CN101791414A - 一种基于磁纳米颗粒的多功能epr生物探针及其应用 - Google Patents

一种基于磁纳米颗粒的多功能epr生物探针及其应用 Download PDF

Info

Publication number
CN101791414A
CN101791414A CN201010022927A CN201010022927A CN101791414A CN 101791414 A CN101791414 A CN 101791414A CN 201010022927 A CN201010022927 A CN 201010022927A CN 201010022927 A CN201010022927 A CN 201010022927A CN 101791414 A CN101791414 A CN 101791414A
Authority
CN
China
Prior art keywords
epr
nano particle
bio
probe
magnetic nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010022927A
Other languages
English (en)
Other versions
CN101791414B (zh
Inventor
赵红莉
蓝闽波
袁慧慧
张志刚
郁荣华
张久峰
沈霞
郭晶
赵紫珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN2010100229277A priority Critical patent/CN101791414B/zh
Publication of CN101791414A publication Critical patent/CN101791414A/zh
Application granted granted Critical
Publication of CN101791414B publication Critical patent/CN101791414B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种基于磁纳米颗粒的多功能EPR生物探针及其应用,所述探针具有式(1)所示结构,其由R的二元或多元有机酸修饰共沉淀法得到的四氧化三铁或三氧化二铁纳米颗粒,该磁纳米颗粒表面富含羧基或羟基,与带有羟基或氨基的哌啶氮氧自由基化合物(其结构式如式(2)或式(3)所示)在1-乙基-3-(3-二甲基丙基)碳二酰亚胺和N-羟基丁二酰亚胺作用下,于水相中进行反应后获得。本发明所制备得到的磁纳米颗粒很容易在水中分散,并把小分子氮氧自由基化合物作为官能团引入磁纳米颗粒,得到极易在水中分散且具有优良性能的EPR生物探针材料,其在动物体内有良好的生物相容性、能迅速扩散到动物组织中,并可通过EPR检测其有选择的分布于小鼠的心、肝、肺等器官。

