CN101771350B - 一种基于t型辅助网络零电压开关全桥直流变换器 - Google Patents

一种基于t型辅助网络零电压开关全桥直流变换器 Download PDF

Info

Publication number
CN101771350B
CN101771350B CN2010190260351A CN201019026035A CN101771350B CN 101771350 B CN101771350 B CN 101771350B CN 2010190260351 A CN2010190260351 A CN 2010190260351A CN 201019026035 A CN201019026035 A CN 201019026035A CN 101771350 B CN101771350 B CN 101771350B
Authority
CN
China
Prior art keywords
auxiliary
inverter bridge
bridge leg
transformer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010190260351A
Other languages
English (en)
Other versions
CN101771350A (zh
Inventor
陈仲
季飚
石磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN2010190260351A priority Critical patent/CN101771350B/zh
Publication of CN101771350A publication Critical patent/CN101771350A/zh
Application granted granted Critical
Publication of CN101771350B publication Critical patent/CN101771350B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供一种基于T型辅助网络零电压开关全桥直流变换器,包括直流电源、第一逆变桥臂和第二逆变桥臂、辅助电感、辅助变压器、辅助电容、隔离变压器及整流滤波电路。本发明采用移相控制方式,由于加入了由辅助电感、辅助变压器和辅助电容组成的辅助网络,可以在全负载范围内实现开关管的零电压开关,并且储存在辅助网络中的能量能随着负载变化而自适应的变化,同时副边电压尖峰和振荡得到很好的抑制。

