<=1.66时,那么14个消融覆盖肿瘤,以此类推。由于该方法允许对任意形状的肿瘤进行消融计划,因此就希望将更普遍且更灵活的椭圆体用于消融形状,而不是球形,因为消融区域常常是椭圆形,但也可以是球形(具有相等a、b、c轴的椭圆形)。为了简单起见,以下示例以用于肿瘤和消融的两个不同大小的球形来描述该过程。
在该方法与图5的方法之间的一个重要差别是“重力点”的确定,这将消融从中心拉向区域节点的集合,在这里这些消融可以进一步聚集,以使得消融数量最小。例如,将一组6个球形(1<TAfactor<=1.25)的重力点放置在沿着每一个X、Y和Z轴(同时在+和-方向上)距离肿瘤中心0.76*消融-半径的距离Q处。例如,如果肿瘤的半径为2.5,消融的半径为2,那么TAfactor实际上就是1.25。重力点的位置因此就是沿着3个轴的每一个,距离肿瘤中心Q=0.76*2=1.52处。如果肿瘤以(0,0,0)为中心,那么重力点就位于:(0,0,1.52)、(0,0,-1.52)、(0,1.52,0)、(0,-1.52,0)、(1.52,0,0)、(-1.52,0,0)。
一组14个球形(1.25<TAfactor<=1.66)的重力点是沿x、y、z轴放置的6个球形以及填充这6个球形之间的“角落”的8个球形的组合。前6个重力点在距离肿瘤中心较远的距离W=0.90*消融-半径处。例如,如果肿瘤的半径为3.32并且消融的半径为2,那么TAfactor实际上就是1.66。类似地计算,前6个重力点位于距离半径3.32的肿瘤的中心W=0.9*a=1.8处。剩余的8个重力点在对角线上。其由沿着两个不同轴的相等的绝对距离来构成。绝对距离L=W2sqrt(1/2)。在这个示例中,L=(1.8)2sqrt(1/2)=3.24*0.07071=2.291。对角线位于球形的以下位置:(L,L,L)、(L,L,-L)、(L,-L,L)、(L,-L,-L)、(-L,L,L)、(-L,L,-L)、(-L,-L,L)、(-L,-L,-L)。在(1.25<TAfactor<=1.66)的情况下,可以执行第一个合并,以便如上所述地将消融中心拉向真正的中心,随后可以执行图10的步骤,以便将它们拉向最近的重力点。
如果以球体来限定肿瘤的范围,从而使其更普遍一些,且在消融探针产生球形消融体积时,则使用该技术就是有利的。当TAfactor>1.66时也可以使用这个技术。当肿瘤由球体来限定范围时,这尤其是正确的,对于消融数量的当前实际限制不仅限于每个消融所需的15分钟,还在于放置的精度。随着消融技术变得更快,可以用成像或追踪来引导探针放置,以便提高精度。
实际上,肿瘤可以是任意形状,消融形状可以是任意的。在这些情况下,可以通过将肿瘤内切于球体中并且将消融内切于球体中,来确定重力点。半径的比值可以用于定义TAfactor及用于计算重力点。这个简易性允许该技术更快地进行计算,同时适应于任意形状的肿瘤和消融。快速计算随后允许评估多种情形,以便可以确定具有最少消融和/或最少附带损害的进入点。
可替换的,可以使用更复杂的计算来定义重力点,在这里PTV被球体包围,计算椭圆形消融以覆盖该球体。覆盖球体的可能的许多椭圆的质心是重力点。
根据另一个实施例,可以执行图5的步骤80,以创建初始消融,并且随后执行图10的步骤。这个技术在大量情况下都是有效的,然而在其它情况下,优选的执行图5的步骤,随后是图10的步骤。例如,对于针状(钉状)病变(一些乳腺癌及其它癌症的特性),将覆盖压缩到中心并且随后重新分布它,就可以减小消融的总数。

Claims (30)

1.一种用于为对病人体内的组织块(68)进行消融的消融过程制定计划的系统,包括:
图形用户界面(18),向用户呈现所述块(68)的表示;以及
优化组件(14),接收与所述块(68)相关的图像数据,并确定用以覆盖所述块(68)的消融区域(108)。
2.如权利要求1所述的系统,其中,所述优化组件(14)产生包含所述块(68)的被计划目标体积(PTV)(40、70、102)。
3.如权利要求2所述的系统,其中,所述优化组件(14)产生候选消融区域(112)的初始列表,每一个候选消融区域(112)都具有特征点(114),在所述特征点(114)处设置与消融组件(12)相关联的探针(120),以治疗所述块(68)在每一个消融区域(108)中的部分。
4.如权利要求3所述的系统,其中,所述优化组件(14)为预定数量的候选消融区域(108)确定唯一性覆盖区域(UCA),以使得给定候选消融区域(108)的所述UCA包括所述PTV(40、70、102)中的仅由所述给定候选消融区域(108)覆盖的部分。
5.如权利要求4所述的系统,其中,如果一个候选消融区域(108)不具有UCA,则所述优化组件(104)从候选消融区域(112)的列表中删除该候选消融区域(108)。
6.如权利要求4所述的系统,其中,所述优化组件(14)执行二分法搜索算法(82),以确定所述给定候选消融区域(108)的所述特征点(114)是否可以在不损害所述给定候选消融区域(108)的所述UCA的覆盖的情况下,移动靠近所述PTV(40、70、102)的中心点(104)。
7.如权利要求6所述的系统,其中,所述优化组件(14)继续优化肿瘤块消融的模型,直到没有候选消融区域(108)可以被移动靠近所述中心点(104)且所有UCA都被覆盖。
8.如权利要求1所述的系统,其中,所述优化组件(14)利用光线行进技术在病人的皮肤上产生至少一个候选插入点(74),通过所述候选插入点沿着到所述PTV(40、70、102)的轨迹插入与所述消融组件(12)相关联的消融探针(120),同时避开了一个或多个关键区域(136)。
9.如权利要求1所述的系统,其中,所述优化组件(14)包括:
用于选择覆盖了被计划目标体积(PTV)(40、70、102)的初始的一组候选消融区域(112)的例程(80);
用于选择所述PTV(40、70、102)的中心点(104)的例程(82);
