CN101773685A - 一种高弹性促软骨原位再生支架的制备方法 - Google Patents

一种高弹性促软骨原位再生支架的制备方法 Download PDF

Info

Publication number
CN101773685A
CN101773685A CN 201010105644 CN201010105644A CN101773685A CN 101773685 A CN101773685 A CN 101773685A CN 201010105644 CN201010105644 CN 201010105644 CN 201010105644 A CN201010105644 A CN 201010105644A CN 101773685 A CN101773685 A CN 101773685A
Authority
CN
China
Prior art keywords
chitosan
gelatin
elasticity support
layer
cartilage regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010105644
Other languages
English (en)
Other versions
CN101773685B (zh
Inventor
赵鹏
文学军
时东陆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN 201010105644 priority Critical patent/CN101773685B/zh
Publication of CN101773685A publication Critical patent/CN101773685A/zh
Application granted granted Critical
Publication of CN101773685B publication Critical patent/CN101773685B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

本发明属于生物再生医学领域,具体涉及一种高弹性促软骨原位再生支架的制备方法。本发明以明胶、改性壳聚糖为主要原料,通过光固化和相分离技术制备具有高弹性,多孔的三维基质材料,然后采用超分子层层纳米自组装技术,在纳米尺度上精确控制自组装膜的结构,并在此基质材料中负载HGF、BMP-2、IGF-I、IGFBP-3等多种生长因子。通过对生长因子的控释,实现对软骨缺损部位周围内源性骨滑膜干细胞(SM-MSCs)的激活,促使其向缺损部位迁移,增殖和分化,最终在体内实现软骨缺损部位的原位诱导自修复。