Description

一种基于T型辅助网络零电压开关全桥直流变换器
技术领域
本发明涉及一种基于T型辅助网络零电压开关全桥直流变换器,属于恒频、隔离的全桥直流变换器技术领域。
背景技术
直直变换作为电力电子技术领域的一个重要组成部分,近年来得到了大量的研究。在中大功率的直流变换场合,全桥变换器由于开关管容易实现软开关和采用恒定频率控制而得到了广泛的应用。近二十年来,出现了很多全桥变换器软开关控制策略和电路拓扑。移相控制零电压开关和移相控制零电压零电流开关全桥变换器均可以实现开关管的软开关。传统的移相控制零电压开关全桥变换器在负载较轻时滞后臂会失去软开关,甚至在很轻载时,由于死区时间的限制,超前桥臂也会失去软开关的条件。如果想拓宽原边开关管的软开关范围,可以将附加的谐振电感与变压器串联。如果选择合适的谐振电感,即便在小电流下也能实现超前臂开关的ZVS。不过,较大的谐振电感在全负载范围均存储较高的能量,使得产生相当大的循环能量,使变换器效率变低。此外,和变压器一次侧串联大电感延长了一次电流从正变负或从负变正所需的时间。这个延长的换向时间引起变压器二次侧的占空比丢失,这又使得效率降低。最后,值得指出的是在整流器的截止期间,在变压器的二次侧具有严重的寄生振荡。所谓寄生振荡是由整流器的结电容和变压器的漏感以及外部电感引起的。为了控制寄生振荡,需要在二次侧使用大的缓冲电路,这同样使得电路的变换效率大为降低。
发明内容
发明目的:
本发明所要解决的技术问题是针对现有技术存在的缺陷提供一种基于T型辅助网络零电压开关全桥直流变换器,变换器工作在各种负载条件下都可以实现原边开关管的零电压开关,且辅助网络提供的能量可以随着负载变化而自适应的变化,从而提高变换效率。
技术方案:
本发明为实现上述目的,采用如下技术方案:
一种基于T型辅助网络零电压开关全桥直流变换器,包括直流电源、结构相同的第一逆变桥臂和第二逆变桥臂、隔离变压器以及整流滤波电路;其中每个逆变桥臂都包括二个开关管、二个体二极管和二个寄生电容;第一逆变桥臂中,第一开关管的漏极分别与第一体二极管的阴极、第一寄生电容的一端连接构成第一逆变桥臂的正输入端,第一开关管的源极分别与第一体二极管的阳极、第一寄生电容的另一端、第三开关管的漏极、第三体二极管的阴极、第三寄生电容的一端连接构成第一逆变桥臂的输出端,第三开关管的源极分别与第三体二极管的阳极、第三寄生电容的另一端连接构成第一逆变桥臂的负输入端;第二逆变桥臂中,第二开关管的漏极分别与第二体二极管的阴极、第二寄生电容的一端连接构成第二逆变桥臂的正输入端,第二开关管的源极分别与第二体二极管的阳极、第二寄生电容的另一端、第四开关管的漏极、第四体二极管的阴极、第四寄生电容的一端连接构成第二逆变桥臂的输出端,第四开关管的源极分别与第四体二极管的阳极、第四寄生电容的另一端连接构成第二逆变桥臂的负输入端;直流电源的正极分别接第一逆变桥臂和第二逆变桥臂的正输入端,直流电源的负极分别接第一逆变桥臂和第二逆变桥臂的负输入端,隔离变压器副边绕组的输出端接整流滤波电路的输入端,
还包括由第一辅助电容、第二辅助电容、辅助变压器和辅助电感构成的T型辅助网络,其中第一辅助电容的输入端接第一逆变桥臂的输出端,第一辅助电容的输出端分别接辅助变压器的原边绕组的同名端和隔离变压器原边绕组的同名端,第二辅助电容的输入端接第二逆变桥臂的输出端,第二辅助电容的输出端分别接辅助变压器副边绕组的异名端和隔离变压器原边绕组的异名端,辅助电感的输入端接辅助变压器原边绕组的异名端和辅助变压器副边绕组的同名端,辅助变压器原边绕组的异名端和辅助变压器副边绕组的同名端相连,辅助电感的输出端分别与直流电源的负极、第一逆变桥臂的负输入端、第二逆变桥臂的负输入端连接。
本发明的基于T型辅助网络零电压开关全桥直流变换器的整流滤波电路采用半波整流电路、全波整流电路、全桥整流电路或倍流整流电路。
有益效果:
本发明披露了一种基于T型辅助网络零电压开关全桥直流变换器,其基本消除了变压器二次侧的寄生振荡,并可以在全负载范围实现开关管的零电压开关。与原有技术相比的主要技术特点是,由于加入了辅助电路,使得在轻载时一部分能量储存于辅助电路中,存储于辅助电路的能量可以帮助原边开关管在轻载甚至空载时实现软开关,且储存于辅助电路的能量随着负载的变化而自适应的变化,由于变压器漏感取值小,输出整流管因反向恢复引起的损耗大大减小,输出整流管的电压应力也随之减小,变换器的效率可以提高。
附图说明
图1是传统的零电压开关全桥变换器结构示意图。
图2是本发明的一种基于T型辅助网络零电压开关全桥直流变换器电路结构示意图。
图3是本发明的一种基于T型辅助网络零电压开关全桥直流变换器主要工作波形示意图。
图4--图8是本发明的一种基于T型辅助网络零电压开关全桥直流变换器的各开关模态示意图。
上述附图中的主要符号名称:Vin代表电源电压;Q1~Q4代表第一至第四功率开关管;C1~C4代表第一至第四寄生电容;D1~D4代表第一至第四体二极管;La代表辅助电感;Tra代表辅助变压器;Ca1代表第一辅助电容;Ca2代表第二辅助电容;Tr代表隔离变压器;DR1、DR2代表第一至第二输出整流二极管;Lf代表滤波电感;Cf代表滤波电容;RLd代表负载;Vo代表输出电压;VAB代表A与B两点间电压。
具体实施方式
下面结合附图对发明的技术方案进行详细说明:
附图1所示的是传统的零电压开关全桥变换器结构示意图。
包括直流电源Vin、结构相同的第一逆变桥臂1和第二逆变桥臂2、隔离变压器3以及整流滤波电路8;其中每个逆变桥臂都包括二个开关管、二个体二极管和二个寄生电容;第一逆变桥臂1中,第一开关管Q1的漏极分别与第一体二极管D1的阴极、第一寄生电容C1的一端连接构成第一逆变桥臂1的正输入端,第一开关管Q1的源极分别与第一体二极管D1的阳极、第一寄生电容C1的另一端、第三开关管Q3的漏极、第三体二极管D3的阴极、第三寄生电容C3的一端连接构成第一逆变桥臂1的输出端,第三开关管Q3的源极分别与第三体二极管D3的阳极、第三寄生电容C3的另一端连接构成第一逆变桥臂1的负输入端;第二逆变桥臂2中,第二开关管Q2的漏极分别与第二体二极管D2的阴极、第二寄生电容C2的一端连接构成第二逆变桥臂2的正输入端,第二开关管Q2的源极分别与第二体二极管D2的阳极、第二寄生电容C2的另一端、第四开关管Q4的漏极、第四体二极管D4的阴极、第四寄生电容C4的一端连接构成第二逆变桥臂2的输出端,第四开关管Q4的源极分别与第四体二极管D4的阳极、第四寄生电容C4的另一端连接构成第二逆变桥臂2的负输入端;直流电源Vin的正极分别接第一逆变桥臂1和第二逆变桥臂2的正输入端,直流电源Vin的负极分别接第一逆变桥臂1和第二逆变桥臂2的负输入端,隔离变压器3副边绕组的输出端接整流滤波电路8的输入端。
附图2所示的是一种基于T型辅助网络零电压开关全桥直流变换器电路结构示意图。
由直流电源Vin、两个逆变桥臂1和2、隔离变压器3、第一辅助电容4、第二辅助电容5、辅助变压器6、辅助电感7及整流滤波电路8组成。其中第一辅助电容4的输入端接第一逆变桥臂1的输出端,第一辅助电容4的输出端分别接辅助变压器6的原边绕组的同名端和隔离变压器3原边绕组的同名端,第二辅助电容5的输入端接第二逆变桥臂2的输出端,第二辅助电容5的输出端分别接辅助变压器6副边绕组的异名端和隔离变压器3原边绕组的异名端,辅助电感7的输入端接辅助变压器6原边绕组的异名端和辅助变压器6副边绕组的同名端,辅助变压器6原边绕组的异名端和辅助变压器6副边绕组的同名端相连,辅助电感7的输出端分别与直流电源Vin的负极、第一逆变桥臂1的负输入端、第二逆变桥臂2的负输入端连接。Q1~Q4是四只功率开关管,D1~D4分别是开关管Q1~Q4的体二极管,C1~C4分别是开关管Q1~Q4的寄生电容,Tra是辅助变压器,匝比为1∶1,La是辅助电感,Ca1、Ca2是辅助电容,Tr是隔离变压器,DR1、DR2是输出整流二极管,Lf是输出滤波电感,Cf是输出滤波电容,RLd为负载。本变换器采用移相控制,开关管Q1和Q3分别超前于开关管Q2和Q4一个相位,称开关管Q1和Q3组成的第一逆变桥臂为超前桥臂,开关管Q2和Q4组成的第二逆变桥臂则为滞后桥臂。其中分压电容Ca1、Ca2的电压为输入电压Vin的一半,即vca1=vca2=Vin/2,可看作为Vin/2的电压源。
下面以附图2为主电路结构,结合附图3--附图8叙述本发明的具体工作原理。由附图3可知整个变换器一个开关周期有10种开关模态,分别是[t0-t1]、[t1-t2]、[t2-t3]、[t3-t4]、[t4-t5]、[t5-t6]、[t6-t7]、[t7-t8]、[t8-t9]、[t9-t10],其中,[t1-t5]为前半周期,[t5-t10]为后半周期。下面对各开关模态的工作情况进行具体分析。
在分析之前,先作如下假设:①所有开关管和二极管均为理想器件;②滤波电容足够大,因此副边输出可等效为电压源,所有电感、电容均为理想元件;③C1=C3=Clead,C2=C4=Clag
1.开关模态1[t0-t1][对应于附图4]
在t0时刻之前,Q1和Q4导通,Q2和Q3截止,原边电流近似不变,vAB=Vin,上整流二极管DR1流过全部负载电流,DR2截止,原边给负载供电。t0时刻关断Q1,电流i1从Q1中转移到C1和C3支路中,vAB由Vin逐渐变为零,在这个时段里,储存在La和Lf中的能量给C1充电,同时给C3放电。在t1时刻,C3的电压下降到零,Q3的反并联二极管D3自然导通,Q3可实现零电压开通,该模态结束。
2.开关模态2[t1-t2][对应于附图5]
D3导通后,开通Q3,Q1和Q3驱动信号之间的死区时间td(lead)>t01。A点电位下降为零,所以vAB=0,原边不向负载提供能量。此时辅助电感La承受的电压为-1/2Vin,因此iLa不断减小。在t2时刻,La中的电流下降为最小值-ILa。辅助电感储存的能量与负载电流具有一定的关系,当负载电流减小时,ILa的幅值增大,储存在辅助电感中的能量增加;当负载电流增大时,ILa的幅值减小,储存在辅助电感中的能量降低。
3.开关模态3[t2-t3][对应于附图6]
在t2时刻,关断Q4,电流i2给C4充电,同时给C2放电,La储存的能量可供实现软开关。由于C2和C4的缓冲作用,Q4是零电压关断。在t3时刻,C2上的电压下降到零,Q2的反并二极管D2自然导通。此时副边整流二极管同时导通。
4.开关模态4[t3-t4][对应于附图7]
D2导通后,可以零电压开通Q2。Q2、Q4驱动信号之间的死区时间td(lag)>t23。Q2开通后,vAB=-Vin。此时副边两个整流管仍然同时导通,因此变压器原边绕组电压为零,输入电压Vin直接加在漏感Lk上,原边电流ip由线性下降再反向线性上升。
5.开关模态5[t4-t5][对应于附图8]
在t4时刻,原边电流折算等于副边电流,DR1关断,DR2流过全部负载电流。电源给负载供电。
t5时刻,Q3关断,变换器开始另一半个周期[t5,t10],其工作情况类似于上述的周期[t0-t5]。
从以上的描述可以得知,本发明提出的一种基于T型辅助网络零电压开关全桥直流变换器具有以下几方面的优点:
1)增加的辅助网络使得漏感取值很小,可以有效的消除输出整流管上的电压尖峰和电压振荡,降低输出整流二极管的电压应力。
2)利用储存在辅助电感的能量在全负载范围内实现开关管的零电压开关,并且储存于辅助电感的能量随着负载条件自适应的变化。
本发明改善变换器在轻载时工作条件,提高系统的可靠性,减轻EMI。

Claims (2)

1.一种基于T型辅助网络零电压开关全桥直流变换器,包括直流电源Vin、结构相同的第一逆变桥臂(1)和第二逆变桥臂(2)、隔离变压器(3)以及整流滤波电路(8);其中每个逆变桥臂都包括二个开关管、二个体二极管和二个寄生电容;第一逆变桥臂(1)中,第一开关管Q1的漏极分别与第一体二极管D1的阴极、第一寄生电容C1的一端连接构成第一逆变桥臂(1)的正输入端,第一开关管Q1的源极分别与第一体二极管D1的阳极、第一寄生电容C1的另一端、第三开关管Q3的漏极、第三体二极管D3的阴极、第三寄生电容C3的一端连接构成第一逆变桥臂(1)的输出端,第三开关管Q3的源极分别与第三体二极管D3的阳极、第三寄生电容C3的另一端连接构成第一逆变桥臂(1)的负输入端;第二逆变桥臂(2)中,第二开关管Q2的漏极分别与第二体二极管D2的阴极、第二寄生电容C2的一端连接构成第二逆变桥臂(2)的正输入端,第二开关管Q2的源极分别与第二体二极管D2的阳极、第二寄生电容C2的另一端、第四开关管Q4的漏极、第四体二极管D4的阴极、第四寄生电容C4的一端连接构成第二逆变桥臂(2)的输出端,第四开关管Q4的源极分别与第四体二极管D4的阳极、第四寄生电容C4的另一端连接构成第二逆变桥臂(2)的负输入端;直流电源Vin的正极分别接第一逆变桥臂(1)和第二逆变桥臂(2)的正输入端,直流电源Vin的负极分别接第一逆变桥臂(1)和第二逆变桥臂(2)的负输入端,隔离变压器(3)副边绕组的输出端接整流滤波电路(8)的输入端,其特征在于:
还包括由第一辅助电容(4)、第二辅助电容(5)、辅助变压器(6)和辅助电感(7)构成的T型辅助网络,其中第一辅助电容(4)的输入端接第一逆变桥臂(1)的输出端,第一辅助电容(4)的输出端分别接辅助变压器(6)的原边绕组的同名端和隔离变压器(3)原边绕组的同名端,第二辅助电容(5)的输入端接第二逆变桥臂(2)的输出端,第二辅助电容(5)的输出端分别接辅助变压器(6)副边绕组的异名端和隔离变压器(3)原边绕组的异名端,辅助电感(7)的输入端接辅助变压器(6)原边绕组的异名端和辅助变压器(6)副边绕组的同名端,辅助变压器(6)原边绕组的异名端和辅助变压器(6)副边绕组的同名端相连,辅助电感(7)的输出端分别与直流电源Vin的负极、第一逆变桥臂(1)的负输入端、第二逆变桥臂(2)的负输入端连接。
2.根据权利要求1所述的一种基于T型辅助网络零电压开关全桥直流变换器,其特征在于:所述的整流滤波电路(8)采用半波整流电路、全波整流电路、全桥整流电路或倍流整流电路。
CN2010190260351A 2010-02-04 2010-02-04 一种基于t型辅助网络零电压开关全桥直流变换器 Expired - Fee Related CN101771350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010190260351A CN101771350B (zh) 2010-02-04 2010-02-04 一种基于t型辅助网络零电压开关全桥直流变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010190260351A CN101771350B (zh) 2010-02-04 2010-02-04 一种基于t型辅助网络零电压开关全桥直流变换器

Publications (2)

Publication Number Publication Date
CN101771350A CN101771350A (zh) 2010-07-07
CN101771350B true CN101771350B (zh) 2012-01-04

Family

ID=42504017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010190260351A Expired - Fee Related CN101771350B (zh) 2010-02-04 2010-02-04 一种基于t型辅助网络零电压开关全桥直流变换器

Country Status (1)

Country Link
CN (1) CN101771350B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546038B (zh) * 2012-07-18 2016-07-27 南京航空航天大学 一种抑制副边电压振荡的软开关全桥直流变换器
CN106787912A (zh) * 2017-02-28 2017-05-31 深圳市皓文电子有限公司 一种全桥谐振变换器
CN112737345B (zh) * 2020-12-29 2022-06-14 陕西科技大学 一种宽负载范围零电压开关移相全桥变换器的控制方法

Also Published As

Publication number Publication date
CN101771350A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
CN101847936B (zh) 滞后臂并联辅助网络的软开关全桥直流变换器
CN101860216B (zh) 加耦合电感的倍流整流方式全桥直流变换器
CN100353654C (zh) 级联式双向dc-dc变换器
CN101902129B (zh) 一种电流型多谐振直流变换器
CN101604916B (zh) 基于π型辅助网络零电压开关全桥直流变换器
CN101018017A (zh) 混合式三电平谐振直流变换器及双移相控制方法
CN100379132C (zh) 软开关pwm交错并联双管正激变换器
CN101312330A (zh) 谐振变换器高压电源装置
CN100353652C (zh) 复合式全桥三电平直流变换器和全桥三电平直流变换器
CN103441680B (zh) 一种减小环流损耗的软开关全桥直流变换器
CN100561840C (zh) 零电压开关全桥直流变换器
CN103595258A (zh) 一种升压型软开关谐振变换器及其定频控制方法
CN102570891A (zh) 采用交错并联有源箝位技术的反激式光伏并网逆变器
CN101604917A (zh) 采用无源辅助网络的零电压开关全桥直流变换器
CN100539373C (zh) 零电压开关半桥三电平直流变换器
CN103986330A (zh) 一种适用于高压大功率场合的谐振升压直/直变换器及其控制方法
CN102969898B (zh) 低压宽输入三电平全桥变换器及其控制方法
CN106505866A (zh) 一种三电平全桥直流变换装置
CN100448148C (zh) 二极管加电流互感器箝位的零电压开关全桥直流变换器
CN100358227C (zh) 带箝位二极管的零电压开关三电平双管正激直流变换器
CN109149952A (zh) 一种电流谐振型软开关推挽直流变换器
CN201199674Y (zh) 谐振变换器高压电源装置
CN104638932A (zh) 一种多谐振变换器
CN102931843B (zh) 自驱动有源辅助网络的软开关全桥直流变换器
CN100539374C (zh) 零电压开关复合式全桥三电平直流变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120104

Termination date: 20150204

EXPY Termination of patent right or utility model