用于确定在所述初始的一组候选消融区域(112)中是否还剩余一个或多个候选消融区域(108)要进行评估的例程(84);
用于选择候选消融区域(108),并评估该候选消融区域(108)的唯一性覆盖区(UCA)的例程(86);
用于确定该候选消融区域(108)的所述UCA是否等于0的例程(88);
用于在所述UCA等于0的情况下,从所述初始的一组候选消融区域(112)中删除该候选消融区域(108)的例程(90);
用于在所述UCA不等于0的情况下,确定这样的与所述中心点(104)最接近的一个位置的例程(92):即,所述候选消融区域(108)能够在仍覆盖所述UCA的同时被移动到该位置;
用于在已经将一个或多个候选消融区域(108)移动靠近所述中心点(104)的情况下,确定所有候选消融区域(108)已经准备好进行重新评估的例程(94);以及
用于使得所有候选消融区域(108)都被进行重新评估的例程(96)。
10.如权利要求1所述的系统,其中,所述优化组件(14)根据与以下各项有关的功能数据中的至少一个,来对消融计划进行优化:所述块(68)、接近所述块(68)的一个或多个吸热体的位置、被选择来执行所述消融的消融探针(12、120)的形状、被选择来执行所述消融的消融探针(12、120)的大小、以及在消融期间所使用的不同消融探针(12、120)的数量。
11.如权利要求1所述的系统,其中,所述优化组件(14)根据以下各项中的至少一个,来对消融计划进行优化:候选消融点、消融探针进入角度、消融温度、消融时间和关键区域。
12.如权利要求1所述的系统,其中,所述优化组件(14)使用了关于以下至少一项的先验知识:PTV(70、102)与关键区域(136)的接近程度、与所选择的消融探针(12、120)有关的消融时间、与所选择的消融探针(12、120)有关的消融温度、以及位于所述PTV(40、70、102)附近的一个或多个吸热体。
13.如权利要求1所述的系统,其中,消融区域(108)的最佳数量是覆盖所述块(68)的消融区域(108)的最小数量。
14.如权利要求1所述的系统,其中,用户通过在所述块(68)的所述表示的一个或多个不同视图上勾画出边界,来输入包围了所述块(68)的被计划目标体积(PTV)(40、70、102),并且所述优化组件(14)产生表示被计划目标体积(40、70、102)的3D体素。
15.一种用于为消除病人体内的组织块(68)的消融过程制定计划的方法,包括:
确定所述病人体内的块体积(68);
产生所述病人体内的所述块体积(68)的图像表示;
将与所述图像有关的信息呈现给用户;
确定覆盖了所述块体积(68)的消融区域(108)的最佳数量。
16.如权利要求15所述的方法,还包括:产生包含所述块体积(68)的被计划目标体积(PTV)(40、70、102)。
17.如权利要求16所述的方法,还包括:确定一组候选消融区域(112),每一个候选消融区域(112)都具有已知的近似体积,并且交叠以包围所述PTV(40、70、102)。
18.如权利要求17所述的方法,还包括:为预定数量的消融区域(108)评估唯一性覆盖区(UCA),其中,特定消融区域(108)的所述UCA是所述PTV(40、70、102)中仅由该椭圆体覆盖的部分。
19.如权利要求18所述的方法,还包括:如果一个消融区域(108)不具有UCA,就从所述一组候选消融区域(112)中删除该消融区域(108)。
20.如权利要求19所述的方法,还包括:确定在所述一组候选消融区域(112)中的一个或多个消融区域(108)的中心(114)是否可以被移动靠近与所述PTV(40、70、102)有关的中心点(104)。
21.如权利要求20所述的方法,还包括:将所述一个或多个消融区域(108)的所述中心(114)移动到尽可能靠近所述中心点(104)的位置,同时仍保持与所述一个或多个消融区域(108)相关的所述UCA的覆盖。
22.如权利要求21所述的方法,还包括:定义一个或多个重力点,并将至少一个消融区域(108)拉向所述一个或多个重力点,以便在覆盖与所述至少一个消融区域(108)相关的所述UCA的同时,进一步合并消融区域。
23.如权利要求15所述的方法,还包括:
向所述用户提供指示:由于所述PTV(40、70、102)的一部分极其接近所确定的关键区域(136),因而不能消融该部分。
24.如权利要求23所述的方法,还包括:允许所述用户将盐水注射到接近所述关键区域(136)的空间中,以便增加在所述关键区域(136)与所述PTV(40、70、102)的所指示部分之间的距离。
25.如权利要求23所述的方法,还包括:允许所述用户在使用具有第一尺寸的消融探针(120)的第一消融过程期间,避开所述PTV(40、70、102)的所指示部分,并且用具有第二尺寸的消融探针(120)消融所述PTV(40、70、102)的所指示部分,其中,所述第二尺寸小于所述第一尺寸。
26.一种被编程执行如权利要求14所述的方法的处理器(21)或计算机介质(20)。
27.一种有助于计划用以根除病人体内的肿瘤的肿瘤消融过程的系统,包括:
用于产生病人体内的肿瘤块(68)的图像的模块(16);
用于接收与所述肿瘤块(68)有关的信息和与所述肿瘤块(68)的去除有关的信息的模块(18);
用于产生包围用于消融的被计划目标体积(PTV)(40、70、102)的多个体积的模块(28),其中,所述PTV(40、70、102)包含所述肿瘤块(68);以及
用于通过确定覆盖整个所述PTV(40、70、102)的体积的最佳数量来优化所述体积的位置设置的模块(14)。
28.一种用于计划消融过程的系统,包括:
优化组件(14),从成像组件(16)输入三维PTV(40、70、102);并且
其中,所述优化组件根据所选择的消融探针(120)的已知消融体积尺寸,确定将覆盖所述PTV(40、70、102)的消融体积(108)的一个或多个消融体积中心(114)。