Description

一种高弹性促软骨原位再生支架的制备方法
技术领域
本发明属于生物再生医学领域,具体涉及一种基于明胶(Gelatin)、改性壳聚糖(chitosan)为原料的高弹性促软骨原位再生支架的制备方法。
背景技术
因外伤或疾病引起的软骨缺损或者病变是临床骨科的常见疾病。尤其是关节软骨,由于体内关节软骨的自身修复能力极其有限,一旦发生损伤或者病变,很难自愈,甚至导致关节损坏,多需要外源性修复或启动内源性因素修复[1]。随着生命科学和工程学的发展,组织工程应运而生,人们利用工程学方法和手段构建和再生各种组织和器官来替代病损组织,并取得了巨大的成就。构建生物特性与正常关节软骨相似的组织工程软骨是目前组织工程研究的热点之一。关节软骨位于活动关节的表面,是一种复杂的复合生物材料,在负荷的传导和吸收上发挥着重要作用。成熟的关节软骨根据细胞和基质形态变化可分为4层,即表层、移行层、中层和钙化层,其结构的层次变化与关节软骨的力学特性相适应[2]。尽管软骨组织工程发展迅速,研究应用领域不断扩大,但是仍然有许多问题亟待解决,如形成的软骨组织在后期容易退化;形成的软骨组织力学性能不太满意等问题。尤其在软骨基质材料方面,如何构建一种具有良好的生物相容性,可降解,具有足够的孔隙结构,且具备承载生长因子,不易从缺损处脱落,具有一定弹性和分层功能结构的软骨基质材料一直是目前研究的热点和难点。
20世纪60年代以来陆续进行了异体骨关节移植术、骨膜软骨移植、带蒂筋膜瓣移植、软骨细胞移植以及人工假体移植等手术方法来修复和重建关节软骨,这些方法在短期内均取得了一定的手术效果,但是其移植体来源的局限性,以及多次手术等问题一直使其难以大规模推广。20世纪80年代以来,组织工程学科概念的提出和兴起为关节软骨修复提供了新的选择,其基本原理是体外培养扩增的细胞结合基质材料构建出新的软骨组织以供移植。软骨组织工程的目标是将软骨细胞和细胞外基质重新合成为类正常软骨且有功能的组织。目前,国际上已经有很多学者开展了相关领域的研究工作,并取得了积极的进展。Roehlecke等[3]用I型胶原包钛合金为支架,发现种子细胞表现出较高的黏附性和生长活性,提示I型胶原可作为黏附分子和特异性生长因子的良好载体。Ma等[4]在三维多孔材料聚羟基乙酸/聚乳酸复合物表面采用“嫁接”(grafting)技术复合聚甲基丙烯酸,很好地促进了细胞的生长和分化。Song等[5]将明胶与骨基质材料复合,形成多孔骨基质明胶支架,与软骨细胞在体外混合培养12天后植入关节软骨缺损处,24周后成功修复了软骨缺损。Frondoza先对人膝关节软骨细胞进行3个月的单层培养,细胞出现了去分化现象,然后将此细胞加I型胶原微载体培养,细胞数量在2周内增加了20倍,且细胞重新表达软骨细胞表型[6]。Lee等将转化生长因子β1用乳交联方法制成球囊,复合在胶原-壳聚糖-黏多糖复合材料中与软骨细胞混合培养,3周后用ELISA法检测,发现软骨细胞的表型及黏多糖的产生均优于对照组[7]。以上这种基于经典组织工程概念构建的细胞外基质复合种子细胞体外扩增培养后,然后进行软骨缺损修复的治疗模式,虽然在临床上取得了一定的效果,但仍存在不少局限性。例如,部分患者对细胞体外扩增阶段过程中使用的抗生素及牛类来源制剂会产生敏感不良反应[8]。另外,在提取患者骨髓间充质干细胞(MSCs)时会导致患者二次损伤,最为重要的是,采用此种方式形成的纤维状软骨细胞机械性能很差,并且在体内机械性能下降非常迅速,只能形成临时性的修复,并不能生成持久耐用的透明软骨[9,10]。由此可见,无论扩增与否简单的细胞移植在软骨缺损修复中并不能产生尽如人意的疗效。
如何激活内源性SM-MSCs,并诱导其向软骨缺损部位迁移、增殖和分化将是最终形成耐久透明质软骨从而达到软骨缺损修复重建目点的重点。我们制备的免细胞移植型促软骨自修复基质具有高度联通的三维多孔结构,利于营养物质的扩散,新迁移、补充干细胞的粘附,增殖和成软骨细胞分化。我们近期工作中所构建的高弹性明胶/壳聚糖多孔支架显示了非常好的软骨再生应用发展潜力[11]。明胶是一种天然生物大分子聚合物,它具有促进MSCs粘附和向软骨细胞分化的作用[12,13,14]。壳聚糖是一种线型聚多糖,具有与细胞外基质粘多糖类似的结构[15]。其具有良好的生物相容性,无免疫原性,生物降解性,等优点[16]
综上所述,现有文献的报导中,尚未有关于本发明中所述的高弹性促软骨原位再生支架的相关研究报道。
参考文献
