CN101787267B - 油气田钻井液用双改性淀粉降滤失剂及其制备方法 - Google Patents

油气田钻井液用双改性淀粉降滤失剂及其制备方法 Download PDF

Info

Publication number
CN101787267B
CN101787267B CN201010125334A CN201010125334A CN101787267B CN 101787267 B CN101787267 B CN 101787267B CN 201010125334 A CN201010125334 A CN 201010125334A CN 201010125334 A CN201010125334 A CN 201010125334A CN 101787267 B CN101787267 B CN 101787267B
Authority
CN
China
Prior art keywords
starch
alcohol radical
fluid loss
dispersion agent
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010125334A
Other languages
English (en)
Other versions
CN101787267A (zh
Inventor
庄稼
汪建明
赵誉杰
白小东
郭小阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201010125334A priority Critical patent/CN101787267B/zh
Publication of CN101787267A publication Critical patent/CN101787267A/zh
Application granted granted Critical
Publication of CN101787267B publication Critical patent/CN101787267B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Detergent Compositions (AREA)

Abstract

油气田钻井用双改性淀粉降滤失剂,为硅化的羧甲基淀粉或由硅化的羧甲基淀粉和羧甲基化的海藻酸钠组成。制备方法:将淀粉、无机硅酸盐和醇基分散剂加入反应容器,通过搅拌使淀粉、无机硅酸盐均匀分散在醇基分散剂中,将碱配制成碱液,然后将体积分数40%碱液滴入反应容器,碱液滴加完毕后,在常压、30~50℃进行第一阶段反应,反应时间至少为50分钟;第一阶段反应结束后,将氯乙酸溶液或海藻酸钠和氯乙酸溶液加入反应容器,然后在搅拌下将体积分数60%的碱液滴入反应容器;碱液滴加完毕后,在常压、40~60℃进行第二阶段反应,反应时间至少为90分钟;将反应产物进行固液分离,干燥后的固体为双改性淀粉降滤失剂。