29.如权利要求28所述的系统,其中,所述优化组件(14)向图形用户界面(18)或追踪系统之中的至少一个输出所述一个或多个消融体积中心(114)。
30.如权利要求28所述的系统,其中,所述成像组件(18)是影像存档和传输系统(PACS)。
CN200880003120XA 2007-01-24 2008-01-10 Rf消融计划器 Active CN101795636B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88642107P 2007-01-24 2007-01-24
US60/886,421 2007-01-24
PCT/IB2008/050087 WO2008090484A2 (en) 2007-01-24 2008-01-10 Rf ablation planner

Publications (2)

Publication Number Publication Date
CN101795636A true CN101795636A (zh) 2010-08-04
CN101795636B CN101795636B (zh) 2013-06-19

Family

ID=39315603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880003120XA Active CN101795636B (zh) 2007-01-24 2008-01-10 Rf消融计划器

Country Status (5)

Country Link
US (1) US9747684B2 (zh)
EP (1) EP2124795B1 (zh)
JP (1) JP5530183B2 (zh)
CN (1) CN101795636B (zh)
WO (1) WO2008090484A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031556A1 (zh) * 2010-09-10 2012-03-15 中山大学 一种用于虚拟导航评价肿瘤消融安全边界的模型
CN103140184A (zh) * 2010-09-29 2013-06-05 皇家飞利浦电子股份有限公司 用于自适应射频消融的温度反馈系统和方法
CN103717167A (zh) * 2011-07-28 2014-04-09 皇家飞利浦有限公司 消融规划系统
CN105377128A (zh) * 2013-03-15 2016-03-02 9234438加拿大股份有限公司 电外科标测工具和方法
CN106999148A (zh) * 2014-11-18 2017-08-01 皇家飞利浦有限公司 用于组织的性质改变的可视化装置
CN106999246A (zh) * 2014-10-17 2017-08-01 皇家飞利浦有限公司 用于介入治疗中的工具插入期间的实时器官分割和工具导航的系统和其操作的方法
CN107550568A (zh) * 2012-05-22 2018-01-09 柯惠有限合伙公司 处理计划系统
CN108577965A (zh) * 2018-03-19 2018-09-28 艾瑞迈迪医疗科技(北京)有限公司 一种操作路径规划方法及装置
CN109009430A (zh) * 2017-06-12 2018-12-18 株式会社日立制作所 治疗辅助装置以及治疗辅助方法
CN112656506A (zh) * 2020-12-15 2021-04-16 中国科学院深圳先进技术研究院 确认射频消融路径的方法、装置及终端设备
CN114650780A (zh) * 2019-11-25 2022-06-21 法拉普尔赛股份有限公司 用于跟踪消融设备和生成病变线的方法、系统和装置

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486127B2 (en) * 2006-05-24 2013-07-16 Kambiz Dowlatshahi High temperature thermal therapy of breast cancer
JP4891823B2 (ja) * 2007-03-29 2012-03-07 オリンパスメディカルシステムズ株式会社 内視鏡装置
US20100268072A1 (en) * 2007-11-15 2010-10-21 Koninklijke Philips Electronics N.V. Method and apparatus for positional tracking of therapeutic ultrasound transducer
US8535336B2 (en) * 2008-06-25 2013-09-17 Koninklijke Philips N.V. Nested cannulae for minimally invasive surgery
DE102008048686B4 (de) * 2008-09-24 2015-01-08 Siemens Aktiengesellschaft Ansteuerungssystem und Ansteuerungsverfahren
WO2010102310A2 (en) * 2009-03-03 2010-09-10 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
JP5689591B2 (ja) * 2009-06-01 2015-03-25 株式会社東芝 超音波診断装置及び超音波画像処理プログラム
CN104246855B (zh) 2009-06-29 2017-08-15 皇家飞利浦电子股份有限公司 肿瘤消融培训系统
US8382750B2 (en) * 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size