[1]Buckwalter JA.Articular cartilage:injuries and potential for healing.J Orthop Sports Phy Ther1998;28(4):192-202.
[2]Beris AE,Lykis sas MG,Papageorgiou CD,et al.Advances in articular cartilage repair.Injury 2005;36Suppl 4:S14-23.
[3]Roehlecke C,Witt M,Kasper M,et al.Synergistic effect of titanium alloy and collagen type I on celladhesion,proliferation and differentiation of osteoblast-like cells.Cells Tissues Organs 2001;168(3):178-187.
[4]Ma Z,Gao C,Gong Y,et al.Cartilage tissue engineering PLLA scaffold with surface immobilized collagenand basic fibroblast growth factor.Biomaterials 2005;26(11):1253-1259.
[5]Song HX,Li FB,Shen HL,et al.Repairing articular cartilage defects with tissue-engineering cartilage inrabbits.Chin J Traumatol 2006;9(5):266-271.
[6]Frondoza C,Sohrabi A,Hungerford D.Human chondrocytes proliferate and produce matrix components inmicrocarrier suspension culture.Biomaterials 1996;17(9):879-888.
[7]Lee JE,Kim KE,Kwon IC,et al.Effects of the controlled-released TGF-beta 1 from chitosan microsphereson chondrocytes cultured in a collagen/chitosan/glycolsamino-glycan scaffold.Biomaterials 2004;25(18):4163-4173.
[8]Genzyme Corporation:Carticel Product Label.Volume 2009;2007.
[9]Williams RJ,3rd,Harnly HW.Microfracture:indications,technique,and results.Instr Course Lect2007;56:419-28.
[10]Horas U,Pelinkovic D,Herr G,Aigner T,Schnettler R.Autologous chondrocyte implantation andosteochondral cylinder transplantation in cartilage repair of the knee joint.A prospective,comparativetrial.J Bone Joint Surg Am 2003;85-A(2):185-92.
[11]Qui Y,Zhang N,Wen X.Controlling the microstructure of hybrid scaffolds by governing transient phaseseparation in polysaccharide-protein-organic solvent system.Manuscript under review 2009.
[12]Schagemann JC,Erggelet C,Chung HW,Lahm A,Kurz H,Mrosek EH.Cell-Laden and Cell-FreeBiopolymet Hydrogel for the Treatment of Osteochondral Defects in a Sheep Model.Tissue Eng Part A2009;15(1):75-82.