Description

油气田钻井液用双改性淀粉降滤失剂及其制备方法
技术领域
本发明属于油气田钻井液使用的添加剂,特别涉及一种油气田钻井液使用的淀粉类降滤失剂及其制备方法。
背景技术
油气田钻井过程中,钻井液滤液侵入井壁会引起泥页岩水化膨胀,导致井壁不稳定和各种井下复杂情况发生,钻遇产层时还会造成油气层损害,因此,在钻井液中常常添加降滤失剂(或称为滤失控制剂、降失水剂),通过在井壁上形成低渗透率、柔韧、薄而致密的滤饼,尽可能的降低钻井液的滤失量。
改性淀粉产品——羧甲基淀粉钠是改性淀粉产品的一种。它作为钻井液降滤失剂因其具有可生物降解性,不会造成环境污染,原料来源丰富、价格低廉、具有较强的抗钙抗盐性能力等优点,被认为是很有发展前途的环保型降滤失剂,但由于其抗温能力较差,井底温度增高时易高温降解,使得分子量降低,最终发酵失效,因而推广应用受到严重限制。此外,其降滤失性能也还不够理想,有待提高。
目前有关淀粉类降滤失剂提高耐温性方面的改性研究,大多存在工艺复杂,改性条件苛刻,所采用的改性剂多为非环保性物质等问题,因而导致改性成本很高,实际应用价值不大。
发明内容
本发明所解决的技术问题是提高淀粉降滤失剂的抗温性和降滤失性,并简化其制备方法,以获得具有实际应用价值的环保型淀粉降滤失剂。
本发明所述淀粉降滤失剂有两种,第一种淀粉降滤失剂为为硅化的羧甲基淀粉钠或硅化的羧甲基淀粉钾,所述硅化的羧甲基淀粉钠或硅化的羧甲基淀粉钾的结构单元如下:
Figure GSA00000058661200011
上述结构单元中,X为钠(Na)或钾(K)。
第二种淀粉降滤失剂由硅化的羧甲基淀粉和羧甲基化的海藻酸钠组成,所述硅化的羧甲基淀粉的结构单元如下:
Figure GSA00000058661200021
上述结构单元中,X为钠(Na)或钾(K);
所述羧甲基化的海藻酸钠的结构单元如下:
Figure GSA00000058661200022
上述第一种淀粉降滤失剂的制备方法,原料包括淀粉、无机硅酸盐、醇基分散剂、氯乙酸和碱,原料的配方如下:
无机硅酸盐与淀粉的质量比为0.02~0.05∶1,醇基分散剂为4毫升~10毫升/克淀粉,氯乙酸与淀粉的质量比为0.5~1.2∶1,碱与氯乙酸的质量比为0.8~1.3∶1,将碱用蒸馏水配制成浓度为0.4克~0.6克/毫升蒸馏水的碱液,所述碱液分两次使用,第一阶段反应使用体积分数40%的碱液,第二阶段反应使用体积分数60%的碱液;
工艺如下:
将淀粉、无机硅酸盐和醇基分散剂加入反应容器中,在常压、30℃~50℃下通过搅拌使淀粉、无机硅酸盐均匀分散在醇基分散剂中,然后在搅拌下将体积分数40%的碱液滴入上述淀粉、无机硅酸盐和醇基分散剂形成的混合液中,碱液滴加完毕后,在搅拌下于常压、30℃~50℃进行第一阶段反应,反应时间至少为50分钟;
第一阶段反应结束后,在常压、40℃~60℃下将氯乙酸溶液加入反应容器,然后在搅拌下将体积分数60%的碱液滴入反应容器,碱液滴加完毕后,在搅拌下于常压、40℃~60℃进行第二阶段反应,反应时间至少为90分钟,所述氯乙酸溶液的溶剂与醇基分散剂相同,氯乙酸与溶剂的配比为:氯乙酸质量∶溶剂体积=0.7~1.4∶1,所述氯乙酸的质量单位为克,所述溶剂的体积单位为毫升;
第二阶段反应结束后,将反应产物进行固液分离,所获固体物质即为第一种淀粉降滤失剂,将其进行干燥、粉碎,即得淡黄色粉末状产品。
上述第二种淀粉降滤失剂的制备方法,原料包括淀粉、无机硅酸盐、醇基分散剂、海藻酸钠、氯乙酸和碱,原料的配方如下:
无机硅酸盐与淀粉的质量比为0.02~0.05∶1,醇基分散剂为4毫升~10毫升/克淀粉,海藻酸钠与淀粉的质量比为0.01~0.05∶1,氯乙酸与淀粉的质量比为0.5~1.2∶1,碱与氯乙酸的质量比为0.8~1.3∶1,将碱用蒸馏水配制成浓度为0.4克~0.6克/毫升蒸馏水的碱液,所述碱液分两次使用,第一阶段反应使用体积分数40%的碱液,第二阶段反应使用体积分数60%的碱液;
工艺如下:
将淀粉、无机硅酸盐和醇基分散剂加入反应容器中,在常压、30℃~50℃下通过搅拌使淀粉、无机硅酸盐均匀分散在醇基分散剂中,然后在搅拌下将体积分数40%的碱液滴入上述淀粉、无机硅酸盐和醇基分散剂形成的混合液中,碱液滴加完毕后,在搅拌下于常压、30℃~50℃进行第一阶段反应,反应时间至少为50分钟;
第一阶段反应结束后,在常压、40℃~60℃下将海藻酸钠和氯乙酸溶液加入反应容器,然后在搅拌下将体积分数60%的碱液滴入反应容器,碱液滴加完毕后,在搅拌下于常压、40℃~60℃进行第二阶段反应,反应时间至少为90分钟,所述氯乙酸溶液的溶剂与醇基分散剂相同,氯乙酸与溶剂的配比为:氯乙酸质量∶溶剂体积=0.7~1.4∶1,所述氯乙酸的质量单位为克,所述溶剂的体积单位为毫升;
第二阶段反应结束后,将反应产物进行固液分离,所获固体物质即为第二种淀粉降滤失剂,将其进行干燥、粉碎,即得淡黄色粉末状产品。
下面以第二种淀粉降滤失剂的制备方法说明反应机理。
第二种淀粉降滤失剂的制备方法的第一阶段反应过程:
(1)淀粉碱化,反应式如下:
Figure GSA00000058661200031
(2)硅酸盐在碱性条件下的分解:
X2O·SiO2+XOH+H2O→3XOH+SiO2
第二种淀粉降滤失剂的制备方法的第二阶段反应过程:
(1)碱性淀粉的羧甲基化,生成羧甲基淀粉,反应式如下:
Figure GSA00000058661200041
硅酸盐对羧甲基淀粉进行硅化接枝改性,生成硅化的羧甲基淀粉,反应式如下:
Figure GSA00000058661200042
(2)海藻酸钠的羧甲基化,生成羧甲基化的海藻酸钠,反应如下:
Figure GSA00000058661200043
上述两种方法中,淀粉的分子为多糖直链分子,含有羟基(-OH)和醚氧键(-O-),优选玉米淀粉、马铃薯淀粉、红薯淀粉、小麦淀粉、稻米淀粉中的至少一种。
上述两种方法中,无机硅酸盐具有硅氧四面体SiO4 4-结构,优选水溶性硅酸钠、水溶性硅酸钾、固体硅酸钠、固体硅酸钾中的一种。
上述两种方法中,醇基分散剂为乙醇或异丙醇,当醇基分散剂为乙醇时,配制氯乙酸溶液的溶剂为乙醇,当醇基分散剂为异丙醇时,配制氯乙酸溶液的溶剂为异丙醇。
上述两种方法中,碱优选氢氧化钠或氢氧化钾。
本发明具有以下有益效果:
1、实验表明(见实施例7),本发明所述双改性降滤失剂表现出优良的抗温性能,随着温度的升高,失水量增加幅度较小;与现有降滤失剂——羧甲基淀粉钠相比,抗温性能显著提高,在110℃、130℃、150℃下热滚老化16小时后的失水量均大大小于羧甲基淀粉钠。
2、实验表明(见实施例7),本发明所述双改性降滤失剂与羧甲基淀粉钠及羧甲基淀粉钠+海藻酸钠的降滤失剂相比,降滤失性能均有明显提高。
3、实验表明(见实施例7),本发明所述双改性降滤失剂中砷、铅、铬、镉、汞、六价铬、石油类等指标均未检出,生物毒性为无毒,表现出良好的环保性能。
4、本发明所述方法工艺简单,改性剂价格低,有利于降低降滤失剂的生产成本,便于工业化生产。
附图说明
图1是实施例1所制备的硅化的羧甲基淀粉钠的红外谱图,将硅化的羧甲基淀粉钠用无水乙醇反复提纯三次后用NICOLET 7600型傅里叶变换红外光谱仪测试。从图中可以看出,在2362.45cm-1处出现一个尖锐的特征峰,通过红外光谱解析表明,此处为Si-H基团伸缩振动红外光谱的特征峰;其他吸收峰归属为3382.80cm-1为-OH吸收峰,1602.61cm-1为-C=O吸收峰;1422.52cm-1为-CH2的平面变角振动,1016.37cm-1为C-O-C振动吸收峰。
具体实施方式
下面通过实施例对本发明所述双改性淀粉降滤失剂及其制备方法作进一步说明。
实施例1:第一种淀粉降滤失剂的制备
将8.1g玉米淀粉和0.243g水溶性硅酸钠加入三口烧瓶中,再加入36ml异丙醇,安装三口烧瓶于40℃恒温水浴中,用强力搅拌器进行搅拌,使玉米淀粉、水溶性硅酸钠均匀分散在异丙醇中,将4.8g氢氧化钠用10ml蒸馏水配制成氢氧化钠溶液,在搅拌下用恒压滴液漏斗向三口烧瓶中滴入体积分数40%的氢氧化钠溶液(约20分钟滴完),氢氧化钠溶液滴加完毕后,在搅拌下于常压、40℃进行第一阶段反应,反应时间为70分钟;
第一阶段反应结束后,升温至50℃,以线流方式加入氯乙酸溶液(氯乙酸与溶剂异丙醇的配比为:氯乙酸5.67g,异丙醇4ml),然后在搅拌下用恒压滴液漏斗滴加体积分数60%的氢氧化钠溶液(约30分钟滴完),碱液滴加完毕后,在搅拌下于常压、50℃进行第二阶段反应,反应时间为120分钟;
第二阶段反应结束后,将反应产物进行固液分离,将分离所获固体物质置于70℃的烘箱中干燥,待充分干燥后(干燥时间约120分钟),经研磨粉碎,即得硅化的羧甲基淀粉钠,呈淡黄色粉末状。
实施例2:第一种淀粉降滤失剂的制备
将3.1g马铃薯淀粉、5g红薯淀粉和0.162g固体硅酸钠加入三口烧瓶中,再加入54ml乙醇,安装三口烧瓶于30℃恒温水浴中,用强力搅拌器进行搅拌,使马铃薯淀粉、红薯淀粉、固体硅酸钠均匀分散在乙醇中,将6.0g氢氧化钠用14ml蒸馏水配制成氢氧化钠溶液,在搅拌下用恒压滴液漏斗向三口烧瓶中滴入体积分数40%的氢氧化钠溶液(约25分钟滴完),氢氧化钠溶液滴加完毕后,在搅拌下于常压、30℃进行第一阶段反应,反应时间为100分钟;
第一阶段反应结束后,升温至40℃,以线流方式加入氯乙酸溶液(氯乙酸与溶剂乙醇的配比为:氯乙酸4.725g,乙醇6ml),然后在搅拌下用恒压滴液漏斗滴加体积分数60%的氢氧化钠溶液(约35分钟滴完),碱液滴加完毕后,在搅拌下于常压、40℃进行第二阶段反应,反应时间为150分钟;
第二阶段反应结束后,将反应产物进行固液分离,将分离所获固体物质置于70℃的烘箱中干燥,待充分干燥后(干燥时间约120分钟),经研磨粉碎,即得硅化的羧甲基淀粉钠,呈淡黄色粉末状。
实施例3:第一种淀粉降滤失剂的制备
将4.1g小麦淀粉、4g稻米淀粉和0.405g水溶性硅酸钾加入三口烧瓶中,再加入81ml乙醇,安装三口烧瓶于50℃恒温水浴中,用强力搅拌器进行搅拌,使小麦淀粉、稻米淀粉、水溶性硅酸钾均匀分散在乙醇中,将10g氢氧化钾用18ml蒸馏水配制成氢氧化钾溶液,在搅拌下用恒压滴液漏斗向三口烧瓶中滴入体积分数40%的氢氧化钾溶液(约25分钟滴完),氢氧化钾溶液滴加完毕后,在搅拌下于常压、50℃进行第一阶段反应,反应时间为50分钟;
第一阶段反应结束后,升温至60℃,以线流方式加入氯乙酸溶液(氯乙酸与溶剂乙醇的配比为:氯乙酸9.45g,乙醇9ml),然后在搅拌下用恒压滴液漏斗滴加体积分数60%的氢氧化钠溶液(约40分钟滴完),碱液滴加完毕后,在搅拌下于常压、60℃进行第二阶段反应,反应时间为90分钟;
第二阶段反应结束后,将反应产物进行固液分离,将分离所获固体物质置于70℃的烘箱中干燥,待充分干燥后(干燥时间约120分钟),经研磨粉碎,即得硅化的羧甲基淀粉钾,呈淡黄色粉末状。
实施例4:第二种淀粉降滤失剂的制备
将8.1g玉米淀粉和0.243g水溶性硅酸钠加入三口烧瓶中,再加入36ml异丙醇,安装三口烧瓶于40℃恒温水浴中,用强力搅拌器进行搅拌,使玉米淀粉、水溶性硅酸钠均匀分散在异丙醇中,将4.8g氢氧化钠用10ml蒸馏水配制成氢氧化钠溶液,在搅拌下用恒压滴液漏斗向三口烧瓶中滴入体积分数40%的氢氧化钠溶液(约20分钟滴完),氢氧化钠溶液滴加完毕后,在搅拌下于常压、40℃进行第一阶段反应,反应时间为70分钟;
第一阶段反应结束后,升温至50℃,将0.162g海藻酸钠加入三口烧瓶中,同时以线流方式加入氯乙酸溶液(氯乙酸与溶剂异丙醇的配比为:氯乙酸5.67g,异丙醇4ml),然后在搅拌下用恒压滴液漏斗滴加体积分数60%的氢氧化钠溶液(约30分钟滴完),碱液滴加完毕后,在搅拌下于常压、50℃进行第二阶段反应,反应时间为120分钟;
第二阶段反应结束后,将反应产物进行固液分离,将分离所获固体物质置于70℃的烘箱中干燥,待充分干燥后(干燥时间约120分钟),经研磨粉碎,即得硅化的羧甲基淀粉钠和羧甲基化的海藻酸钠组成的第二种淀粉降滤失剂,呈淡黄色粉末状。
实施例5:第二种淀粉降滤失剂的制备
将3.1g马铃薯淀粉、5g红薯淀粉和0.162g固体硅酸钠加入三口烧瓶中,再加入54ml乙醇,安装三口烧瓶于30℃恒温水浴中,用强力搅拌器进行搅拌,使马铃薯淀粉、红薯淀粉、固体硅酸钠均匀分散在乙醇中,将6.0g氢氧化钠用14ml蒸馏水配制成氢氧化钠溶液,在搅拌下用恒压滴液漏斗向三口烧瓶中滴入体积分数40%的氢氧化钠溶液(约25分钟滴完),氢氧化钠溶液滴加完毕后,在搅拌下于常压、30℃进行第一阶段反应,反应时间为100分钟;
第一阶段反应结束后,升温至40℃,将0.405g海藻酸钠加入三口烧瓶中,同时以线流方式加入氯乙酸溶液(氯乙酸与溶剂乙醇的配比为:氯乙酸4.725g,乙醇6ml),然后在搅拌下用恒压滴液漏斗滴加体积分数60%的氢氧化钠溶液(约35分钟滴完),碱液滴加完毕后,在搅拌下于常压、40℃进行第二阶段反应,反应时间为150分钟;
第二阶段反应结束后,将反应产物进行固液分离,将分离所获固体物质置于70℃的烘箱中干燥,待充分干燥后(干燥时间约120分钟),经研磨粉碎,即得硅化的羧甲基淀粉钠和羧甲基化的海藻酸钠组成的第二种淀粉降滤失剂,呈淡黄色粉末状。
实施例6:第二种淀粉降滤失剂的制备
将4.1g小麦淀粉、4g稻米淀粉和0.405g水溶性硅酸钾加入三口烧瓶中,再加入81ml乙醇,安装三口烧瓶于50℃恒温水浴中,用强力搅拌器进行搅拌,使小麦淀粉、稻米淀粉、水溶性硅酸钾均匀分散在乙醇中,将10g氢氧化钾用18ml蒸馏水配制成氢氧化钾溶液,在搅拌下用恒压滴液漏斗向三口烧瓶中滴入体积分数40%的氢氧化钾溶液(约25分钟滴完),氢氧化钾溶液滴加完毕后,在搅拌下于常压、50℃进行第一阶段反应,反应时间为50分钟;
第一阶段反应结束后,升温至60℃,将0.081g海藻酸钠加入三口烧瓶中,同时以线流方式加入氯乙酸溶液(氯乙酸与溶剂乙醇的配比为:氯乙酸9.45g,乙醇9ml),然后在搅拌下用恒压滴液漏斗滴加体积分数60%的氢氧化钠溶液(约40分钟滴完),碱液滴加完毕后,在搅拌下于常压、60℃进行第二阶段反应,反应时间为90分钟;
第二阶段反应结束后,将反应产物进行固液分离,将分离所获固体物质置于70℃的烘箱中干燥,待充分干燥后(干燥时间约120分钟),经研磨粉碎,即得硅化的羧甲基淀粉钾和羧甲基化的海藻酸钠组成的第二种淀粉降滤失剂,呈淡黄色粉末状。
实施例7:降滤失剂性能测试
1、抗温性能测试
(1)基浆配制
在高搅杯中加入2000ml自来水,在不断搅拌下加入4.8g无水碳酸钠、120g膨润土,搅拌20分钟,密闭静置20小时即为基浆。
(2)实验浆料配制与测试
向五个容器中各加入400ml基浆,然后分别向各容器中1.6g的实施例1制备的降滤失剂、实施例4制备的降滤失剂、实施例5制备的降滤失剂、实施例6制备的降滤失剂、羧甲基淀粉钠,高速搅拌(1000转/分钟)均匀即配制成实施例1样、实施例4样、实施例5样、实施例6样、对比1样。将装实施例1样的容器、装实施例4样的容器、装实施例5样的容器、装实施例6样的容器、装对比1样的容器放入滚子加热炉中,先后在110℃、130℃、150℃下热滚老化16小时,待冷却至室温时,用ZNN-D6型六速粘度测试仪测量其流变性,钻井液滤失量测试仪测量其失水量。测量数据见表1。
表1抗温性能测试对比
Figure GSA00000058661200081
Figure GSA00000058661200091
注:xxx℃/16h后室温的含义:在滚子炉中设置某个温度,热滚16小时后,取出放置至室温。
表1测试结果表明,本发明所述降滤失剂表现出良好的抗温性能,随着温度的升高,失水量加幅增度较小;而未经双改性的降滤失剂——羧甲基淀粉钠随着温度的升高,失水量增加幅度较大,当温度达到150℃时失水量高达20.4ml,已完全失效。本发明所述降滤失剂与羧甲基淀粉钠相比,抗温性能显著提高,在110℃、130℃、150℃下热滚老化16小时后的失水量均大大小于羧甲基淀粉钠。
2、降滤失性能测试
(1)基浆配制
在高搅杯中加入2800ml自来水,在不断搅拌下加入6.72g无水碳酸钠、168g膨润土,搅拌20分钟,密闭静置20小时即为基浆。
(2)实验浆料配制与测试
向七个容器中各加入400ml基浆,然后向第一个容器中加入1.6g的实施例1制备的降滤失剂,向第二个容器中加入1.6g的实施例4制备的降滤失剂,向第三个容器中加入1.6g的实施例5制备的降滤失剂,向第四个容器中加入1.6g实施例6制备的降滤失剂,向第五个容器中加入1.6g的羧甲基淀粉钠,向第六个容器中加入1.57g的羧甲基淀粉钠、0.03g的海藻酸钠,高速搅拌(1000转/分钟)均匀,第一个容器中的浆料为实施例1样,第二个容器中的浆料为实施例4样,第三个容器中的浆料为实施例3样,第四个容器中的浆料为对比6样,第五个容器中的浆料为对比1样,第六个容器中的浆料为对比2样,第七个容器中的浆料为基浆,用ZNN-D6型六速粘度测试仪测量其流变性,钻井液滤失量测试仪测量其失水量。测量数据见表2。
表2降滤失性能测试对比
表2测试结果表明,本发明所述降滤失剂与羧甲基淀粉钠、羧甲基淀粉钠+海藻酸钠的降滤失剂相比,降滤失性能均有明显提高。
3.环保性能测试
分别将实施例1、实施例2、实施例3、实施例4、实施例5和实施例6制备的淀粉降滤失剂配制成质量浓度0.4%的水溶液,根据下表3所列检测方法测定砷、铅、铬、镉、汞、六价铬、石油类和生物毒性等七项环保指标,测试结果见3。
表3环保性能检测方法及结果
Figure GSA00000058661200111
表3的测试结果表明,本发明所述降滤失剂中砷、铅、铬、镉、汞、六价铬、石油类等指标均未检出,生物毒性为无毒,表现出良好的环保性能。

Claims (9)

1.一种油气田钻井用双改性淀粉降滤失剂,其特征在于所述淀粉降滤失剂为硅化的羧甲基淀粉钠或硅化的羧甲基淀粉钾,所述硅化的羧甲基淀粉钠或硅化的羧甲基淀粉钾的结构单元如下:
Figure FSB00000864556400011
上述结构单元中,X为钠或钾。
2.一种油气田钻井用双改性淀粉降滤失剂,其特征在于由硅化的羧甲基淀粉钠或硅化的羧甲基淀粉钾和羧甲基化的海藻酸钠组成,所述硅化的羧甲基淀粉钠或硅化的羧甲基淀粉钾的结构单元如下:
Figure FSB00000864556400012
上述结构单元中,X为钠或钾;
所述羧甲基化的海藻酸钠的结构单元如下:
Figure FSB00000864556400013
所述硅化的羧甲基淀粉钠或硅化的羧甲基淀粉钾的质量百分数为95%~99%,羧甲基化的海藻酸钠的质量百分数为1%~5%。
3.一种权利要求1所述油气田钻井用双改性淀粉降滤失剂的制备方法,其特征在于原料包括淀粉、无机硅酸盐、醇基分散剂、氯乙酸和碱,原料的配方如下:
无机硅酸盐与淀粉的质量比为0.02~0.05∶1,醇基分散剂为4毫升~10毫升/克淀粉,氯乙酸与淀粉的质量比为0.5~1.2∶1,碱与氯乙酸的质量比为0.8~1.3∶1;
工艺如下:
将淀粉、无机硅酸盐和醇基分散剂加入反应容器中,在常压、30℃~50℃下通过搅拌使淀粉、无机硅酸盐均匀分散在醇基分散剂中,将碱用蒸馏水配制成浓度为0.4克~0.6克/毫升蒸馏水的碱液,然后在搅拌下将体积分数40%的碱液滴入上述淀粉、无机硅酸盐和醇基分散剂形成的混合液中,碱液滴加完毕后,在搅拌下于常压、30℃~50℃进行第一阶段反应,反应时间至少为50分钟;
第一阶段反应结束后,在常压、40℃~60℃下将氯乙酸溶液加入反应容器,然后在搅拌下将体积分数60%的碱液滴入反应容器,碱液滴加完毕后,在搅拌下于常压、40℃~60℃进行第二阶段反应,反应时间至少为90分钟,所述氯乙酸溶液的溶剂与醇基分散剂相同,氯乙酸与溶剂的配比为∶氯乙酸质量∶溶剂体积=0.7~1.4∶1,所述氯乙酸的质量单位为克,所述溶剂的体积单位为毫升;
第二阶段反应结束后,将反应产物进行固液分离,所获固体物质即为权利要求1所述油田钻井用双改性淀粉降滤失剂。
4.一种权利要求2所述油田钻井用双改性淀粉降滤失剂的制备方法,其特征在于原料包括淀粉、无机硅酸盐、醇基分散剂、海藻酸钠、氯乙酸和碱,原料的配方如下:
无机硅酸盐与淀粉的质量比为0.02~0.05∶1,醇基分散剂为4毫升~10毫升/克淀粉,海藻酸钠与淀粉的质量比为0.01~0.05∶1,氯乙酸与淀粉的质量比为0.5~1.2∶1,碱与氯乙酸的质量比为0.8~1.3∶1;
工艺如下;
将淀粉、无机硅酸盐和醇基分散剂加入反应容器中,在常压、30℃~50℃下通过搅拌使淀粉、无机硅酸盐均匀分散在醇基分散剂中,将碱用蒸馏水配制成浓度为0.4克~0.6克/毫升蒸馏水的碱液,然后在搅拌下将体积分数40%的碱液滴入上述淀粉、无机硅酸盐和醇基分散剂形成的混合液中,碱液滴加完毕后,在搅拌下于常压、30℃~50℃进行第一阶段反应,反应时间至少为50分钟;
第一阶段反应结束后,在常压、40℃~60℃下将海藻酸钠和氯乙酸溶液加入反应容器,然后在搅拌下将体积分数60%的碱液滴入反应容器,碱液滴加完毕后,在搅拌下于常压、40℃~60℃进行第二阶段反应,反应时间至少为90分钟,所述氯乙酸溶液的溶剂与醇基分散剂相同,氯乙酸与溶剂的配比为:氯乙酸质量∶溶剂体积=0.7~1.4∶1,所述氯乙酸的质量单位为克,所述溶剂的体积单位为毫升;
第二阶段反应结束后,将反应产物进行固液分离,所获固体物质即为权利要求2所述油气田钻井用双改性淀粉降滤失剂。
5.根据权利要求3或4所述的油气田钻井用双改性淀粉降滤失剂的制备方法,其特征在于所述淀粉为玉米淀粉、马铃薯淀粉、红薯淀粉、小麦淀粉、稻米淀粉中的至少一种。
6.根据权利要求3或4所述的油气田钻井用双改性淀粉降滤失剂的制备方法,其特征在于所述无机硅酸盐为水溶性硅酸钠、水溶性硅酸钾中的一种。
7.根据权利要求3或4所述的油气田钻井用双改性淀粉降滤失剂的制备方法,其特征在于所述醇基分散剂为乙醇或异丙醇,当醇基分散剂为乙醇时,配制氯乙酸溶液的溶剂为乙醇,当醇基分散剂为异丙醇时,配制氯乙酸溶液的溶剂为异丙醇。
8.根据权利要求5所述的油气田钻井用双改性淀粉降滤失剂的制备方法,其特征在于所述醇基分散剂为乙醇或异丙醇,当醇基分散剂为乙醇时,配制氯乙酸溶液的溶剂为乙醇,当醇基分散剂为异丙醇时,配制氯乙酸溶液的溶剂为异丙醇。
9.根据权利要求6所述的油气田钻井用双改性淀粉降滤失剂的制备方法,其特征在于所述醇基分散剂为乙醇或异丙醇,当醇基分散剂为乙醇时,配制氯乙酸溶液的溶剂为乙醇,当醇基分散剂为异丙醇时,配制氯乙酸溶液的溶剂为异丙醇。
CN201010125334A 2010-03-17 2010-03-17 油气田钻井液用双改性淀粉降滤失剂及其制备方法 Expired - Fee Related CN101787267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010125334A CN101787267B (zh) 2010-03-17 2010-03-17 油气田钻井液用双改性淀粉降滤失剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010125334A CN101787267B (zh) 2010-03-17 2010-03-17 油气田钻井液用双改性淀粉降滤失剂及其制备方法

Publications (2)

Publication Number Publication Date
CN101787267A CN101787267A (zh) 2010-07-28
CN101787267B true CN101787267B (zh) 2012-10-17

Family

ID=42530649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010125334A Expired - Fee Related CN101787267B (zh) 2010-03-17 2010-03-17 油气田钻井液用双改性淀粉降滤失剂及其制备方法

Country Status (1)

Country Link
CN (1) CN101787267B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382632B (zh) * 2010-09-03 2014-12-03 中国石油化工股份有限公司 一种防止堵漏材料被地层水稀释的预处理剂及其制法和应用
CN107875167A (zh) * 2013-04-24 2018-04-06 王攀峰 一种促进骨形成蛋白表达加速骨折愈合的药物的制备方法
CN105987988A (zh) * 2015-03-02 2016-10-05 中国石油化工股份有限公司 一种用于评价钻井液的分散体系、评价方法及应用
CN106634880B (zh) * 2015-10-30 2021-02-02 中石化石油工程技术服务有限公司 一种水基钻井液用双亲淀粉降滤失剂的制备方法
CN110372804A (zh) * 2019-07-13 2019-10-25 湖北江汉利达石油物资装备有限公司 抗盐耐温淀粉类钻井降滤失剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178574A2 (en) * 1984-10-17 1986-04-23 Dresser Industries, Inc. Fluid loss additives for oil base muds and low fluid loss compositions thereof
CN101037591A (zh) * 2007-04-24 2007-09-19 严金龙 一种抗温抗盐降失水剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178574A2 (en) * 1984-10-17 1986-04-23 Dresser Industries, Inc. Fluid loss additives for oil base muds and low fluid loss compositions thereof
CN101037591A (zh) * 2007-04-24 2007-09-19 严金龙 一种抗温抗盐降失水剂的制备方法

Also Published As

Publication number Publication date
CN101787267A (zh) 2010-07-28

Similar Documents

Publication Publication Date Title
CN101787267B (zh) 油气田钻井液用双改性淀粉降滤失剂及其制备方法
US4342866A (en) Heteropolysaccharide S-130
Baird et al. Industrial applications of some new microbial polysaccharides
US4363669A (en) Dispersible xanthan gum blends
US5175278A (en) Heteropolysaccharide S-657
Sangseethong et al. The role of reaction parameters on the preparation and properties of carboxymethyl cassava starch
CN110590966B (zh) 一种提升瓷砖胶滑移性能的改性淀粉醚的制备方法
US4304906A (en) Heteropolysaccharide S-84
CN101585883B (zh) 高纯度羧甲基淀粉钠及其制备方法和应用
CN103525380A (zh) 一种水基钻井液用高温抗饱和盐降失水剂
CN109627803B (zh) 环保型有机颜料联苯胺黄g的生产方法
CN103665174B (zh) 一种改性淀粉及其制备方法和应用以及钻井液
US4654086A (en) Dispersible xanthan gum
CN113929817A (zh) 一种改性壳聚糖抗高温抗盐降滤失剂、其制备方法和应用
CN108913107A (zh) 一种耐高温长效降滤失剂的制备方法
CN110591670B (zh) 环保型水基钻井液用降滤失剂及其制备方法和钻井液
AU617490B2 (en) New heteropolysaccharide, process for its manufacture and its use
JPH0768283B2 (ja) ヘテロ多糖s−657
WO2001074907A1 (en) Viscosified aqueous fluids and viscosifier therefor
CN106467725A (zh) 一种生物质钻井液基础液、其制备方法及其应用
CN104263011B (zh) 一种二苯乙烯三嗪类荧光增白剂及其制备方法
Kim et al. Effects of phosphorylating salts and temperature on the preparation of rice starch phosphates by extrusion
GB2058107A (en) Heteropolysaccharide S-130
US2618596A (en) Oil soluble gelling agent
CN104292345A (zh) 三聚磷酸钠制备淀粉磷酸酯的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017

Termination date: 20130317