JP6035148B2 (ja) * 2009-12-08 2016-11-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. アブレーション治療計画及びデバイス
CN102781356A (zh) 2009-12-30 2012-11-14 皇家飞利浦电子股份有限公司 动态消融装置
US9468492B2 (en) * 2010-06-03 2016-10-18 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US9763642B2 (en) * 2010-10-14 2017-09-19 Koninklijke Philips N.V. Property determination apparatus for determining a property of an object
EP2444934A1 (en) * 2010-10-19 2012-04-25 Koninklijke Philips Electronics N.V. Medical imaging system, computer-implemented method, and computer program product for identifying a treated region in a medical image
US20120190970A1 (en) 2010-11-10 2012-07-26 Gnanasekar Velusamy Apparatus and method for stabilizing a needle
EP2640292B1 (en) 2010-11-18 2016-08-10 Koninklijke Philips N.V. System for probabilistic ablation planning
US9079011B2 (en) * 2011-01-03 2015-07-14 Wisconsin Alumni Research Foundation Microwave hyperthermia treatment system
BR112013018044A2 (pt) 2011-01-18 2019-09-03 Koninl Philips Electronics Nv aparelho terapêutico, produto de programa de computador e método de renderização de uma região alvo atingível
JP5501290B2 (ja) * 2011-05-23 2014-05-21 富士フイルム株式会社 画像処理装置、放射線画像撮影システム、及び画像処理プログラム
RU2014104566A (ru) * 2011-07-11 2015-08-20 Конинклейке Филипс Н.В. Устройство планирования приложения энергии
WO2013038324A1 (en) 2011-09-13 2013-03-21 Koninklijke Philips Electronics N.V. Ablation planning with lesion coverage feedback
DE102011083522B4 (de) * 2011-09-27 2015-06-18 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und Vorrichtung zur Visualisierung der Qualität eines Ablationsvorgangs
US8896605B2 (en) 2011-10-07 2014-11-25 Hewlett-Packard Development Company, L.P. Providing an ellipsoid having a characteristic based on local correlation of attributes
RU2014133533A (ru) * 2012-01-16 2016-03-20 Конинклейке Филипс Н.В. Устройство получения изображения
US9439627B2 (en) 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US9439623B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical planning system and navigation system
US8750568B2 (en) 2012-05-22 2014-06-10 Covidien Lp System and method for conformal ablation planning
US9439622B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
JP6157864B2 (ja) * 2013-01-31 2017-07-05 東芝メディカルシステムズ株式会社 医用画像診断装置及び穿刺術支援装置
US10441434B2 (en) * 2013-03-13 2019-10-15 Think Surgical, Inc. Methods, devices and systems for computer-assisted robotic surgery