[13]Ponticiello MS,Schinagl RM,Kadiyala S,Barry FP.Gelatin-based resorbable sponge as a carrier matrixfor human mesenchymal stem cells in cartilage regeneration therapy.J Biomed Mater Res2000;52(2):246-55.
[14]Awad HA,Wickham MQ,Leddy HA,Gimble JM,Guilak F.Chondrogenic differentiation ofadipose-derived adult stem cells in agarose,alginate,and gelatin scaffolds.Biomaterials2004;25(16):3211-22.
[15]Brown CD,Hoffman AS.Modification of natural polymers:chitosan.In:Atala A,Lanza RP,editors.Methods of tissue engineering.San Diego:Academic Press;2002.p 1285.
[16]Di Martino A,Sittinger M,Risbud MV.Chitosan:a versatile biopolymer for orthopaedictissue-engineering.Biomaterials 2005;26(30):5983-90.
发明内容
本发明的目的在于提供一种高弹性促软骨原位再生支架的制备方法。
本发明提出的高弹性促软骨原位再生支架的制备方法,将明胶(Gelatin)和改性壳聚糖(chitosan)溶于非质子极性溶剂中,并在该溶液中加入光固化引发剂,在紫外光辐照下进行固化交联,得到由明胶和改性壳聚糖交联而成的凝胶类材料;将所得凝胶类材料在去离子水作用下洗涤、浸泡,除去其中的非质子极性溶剂,在形成凝胶的过程中,由于相分离作用,在洗脱非质子溶剂后得到基于明胶和改性壳聚糖的多孔的三维基质材料;然后采用超分子层层纳米自组装技术,将对SM-MSCs具有激活、迁移诱导、分化诱导作用的多种生长因子负载于前面制备的多孔三维基质材料上,经灭菌处理,封装后即得产品;其中:明胶和改性壳聚糖的质量比为1∶10-10∶1。
本发明中,所述非质子极性溶剂为二甲亚砜(DMSO)、二甲基甲酰胺(DMF)、N-N-二甲基乙酰胺(DMA)或六甲基磷酰三胺(HMPA)中任一种。非质子极性溶剂的加入量为70-95wt%(以明胶质量计)。
本发明中,所述光固化引发剂为2-羟基-2-甲基-1-苯基丙酮;1-羟基环己基苯基甲酮、2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮、1-[4-(2-羟乙氧基)-亚苯基]-2-羟基-2’,2’-二甲基乙酮、2,4,6-三甲基苯甲酰基-二苯基氧化膦;2,4,6-三甲基苯甲酰基苯基膦酸乙酯、2-二甲氨基-2-苄基-1-[4-(4-吗啉基)苯基]-1-丁酮、2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮或苯甲酰甲酸甲酯中一种或几种的组合,光固化引发剂的加入量为改性壳聚糖质量的0.1-3.0%。
本发明中,所述紫外光辐照条件为:光源波长为:150-450nm,照射强度为3-20w/cm2,照射时长为5-30分钟。
本发明中,所述改性壳聚糖采用苯甲酰氯和丙烯酰氯(或其衍生物),与壳聚糖进行反应后的产物。
本发明中,所述超分子层层纳米自组装技术指静电层层自组装方法,该方法是基于大分子间的弱相互作用力(静电吸引力、范德化力、氢键等),对生物大分子和聚电解质进行有序交替沉积的一种高效而简捷方法,采用此种方法可以方便的将各种聚电解质组装成纳米厚度的超薄膜,并保持该生物大分子的生物活性和空间结构,可在具有复杂空间构型的装置上实现。
本发明中,所述生长因子为对SM-MSCs迁移、增殖、分化具有诱导作用的生长因子或生长因子组合,如:肝细胞生长因子、骨成型蛋白-2、胰岛素样生长因子-I、胰岛素样生长因子结合蛋白-3等,但并不仅仅限于此处所举示例。
本发明的有益效果在于:利用本发明方法所获得三维多孔支架材料具有优良的力学性能和高度连通的孔腔,可为软骨再生提供有利的物理环境,同时因其高弹性的特质,使其可通过关节镜微创手术操作植入软骨缺损部位。与此同时支架上所负载的生长因子对缺损部位周围的骨滑膜干细胞具有诱导作用,可促进软骨的再生。