Description

一种基于磁纳米颗粒的多功能EPR生物探针及其应用
【技术领域】
本发明涉及多功能EPR生物探针技术领域,具体地说,是一种基于磁纳米颗粒的多功能EPR生物探针及其应用。
【背景技术】
纳米技术与生物分子、药物的紧密结合已经产生了一个新的领域--纳米生物技术。纳米尺度的磁性材料由于其独具的特性,一直成为研究的热点。因为铁氧磁性微粒良好的生物相容性,在外加磁场作用下可定向移动,表面所带活性基团可被修饰,因而广泛用于细胞分选、酶固定、药物载体、肿瘤的靶向治疗、核磁共振成像增强剂等生物和医学领域。
近年来,电子顺磁共振(Electron Paramagnetic Resonance,EPR)波谱在生物医学领域的应用日渐广泛。EPR分析技术能够直接或间接的给出生物体内的诸多信息,可以用来研究生物体内自由基的变化、细胞、蛋白质以及生物体的新陈代谢等情况。随着EPR检测技术的发展,检测信息的准确性以及检测灵敏度都有很大的提高。但由于可用于生物体的顺磁材料仍然有限,限制了EPR生物传感器的发展,研究开发新型EPR探针及材料是EPR检测技术得以广泛应用的关键。
氮氧自由基是一种具有很高的EPR波谱灵敏度和特殊结构稳定性的自由基,被广泛应用于生物医学和药理学等领域的研究中。低分子量的氮氧自由基化合物是一类相对稳定的自由基,它们低毒、无致癌及致突变作用,因而被广泛用于自旋标记、核磁共振成像、抗癌、抗氧化、电子顺磁共振生物医学传感器等生物医学研究中。特别是哌啶类氮氧自由基及其衍生物是近年来研究的热点,如作为自旋标记物研究生物大分子的生理变化,标记药物分子研究药物的代谢过程以及用作抗氧化试剂等等。
尽管氮氧自由基以及其衍生物被广泛应用于生物医学领域的研究中,但是单纯的氮氧自由基及其衍生物作为自旋标记物在生物体内很难将其定域于所需的位置,限制了其在生物体内的应用。因此,将磁性微粒与氮氧自由基结合,发挥两者的优势,制备得到用于在线EPR生物检测的生物探针。对于探索生物体的某些病理过程、生物过程具有极大意义。
【发明内容】
本发明的目的在于克服现有技术的不足,提供一种基于磁纳米颗粒的多功能EPR生物探针及其应用。
本发明的目的是通过以下技术方案来实现的:
一种基于磁纳米颗粒的多功能EPR生物探针,其具有式(1)所示结构
Figure G2010100229277D00021
结构式1
式中:R为C2~C4烷基,X为O或NH;
一种基于磁纳米颗粒的多功能EPR生物探针的制备方法,具体步骤如下:
(1)向试剂瓶中依次加入Fe3+,Fe2+的水溶液;
(2)向步骤(1)的体系中于N2保护,40~90℃下逐滴滴加适量氨水,剧烈机械搅拌,得到黑色四氧化三铁磁纳米或三氧化二铁颗粒;
(3)向步骤(2)的体系中加入二元或多元脂肪水溶液,继续搅拌即可得到表面羧基化的磁纳米颗粒;该磁纳米颗粒易在水中分散,分散后的水溶液呈黄褐色;
(4)步骤(3)得到的功能化磁纳米颗粒纯化后,于水中分散,再与带有羟基或氨基的哌啶氮氧自由基化合物,其结构式如式(2)和式(3)所示,在1-乙基-3-(3-二甲基丙基)碳二酰亚胺盐酸盐(EDC·HCl)和N-羟基丁二酰亚胺(NAS)作用下反应得到目标产物;所得产物很易在水中分散;
Figure G2010100229277D00031
结构式2             结构式3
在本发明中,所涉及的原料及试剂均为市售品。
本发明所述的新型EPR生物探针通过傅立叶变换-红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)、电子顺磁共振(EPR)等对其结构与性能进行了表征。FT-IR(图2)测试结果表明成功制备得到了有氮氧自由基自旋标记的磁纳米颗粒。XRD(图3)分析结果,与氧化铁标准品对照,证明为氧化铁颗粒,并且从图谱中估算氧化铁晶体的粒径约为8.0~17.0nm;该磁纳米颗粒易在水中分散,透射电子显微镜(图4)观察,磁纳米颗粒分布均匀,分散性好。通过EPR(图5)测试,可以观察到明显的哌啶氮氧自由基三重峰精细结构。
经过初步的小鼠体内实验探索得知(图6),基于新型磁纳米颗粒的多功能EPR生物探针在动物体内有良好的生物相容性、能迅速扩散到动物组织中,并能有选择的分布于小鼠的心、肝、肺等器官。
与现有技术相比,本发明的积极效果是:
本发明制备的磁纳米颗粒很容易在水中分散,并把小分子氮氧自由基化合物作为官能团引入磁纳米颗粒,得到极易在水中分散且具有优良性能的EPR生物探针材料。
本发明的R为C2~C4烷基,其中,低于或者高于C2~C4烷基所制备的产物在水中不易分散,通过对比例的数据可以证明。
【附图说明】
图1FcNT、FmNT、FeNT、FaNT、FsNT水中分散照片;A,FeNT;B,FmOT;C,FcNT;D,FaNT;E,FmNT
图2Fe3O4、Fc、FcNT的FT-IR谱图对比;A:Fe3O4;B:Fc;C:FcNT
图3FcNT的XRD谱图;
图4FcNT的TEM图;
图5生物探针在体外测试的EPR谱图;S,固态颗粒;L,分散于溶液中;P,精细结构片段扫描
图6生物探针在小鼠各个器官中分布的EPR谱图;
图7对比例中所得生物探针在体外测试的EPR谱图;S,固态颗粒;L,分散于溶液中;P,精细结构片段扫描。
【具体实施方式】
以下提供本发明一种基于磁纳米颗粒的多功能EPR生物探针及其应用的具体实施方式。
实施例1
称取2.16g FeCl3·6H2O于50ml圆底烧瓶中,加20ml双蒸水使其溶解,超声后待用。另取一50ml圆底烧瓶,称取4.20g柠檬酸并加10ml双蒸水,磁力搅拌30min后待用。在250ml的四口烧瓶中加入1.12g FeSO4·7H2O,并加入20ml双蒸水使其溶解,机械搅拌下加热至50℃,通氮气除氧30min。随后加入待用的FeCl3溶液,并加热至70℃,达到反应条件后,缓慢逐滴加入5~15ml氨水,滴加结束后老化30min。随后增大搅拌强度,一次性加入待用的柠檬酸(CA)溶液,反应1.5h后,自然冷却并用磁铁分离出颗粒。称取10mg上述颗粒于50ml圆底烧瓶中,加入10ml双蒸水,冰水浴下磁力搅拌至完全分散。然后在0℃下依次加入31.8mg(0.15mmol)EDC·HCl、19.2mg(0.15mmol)NHS。混合物冰水浴下反应30min后,加入50mg 4-NH2-TEMPO。随后自然升温到室温,磁力搅拌24h。反应结束后分别用无水乙醚、二氯甲烷各萃取两次(每次约50ml),除去未反应的4-NH2-TEMPO。用磁铁分离,得到有磁性的物质,40℃真空干燥得到黑色固体,即为目标产物,FcNT。
实施例2
称取1.08g FeCl3·6H2O于50ml圆底烧瓶中,加20ml双蒸水使其溶解,超声后待用。另取一50ml圆底烧瓶,称取2.08g丙二酸并加10ml双蒸水,磁力搅拌30min后待用。在250ml的四口烧瓶中加入0.56g FeSO4·7H2O,并加入20ml双蒸水使其溶解,机械搅拌下加热至40℃,通氮气除氧30min。随后加入待用的FeCl3溶液,并加热至80℃,达到反应条件后,缓慢逐滴加入5~15ml氨水,滴加结束后老化30min。随后增大搅拌强度,一次性加入待用的丙二酸(MA)溶液,反应1.5h后,自然冷却并用磁铁分离出颗粒。称取10mg上述颗粒于50ml圆底烧瓶中,加入10ml双蒸水,冰水浴下磁力搅拌至完全分散。然后在0℃下依次加入31.8mg(0.15mmol)EDC·HCl、19.2mg(0.15mmol)NHS。混合物冰水浴下反应30min后,加入50mg 4-OH-TEMPO。随后自然升温到室温,磁力搅拌24h。反应结束后分别用无水乙醚、二氯甲烷各萃取两次(每次约50ml),除去未反应的4-OH-TEMPO。用磁铁分离,得到有磁性的物质,40℃真空干燥得到黑色固体,即为目标产物,FmNT。
实施例3
将昆明种小白鼠(三周左右,测试时小鼠平均体重10g)随机分成5组(N=3),每组分别注射一定剂量的改性磁纳米颗粒(Fe3O4-CA-4-NH2-TEMPO)悬浮液,间隔时间为0.5小时、1小时、2小时、3小时处死小白鼠,分别取血、心、肝、脾、肺、肾样品。在血样中加入抗凝剂,离心取血清;其余各脏器分别制成50%的组织匀浆。取样之后组织匀浆以冰块保存,待EPR测试;留取一组长时间观察。
通过观察得知:一周、二周、三周后小鼠无异常反应。初步试验表明材料毒性较小,样品经皮下注射,小鼠在一个月内无异常表现;体内分布实验表明,新型EPR生物探针可以通过血液循环迅速到达动物组织中,并且有选择的分布于小鼠的心、肝、肺等器官。
对比例4
称取1.08g FeCl3·6H2O于50ml圆底烧瓶中,加20ml双蒸水使其溶解,超声后待用。另取一50ml圆底烧瓶,称取1.26g草酸并加10ml双蒸水,磁力搅拌30min后待用。在250ml的四口烧瓶中加入0.56g FeSO4·7H2O,并加入20ml双蒸水使其溶解,机械搅拌下加热至40℃,通氮气除氧30min。随后加入待用的FeCl3溶液,并加热至80℃,达到反应条件后,缓慢逐滴加入5~15ml氨水,滴加结束后老化30min。随后增大搅拌强度,一次性加入待用的草酸(EA)溶液,反应1.5h后,自然冷却并用磁铁分离出颗粒。称取10mg上述颗粒于50ml圆底烧瓶中,加入10ml双蒸水,冰水浴下磁力搅拌至完全分散。然后在0℃下依次加入31.8mg(0.15mmol)EDC·HCl、19.2mg(0.15mmol)NHS。混合物冰水浴下反应30min后,加入50mg 4-NH2-TEMPO。随后自然升温到室温,磁力搅拌24h。反应结束后分别用无水乙醚、二氯甲烷各萃取两次(每次约50ml),除去未反应的4-NH2-TEMPO。用磁铁分离,得到有磁性的物质,40℃真空干燥得到黑色固体,即为目标产物,FeNT。所得最终产物经EPR测试,由测试结果(见图7)可以看出,由于其接枝链较短,自旋标记后氮氧自由基的EPR很弱,不适合进一步用于体内测试。
对比例5
称取2.16g FeCl3·6H2O于50ml圆底烧瓶中,加20ml双蒸水使其溶解,超声后待用。另取一50ml圆底烧瓶,依次称量加入4.20g己二酸(AA)、1.6gNaOH、10ml双蒸水,磁力搅拌至完全溶解后待用。在250ml的四口烧瓶中加入1.12g FeSO4·7H2O,并加入20ml双蒸水使其溶解,机械搅拌下加热至50℃,通氮气除氧30min。随后加入待用的FeCl3溶液,并加热至70℃,达到反应条件后,缓慢逐滴加入10ml氨水,滴加结束后老化30min。随后增大搅拌强度,一次性加入10ml待用的己二酸盐溶液,继续反应1.5h,自然冷却后用磁铁分离出颗粒。称取10mg上述颗粒于50ml圆底烧瓶中,加入10ml双蒸水,冰水浴下磁力搅拌至完全分散。然后在0℃下依次加入31.8mg(0.15mmol)EDC·HCl、19.2mg(0.15mmol)NHS。混合物冰水浴下反应30min后,加入50mg 4-NH2-TEMPO。随后自然升温到室温,磁力搅拌24h。反应结束后分别用无水乙醚、二氯甲烷各萃取两次(每次约50ml),除去未反应的4-NH2-TEMPO。用磁铁分离,得到有磁性的物质,40℃真空干燥得到黑色固体,即为目标产物,FaNT。
对比例6
称取2.16g FeCl3·6H2O于50ml圆底烧瓶中,加20ml双蒸水使其溶解,超声后待用。另取一50ml圆底烧瓶,依次称量加入2.02g癸二酸(SA)、1.6g NaOH、10ml双蒸水,磁力搅拌至完全溶解后待用。在250ml的四口烧瓶中加入1.12gFeSO4·7H2O,并加入20ml双蒸水使其溶解,机械搅拌下加热至50℃,通氮气除氧30min。随后加入待用的FeCl3溶液,并加热至70℃,达到反应条件后,缓慢逐滴加入10ml氨水,滴加结束后老化30min。随后增大搅拌强度,一次性加入10ml待用的癸二酸盐溶液,继续反应1.5h,自然冷却后用磁铁分离出颗粒。称取15mg上述颗粒于50ml圆底烧瓶中,加入10ml双蒸水,冰水浴下磁力搅拌至完全分散。然后在0℃下依次加入31.8mg(0.15mmol)EDC·HCl、19.2mg(0.15mmol)NHS。混合物冰水浴下反应30min后,加入50mg4-NH2-TEMPO。随后自然升温到室温,磁力搅拌24h。反应结束后分别用无水乙醚、二氯甲烷各萃取两次(每次约50ml),除去未反应的4-NH2-TEMPO。用磁铁分离,得到有磁性的物质,40℃真空干燥得到黑色固体,即为目标产物,FsNT。
对所得到的五种不同的最终产物各取5mg,并加入10ml去离子水,超声分散30分钟后观察,结果见表1、图1。
表1.五种不同产物在水中分散对比说明
  化合物   FeNT   FmNT   FcNT   FaNT   FsNT
  超声后0min   澄清   澄清   澄清   浑浊   不能分散
  放置后1h   澄清   澄清   澄清   有沉降   不能分散
[0049]本发明所制备得到的磁纳米颗粒很容易在水中分散,并把小分子氮氧自由基化合物作为官能团引入磁纳米颗粒,得到极易在水中分散且具有优良性能的EPR生物探针材料,其在动物体内有良好的生物相容性、能迅速扩散到动物组织中,并可通过EPR检测其有选择的分布于小鼠的心、肝、肺等器官。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围内。

Claims (2)

1.一种基于磁纳米颗粒的多功能EPR生物探针,其特征在于,具有式(1)所示结构,
Figure F2010100229277C00011
结构式1
式中:R为C2~C4烷基,X为O或NH;EPR是指电子顺磁共振。
2.一种基于磁纳米颗粒的多功能EPR生物探针的应用,其特征在于,所述的多功能EPR生物探针在生物领域的应用。
CN2010100229277A 2010-01-19 2010-01-19 一种基于磁纳米颗粒的多功能epr生物探针及其应用 Expired - Fee Related CN101791414B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010100229277A CN101791414B (zh) 2010-01-19 2010-01-19 一种基于磁纳米颗粒的多功能epr生物探针及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010100229277A CN101791414B (zh) 2010-01-19 2010-01-19 一种基于磁纳米颗粒的多功能epr生物探针及其应用

Publications (2)

Publication Number Publication Date
CN101791414A true CN101791414A (zh) 2010-08-04
CN101791414B CN101791414B (zh) 2011-11-23

Family

ID=42584468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010100229277A Expired - Fee Related CN101791414B (zh) 2010-01-19 2010-01-19 一种基于磁纳米颗粒的多功能epr生物探针及其应用

Country Status (1)

Country Link
CN (1) CN101791414B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203576A (zh) * 2015-09-17 2015-12-30 湖南师范大学 一种定位逆胶束酶体系中自旋探针作用位置的方法
CN114689637A (zh) * 2022-05-31 2022-07-01 中国科学技术大学 基于纳米金刚石探针顺磁共振的分子信息检测方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100486966C (zh) * 2006-04-07 2009-05-13 山东师范大学 检测羟基自由基的近红外荧光探针及其合成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203576A (zh) * 2015-09-17 2015-12-30 湖南师范大学 一种定位逆胶束酶体系中自旋探针作用位置的方法
CN114689637A (zh) * 2022-05-31 2022-07-01 中国科学技术大学 基于纳米金刚石探针顺磁共振的分子信息检测方法及系统

Also Published As

Publication number Publication date
CN101791414B (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
Chen et al. Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI
Stanicki et al. Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging
Wang et al. Durable mesenchymal stem cell labelling by using polyhedral superparamagnetic iron oxide nanoparticles
CN104826139B (zh) 一种rgd多肽靶向的超小四氧化三铁mri阳性纳米探针的制备方法
Xiao et al. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging
Erdal et al. A comparative study of receptor-targeted magnetosome and HSA-coated iron oxide nanoparticles as MRI contrast-enhancing agent in animal cancer model
CN102813943B (zh) 造影剂及其制备方法
CN104274842B (zh) 一种聚乙烯亚胺介导的多功能四氧化三锰纳米颗粒核磁共振造影剂的制备方法
Wang et al. Efficacy and durability in direct labeling of mesenchymal stem cells using ultrasmall superparamagnetic iron oxide nanoparticles with organosilica, dextran, and PEG coatings
Zhang et al. Radical Dendrimers based on biocompatible oligoethylene glycol dendrimers as contrast agents for MRI
CN107281504A (zh) 一种基于第二代聚酰胺‑胺树状大分子的spect/ct双模态成像造影剂的制备方法
Long et al. Non-modified ultrasound-responsive gas vesicles from microcystis with targeted tumor accumulation
CN104711263A (zh) 一种用于靶向人鼻咽癌细胞的核酸适配体序列及应用
CN106421823A (zh) 一种两性离子修饰的超小氧化铁颗粒的制备方法
Sun et al. Preparation and properties of tumor-targeting MRI contrast agent based on linear polylysine derivatives
CN101791414B (zh) 一种基于磁纳米颗粒的多功能epr生物探针及其应用
Qin et al. Magnetically driven helical hydrogel micromotor for tumor DNA detection
CN107884377B (zh) 基于细胞外泌体纳米簇探针及其在制备成像制剂中的应用
CN102000342B (zh) 超顺磁性导电纳米γ-氧化铁/聚苯胺-地塞米松磷酸钠的制备方法
Leung et al. Citrate-coated magnetic polyethyleneimine composites for plasmid DNA delivery into glioblastoma
Liu et al. A sample preparation technique using biocompatible composites for biomedical applications
Mamedov et al. Dual-functional probes towards in vivo studies of brain connectivity and plasticity
US8344102B2 (en) Nanoparticle and magnetic resonance imaging contrast agent
Duan et al. Heparin detection based on the fluorescent turn-on probe of amino carbon quantum dots
Rezayan et al. A modified PEG-Fe3O4 magnetic nanoparticles conjugated with D (+) glucosamine (DG): MRI contrast agent

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111123

Termination date: 20170119