US10945793B2 (en) * 2014-05-09 2021-03-16 Edda Technology, Inc. System and methods for percutaneous treatment planning and treatment monitoring
CA2969427A1 (en) * 2014-12-01 2016-06-09 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
JP2018509231A (ja) * 2015-03-26 2018-04-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. コア腫瘍、マージン、及び健康組織の範囲を含む腫瘍焼灼治療計画のためのシステム及び方法
US10607738B2 (en) 2015-05-15 2020-03-31 University Health Network System and method for minimally invasive thermal ablation treatment planning
US10548665B2 (en) 2016-02-29 2020-02-04 Pulse Biosciences, Inc. High-voltage analog circuit pulser with feedback control
US10874451B2 (en) 2016-02-29 2020-12-29 Pulse Biosciences, Inc. High-voltage analog circuit pulser and pulse generator discharge circuit
WO2017200954A1 (en) 2016-05-16 2017-11-23 Pulse Biosciences, Inc. Pulse applicator
US10543357B2 (en) 2016-09-19 2020-01-28 Pulse Biosciences, Inc. High voltage connectors for pulse generators
US10610325B2 (en) 2017-02-16 2020-04-07 Canon U.S.A., Inc. Medical guidance apparatus
US10946193B2 (en) 2017-02-28 2021-03-16 Pulse Biosciences, Inc. Pulse generator with independent panel triggering
US20200008875A1 (en) * 2017-03-21 2020-01-09 Canon U.S.A., Inc. Methods, apparatuses and storage mediums for ablation planning and performance
JP6959428B2 (ja) 2017-07-07 2021-11-02 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc 複数プローブアブレーションのプランニング
JP2020533083A (ja) 2017-09-12 2020-11-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 画像誘導アプリケーションを用いるスペクトル(マルチエネルギー)画像データの使用
US10857347B2 (en) 2017-09-19 2020-12-08 Pulse Biosciences, Inc. Treatment instrument and high-voltage connectors for robotic surgical system
US10675099B2 (en) 2017-09-22 2020-06-09 Canon U.S.A., Inc. Needle insertion guide device and system, and method of providing control guidance for needle insertion guide device
US11197723B2 (en) 2017-10-09 2021-12-14 Canon U.S.A., Inc. Medical guidance system and method using localized insertion plane
US11617621B2 (en) 2018-08-03 2023-04-04 Canon U.S.A., Inc. System and method for multi-probe guidance
WO2020033947A1 (en) 2018-08-10 2020-02-13 Covidien Lp Systems for ablation visualization
JP6962976B2 (ja) 2018-08-15 2021-11-05 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc 医療用ツールガイダンス装置
EP3685778A1 (en) * 2019-01-25 2020-07-29 Koninklijke Philips N.V. Apparatus for determining a position of a temperature probe during a planning for an ablation procedure
US11571569B2 (en) 2019-02-15 2023-02-07 Pulse Biosciences, Inc. High-voltage catheters for sub-microsecond pulsing