附图说明
图1为实施例1和实施例2所得支架的宏观形貌和扫描电镜(SEM)照片,其中:A、B、C分别为实施例1,明胶∶改性壳聚糖=1∶1(质量比)时支架的宏观形貌和扫描电镜(SEM)照片。D、E、F为实施例2,明胶∶改性壳聚糖=1∶3(质量比)时支架的宏观形貌和扫描电镜(SEM)照片。
图2为兔股骨软骨缺损动物模型实验中的空白对照组的病理组织染色放大图和对兔股骨软骨缺损动物模型的修复实验病理组织染色放大图。其中:A为兔股骨软骨缺损模型,B为6星期后,未经支架修复的软骨缺损部位病理组织染色观察,缺损部位未见有效修复;
C为经实施例1中明胶∶改性壳聚糖=1∶1(质量比)时的支架对兔股骨软骨缺损模型修复4星期后的情况,D为经实施例1中明胶∶改性壳聚糖=1∶1(质量比)时的支架对兔股骨软骨缺损模型修复6星期后的情况病理组织染色放大图,软骨缺损部位得到有效的修复。
具体实施方式
下面通过实施例进一步说明本发明。
实施例1
将明胶(Gelatin)和改性壳聚糖(chitosan)按1∶1(wt∶wt)配比,溶于二甲亚砜(DMSO)中,并在该溶液中加入0.5%(wt)2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮作为光固化引发剂,在365nm,10w/cm2紫外光下辐照20分钟,得到凝胶材料。将所得凝胶在去离子水作用下洗涤、浸泡,除去其中的DMSO得到多孔三维基质支架。然后将此支架浸入聚乙烯亚胺(PEI,1-5mg/ml)溶液中,浸泡5-10分钟后再用pH=7.0的去离子水洗涤。将BMP-2和HGF制成0.1-10μg/ml浓度的溶液,把支架置于此溶液中浸泡10-30分钟进行吸附,然后用pH=7.0的去离子水洗涤。然后依次浸入聚烯丙基胺(PAH,3mg/ml)和聚丙烯酸(PAA,3mg/ml)溶液中,循环3-4次,每次沉积后均用去离子水洗脱。接下来,将前面经过处理的支架用乙醇洗脱随后用氮气气流干燥。即得到产品。
从图1中可以看出,明胶∶改性壳聚糖(1∶1,质量比)通过光固化交联,形成弹性多孔支架,经SEM放大后(B,C),可以看到其表面和内部由密布的连通孔洞构成,该结构对细胞的黏附生长有利。
实施例2
将明胶(Gelatin)和改性壳聚糖(chitosan)按1∶3(wt∶wt)配比,溶于N-N-二甲基乙酰胺(DMA)中,并在该溶液中加入1.5%(wt)1-[4-(2-羟乙氧基)-亚苯基]-2-羟基-2’,2’-二甲基乙酮作为光固化引发剂,在200nm,5w/cm2紫外光下辐照15分钟,得到凝胶材料。将所得凝胶在去离子水作用下洗涤、浸泡,除去其中的DMA得到多孔三维基质支架。然后将此支架浸入聚乙烯亚胺(PEI,1-5mg/ml)溶液中,浸泡5-10分钟后再用pH=7.0的去离子水洗涤。将BMP-2和IGF-I制成0.1-10μg/ml浓度的溶液,把支架置于此溶液中浸泡10-20分钟进行吸附,然后用pH=7.0的去离子水洗涤。然后依次浸入聚烯丙基胺(PAH,3mg/ml)和聚丙烯酸(PAA,3mg/ml)溶液中,循环3-4次,每次沉积后均用去离子水洗脱。接下来,将前面经过处理的支架用乙醇洗脱随后用氮气气流干燥。即得到产品。
从图1中可以看出,明胶∶改性壳聚糖(1∶3,质量比)通过光固化交联,形成弹性多孔支架,经SEM放大后(E,F),可以看到其表面和内部由密布的相互连通孔洞构成,和明胶形成的颗粒状结构,该结构利于细胞的黏附生长。
实施例3
将明胶(Gelatin)和改性壳聚糖(chitosan)按5∶1(wt∶wt)配比,溶于二甲基甲酰胺(DMF)中,并在该溶液中加入1.0%(wt)2-二甲氨基-2-苄基-1-[4-(4-吗啉基)苯基]-1-丁酮作为光固化引发剂,在400nm,10w/cm2紫外光下辐照30分钟,得到凝胶材料。将所得凝胶在去离子水作用下洗涤、浸泡,除去其中的DMF得到多孔三维基质支架。然后将此支架浸入聚乙烯亚胺(PEI,1-5mg/ml)溶液中,浸泡5-10分钟后再用pH=7.0的去离子水洗涤。将BMP-2,IGF-I和IGFBP-3制成0.1-10μg/ml浓度的溶液,把支架置于此溶液中浸泡10-20分钟进行吸附,然后用pH=7.0的去离子水洗涤。然后依次浸入聚烯丙基胺(PAH,3mg/ml)和聚丙烯酸(PAA,3mg/ml)溶液中,循环3-4次,每次沉积后均用去离子水洗脱。接下来,将前面经过处理的支架用乙醇洗脱随后用氮气气流干燥。即得到产品。

Claims (7)

1.一种高弹性促软骨原位再生支架的制备方法,其特征在于以明胶和改性壳聚糖为主要原料,溶于非质子极性溶剂中,并在该溶液中加入光固化引发剂,在紫外光辐照下进行固化交联,得到由明胶和改性壳聚糖交联而成的凝胶类材料。将所得凝胶类材料在去离子水作用下洗涤、浸泡,除去其中的非质子极性溶剂,在形成凝胶的过程中,由于相分离作用,在洗脱非质子溶剂后得到基于明胶和改性壳聚糖的多孔的三维基质材料,然后采用超分子层层纳米自组装技术,将对SM-MSCs具有激活、迁移诱导、分化诱导作用的多种生长因子负载于前面制备的多孔三维基质材料上,经灭菌处理,封装后即得产品;其中:明胶和改性壳聚糖的质量比为1∶10-10∶1。
2.根据权利要求1所述的高弹性促软骨原位再生支架的制备方法,其特征在于所述非质子极性溶剂为二甲亚砜、二甲基甲酰胺、N-N-二甲基乙酰胺或六甲基磷酰三胺中的一种,非质子极性溶剂的加入量为明胶质量的70-95wt%。
3.根据权利要求1所述的高弹性促软骨原位再生支架的制备方法,其特征在于所述光固化引发剂为2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮、2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮、1-[4-(2-羟乙氧基)-亚苯基]-2-羟基-2’,2’-二甲基乙酮、2,4,6-三甲基苯甲酰基-二苯基氧化膦、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、2-二甲氨基-2-苄基-1-[4-(4-吗啉基)苯基]-1-丁酮、2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮或苯甲酰甲酸甲酯中一种或几种的组合,光固化引发剂的加入量为改性壳聚糖质量的0.1-3.0%。
4.根据权利要求1所述的高弹性促软骨原位再生支架的制备方法,其特征在于所述紫外光辐照条件为:光源波长为:150-450nm,照射强度为3-20w/cm2,照射时长为5-30分钟。
5.根据权利要求1所述的高弹性促软骨原位再生支架的制备方法,其特征在于所述改性壳聚糖为采用苯甲酰氯和丙烯酰氯或其衍生物,与壳聚糖进行反应后的产物。
6.根据权利要求1所述的高弹性促软骨原位再生支架的制备方法,其特征在于所述超分子层层纳米自组装技术是指静电层层自组装方法。
7.根据权利要求1所述的高弹性促软骨原位再生支架的制备方法,其特征在于所述生长因子为对SM-MSCs迁移、增殖、分化具有诱导作用的生长因子或生长因子组合,采用HGF、BMP-2、IGF-I或IGFBP-3。
CN 201010105644 2010-02-04 2010-02-04 一种高弹性促软骨原位再生支架的制备方法 Expired - Fee Related CN101773685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010105644 CN101773685B (zh) 2010-02-04 2010-02-04 一种高弹性促软骨原位再生支架的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010105644 CN101773685B (zh) 2010-02-04 2010-02-04 一种高弹性促软骨原位再生支架的制备方法

Publications (2)

Publication Number Publication Date
CN101773685A true CN101773685A (zh) 2010-07-14
CN101773685B CN101773685B (zh) 2012-12-05

Family

ID=42510358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010105644 Expired - Fee Related CN101773685B (zh) 2010-02-04 2010-02-04 一种高弹性促软骨原位再生支架的制备方法

Country Status (1)

Country Link
CN (1) CN101773685B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241829A (zh) * 2011-04-29 2011-11-16 武汉理工大学 生物多糖衍生物自组装与光化学交联修饰的聚氨酯材料及其制备方法
CN103623463A (zh) * 2013-11-15 2014-03-12 无锡中科光远生物材料有限公司 一种用于加速骨组织生长的静电纺丝涂层材料的制备方法
CN103739862A (zh) * 2013-07-25 2014-04-23 天津大学 明胶/羧甲基壳聚糖/poss光交联水凝胶及制备方法
CN103751847A (zh) * 2013-11-25 2014-04-30 同济大学 促组织再生控释多重生长因子自组装涂层的制备方法
CN103877614A (zh) * 2014-02-26 2014-06-25 同济大学 一种组织工程骨软骨修复的双层复合支架及其制备方法
CN104127916A (zh) * 2014-07-15 2014-11-05 东南大学 具有抗菌和促进骨生长功能可吸收骨科器械材料及制备方法
CN105126163A (zh) * 2015-09-21 2015-12-09 西南交通大学 用于软骨修复的具有组织诱导性的水凝胶的制备方法
CN105435311A (zh) * 2015-12-11 2016-03-30 西南交通大学 一种组织工程骨软骨复合支架及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1210335C (zh) * 2001-09-26 2005-07-13 天津大学 壳聚糖-明胶-透明质酸双层复合支架材料的制备方法
CN101322854A (zh) * 2008-07-30 2008-12-17 中国医学科学院整形外科医院 壳聚糖含钙胶体支架材料
CN101474424B (zh) * 2009-01-16 2013-01-02 中国人民解放军第四军医大学 高仿真组织工程神经修复材料ngcs及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241829A (zh) * 2011-04-29 2011-11-16 武汉理工大学 生物多糖衍生物自组装与光化学交联修饰的聚氨酯材料及其制备方法
CN103739862A (zh) * 2013-07-25 2014-04-23 天津大学 明胶/羧甲基壳聚糖/poss光交联水凝胶及制备方法
CN103739862B (zh) * 2013-07-25 2015-07-15 天津大学 明胶/羧甲基壳聚糖/poss光交联水凝胶及制备方法
CN103623463A (zh) * 2013-11-15 2014-03-12 无锡中科光远生物材料有限公司 一种用于加速骨组织生长的静电纺丝涂层材料的制备方法
CN103751847A (zh) * 2013-11-25 2014-04-30 同济大学 促组织再生控释多重生长因子自组装涂层的制备方法
CN103877614A (zh) * 2014-02-26 2014-06-25 同济大学 一种组织工程骨软骨修复的双层复合支架及其制备方法
CN104127916A (zh) * 2014-07-15 2014-11-05 东南大学 具有抗菌和促进骨生长功能可吸收骨科器械材料及制备方法
CN104127916B (zh) * 2014-07-15 2015-11-18 东南大学 具有抗菌和促进骨生长功能可吸收骨科器械材料及制备方法
CN105126163A (zh) * 2015-09-21 2015-12-09 西南交通大学 用于软骨修复的具有组织诱导性的水凝胶的制备方法
CN105435311A (zh) * 2015-12-11 2016-03-30 西南交通大学 一种组织工程骨软骨复合支架及其制备方法
CN105435311B (zh) * 2015-12-11 2018-04-24 西南交通大学 一种组织工程骨软骨复合支架及其制备方法

Also Published As

Publication number Publication date
CN101773685B (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
CN101773685B (zh) 一种高弹性促软骨原位再生支架的制备方法
Filippi et al. Natural polymeric scaffolds in bone regeneration
Xu et al. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique
Nicholas et al. Methodologies in creating skin substitutes
Bidarra et al. Injectable alginate hydrogels for cell delivery in tissue engineering
Xing et al. Natural extracellular matrix for cellular and tissue biomanufacturing
Bauer-Kreisel et al. Cell-delivery therapeutics for adipose tissue regeneration
Steffens et al. Update on the main use of biomaterials and techniques associated with tissue engineering
EP1835949B1 (en) Tissue engineering devices for the repair and regeneration of tissue
Akter Principles of tissue engineering
Araña et al. Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application
Nie et al. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells
WO2008008229A2 (en) De novo formation and regeneration of vascularized tissue from tissue progenitor cells and vascular progenitor cells
CA2714387A1 (en) Extracellular matrix compositions
Niermeyer et al. Tissue engineering applications in otolaryngology—The state of translation
Boyd-Moss et al. Bioprinting and biofabrication with peptide and protein biomaterials
Wang et al. Current applications and future directions of bioengineering approaches for bladder augmentation and reconstruction
Mathew et al. Tissue engineering: principles, recent trends and the future
Zhang et al. Advancing collagen-based biomaterials for oral and craniofacial tissue regeneration
Anjum et al. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: a review
Elkhenany et al. Tissue engineering modalities and nanotechnology
Shan Wong et al. Engineered polymeric biomaterials for tissue engineering
Spadaccio et al. Stem cells cardiac differentiation in 3D systems
Zhang et al. Porous materials based on Bombyx mori silk fibroin
Goswami et al. Recent Advances in Tissue Engineering Scaffolds and Commercial Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20180204