FR3095332B1 (fr) * 2019-06-27 2023-07-21 Quantum Surgical Méthode de planification d’une ablation de tissus basée sur l’apprentissage profond
CN116322468A (zh) * 2020-09-29 2023-06-23 奥林巴斯株式会社 辅助装置、内窥镜系统、辅助方法以及程序
CN113952030B (zh) * 2021-10-28 2023-12-15 北京深睿博联科技有限责任公司 一种射频电极进针路径和消融位置的规划方法及装置
CN114549495A (zh) * 2022-02-28 2022-05-27 上海商汤智能科技有限公司 图像分析方法及装置、设备、存储介质
KR20240066742A (ko) * 2022-11-08 2024-05-16 가톨릭대학교 산학협력단 연부 조직 육종 수술 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241725B1 (en) * 1993-12-15 2001-06-05 Sherwood Services Ag High frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
US6139544A (en) * 1999-05-26 2000-10-31 Endocare, Inc. Computer guided cryosurgery
CN100518685C (zh) * 2001-05-10 2009-07-29 脉管动力股份有限公司 组织消融设备
US7166075B2 (en) 2002-03-08 2007-01-23 Wisconsin Alumni Research Foundation Elastographic imaging of in vivo soft tissue
US7101387B2 (en) 2003-04-30 2006-09-05 Scimed Life Systems, Inc. Radio frequency ablation cooling shield
US7343030B2 (en) * 2003-08-05 2008-03-11 Imquant, Inc. Dynamic tumor treatment system
US7452357B2 (en) 2004-10-22 2008-11-18 Ethicon Endo-Surgery, Inc. System and method for planning treatment of tissue
US20070129626A1 (en) * 2005-11-23 2007-06-07 Prakash Mahesh Methods and systems for facilitating surgical procedures
US8267927B2 (en) * 2007-01-24 2012-09-18 Koninklijke Philips Electronics N.V. Advanced ablation planning

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031556A1 (zh) * 2010-09-10 2012-03-15 中山大学 一种用于虚拟导航评价肿瘤消融安全边界的模型
CN103140184A (zh) * 2010-09-29 2013-06-05 皇家飞利浦电子股份有限公司 用于自适应射频消融的温度反馈系统和方法
CN103140184B (zh) * 2010-09-29 2016-05-11 皇家飞利浦电子股份有限公司 用于自适应射频消融的温度反馈系统
CN103717167A (zh) * 2011-07-28 2014-04-09 皇家飞利浦有限公司 消融规划系统
CN103717167B (zh) * 2011-07-28 2017-06-27 皇家飞利浦有限公司 消融规划系统
CN107550568A (zh) * 2012-05-22 2018-01-09 柯惠有限合伙公司 处理计划系统
US11576716B2 (en) 2013-03-15 2023-02-14 Medtronic Holding Company Sàrl Electrosurgical mapping tools and methods
CN105377128A (zh) * 2013-03-15 2016-03-02 9234438加拿大股份有限公司 电外科标测工具和方法
CN106999246A (zh) * 2014-10-17 2017-08-01 皇家飞利浦有限公司 用于介入治疗中的工具插入期间的实时器官分割和工具导航的系统和其操作的方法
CN106999148A (zh) * 2014-11-18 2017-08-01 皇家飞利浦有限公司 用于组织的性质改变的可视化装置
CN109009430A (zh) * 2017-06-12 2018-12-18 株式会社日立制作所 治疗辅助装置以及治疗辅助方法
CN109009430B (zh) * 2017-06-12 2020-12-29 株式会社日立制作所 治疗辅助装置以及治疗辅助方法
CN108577965A (zh) * 2018-03-19 2018-09-28 艾瑞迈迪医疗科技(北京)有限公司 一种操作路径规划方法及装置
CN114650780A (zh) * 2019-11-25 2022-06-21 法拉普尔赛股份有限公司 用于跟踪消融设备和生成病变线的方法、系统和装置
CN112656506A (zh) * 2020-12-15 2021-04-16 中国科学院深圳先进技术研究院 确认射频消融路径的方法、装置及终端设备

Also Published As

Publication number Publication date
EP2124795B1 (en) 2017-05-31
JP5530183B2 (ja) 2014-06-25
WO2008090484A2 (en) 2008-07-31
WO2008090484A3 (en) 2008-10-23
EP2124795A2 (en) 2009-12-02
JP2010516371A (ja) 2010-05-20
CN101795636B (zh) 2013-06-19
US9747684B2 (en) 2017-08-29
US20100063496A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
CN101795636B (zh) Rf消融计划器
CN105745555B (zh) 用于辐射治疗和超声加热的医学装置
US10423757B2 (en) System and method for probabilistic ablation planning
US8267927B2 (en) Advanced ablation planning
US20170100195A1 (en) Systems and methods for planning image-guided interventional procedures
Ren et al. Coverage planning in computer-assisted ablation based on genetic algorithm
Schumann et al. Interactive multi-criteria planning for radiofrequency ablation
EP2747674B1 (en) Calculating the ultrasonic intensity estimate using an incoherent sum of the ultrasonic pressure generated by multiple transducer elements
US10695129B2 (en) System and method for tumor ablation treatment planning including core tumor, margin and healthy tissue coverage
Chen et al. Semiautomatic radiofrequency ablation planning based on constrained clustering process for hepatic tumors
Liu et al. Overlapping radiofrequency ablation planning and robot‐assisted needle insertion for large liver tumors
CN112562859A (zh) 肿瘤热消融手术智能仿真模型训练系统、训练方法
US20240058062A1 (en) System and method for ablation treatment of tissue with interactive guidance
Li et al. A practical pretreatment planning method of multiple puncturing for thermal ablation surgery
Scorza et al. Surgical planning assistance in keyhole and percutaneous surgery: a systematic review
WO2021032449A1 (en) Determining ablation probe configuration
Schenk et al. Planning of image-guided interventions in the liver
Villard et al. Toward realistic radiofrequency ablation of hepatic tumors 3D simulation and planning
Cudova et al. Design of HIFU treatment plans using an evolutionary strategy
Wu et al. An interactive HIFU therapy planning using simulation & visualization
Kos et al. Numerical modelling for prediction and evaluation of treatment outcome
Sannholm Automated treatment planning in magnetic resonance guided high intensity focused ultrasound
Kulkarni-Thaker Inverse treatment planning for radiofrequency ablation
Audigier et al. Conformal radiofrequency ablation to validate ultrasound thermometry
Fahrenholtz Prediction of laser ablation in brain: sensitivity, calibration, and validation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant