CN101768722B - 一种含氢纳米结构CNx梯度薄膜的制备方法 - Google Patents

一种含氢纳米结构CNx梯度薄膜的制备方法 Download PDF

Info

Publication number
CN101768722B
CN101768722B CN2008101899438A CN200810189943A CN101768722B CN 101768722 B CN101768722 B CN 101768722B CN 2008101899438 A CN2008101899438 A CN 2008101899438A CN 200810189943 A CN200810189943 A CN 200810189943A CN 101768722 B CN101768722 B CN 101768722B
Authority
CN
China
Prior art keywords
cnx
hydrogen
containing nano
film
gradient film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101899438A
Other languages
English (en)
Other versions
CN101768722A (zh
Inventor
张俊彦
张斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN2008101899438A priority Critical patent/CN101768722B/zh
Publication of CN101768722A publication Critical patent/CN101768722A/zh
Application granted granted Critical
Publication of CN101768722B publication Critical patent/CN101768722B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种在不锈钢基底上直接沉积含氢纳米结构CNx梯度薄膜的制备方法。该方法利用中频磁控溅射物理气相沉积技术,以不锈钢为基底材料,采用高纯氮气、氩气和甲烷为反应溅射气体,分别镍靶和钛靶的方法制备了四元含氢纳米结构CNx梯度薄膜。

Description

一种含氢纳米结构CNx梯度薄膜的制备方法
技术领域
本发明涉及一种在不锈钢基底上直接沉积含氢纳米结构CNx梯度薄膜的制备方法。
背景技术
近年来航天航空、汽车及机械制造等工业的发展对表面涂层的抗磨损行为提出越来越高的要求,而不锈钢是在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,由于不锈钢具有耐腐蚀和良好的装饰性,并且易于清洗、维修费用低、寿命长等特点,成为这些工业常用的材料之一。因此,在不锈钢表面沉积结合力好,高硬度和摩擦性能良好的保护膜成为目前亟待解决的问题。
发明内容
本发明的目的在于提供一种含氢纳米结构CNx梯度薄膜的制备方法。
含氢CNx薄膜由于具有极高的硬度、极好的化学惰性、极低的内应力、优良的抗磨减摩性能和良好的抗腐蚀性能等优异特性,因此在机械、摩擦学、航空航天等领域具有广泛的应用前景。另一方面,梯度膜的方法可以有效的降低内应力,提高膜基结合力;纳米结构的复合有利于提高薄膜的抗磨损抗腐蚀性能。通过在不锈钢基底上直接沉积含氢纳米结构CNx梯度薄膜,不但可以提高基底抗腐蚀性能,还能进一步提高基底的机械性能。
我们利用中频磁控溅射物理气相沉积技术,以不锈钢为基底材料,采用高纯氮气、氩气和甲烷为反应溅射气体,分别镍靶和钛靶的方法制备了四元含氢纳米结构CNx梯度薄膜。
本发明采用中频磁控溅射物理气相沉积技术,在不锈钢基底上直接沉积一层含氢纳米结构CNx梯度薄膜。在不锈钢基底上制备一层保护薄膜来提高膜基结合力,提高基底的抗磨损能力。
一种含氢纳米结构CNx梯度薄膜的制备方法,其特征在于该方法包括以下步骤:
A将预先清洁后的不锈钢片放入丙酮、乙醇中超声清洗,然后在去离子水中冲洗,吹干,置于真空室;抽真空直到腔内真空度小于3.0×10-3Pa;
B通入Ar气至0.8Pa,基底加脉冲偏压为-800V,导通比0.8,利用等离子体辉光清洗衬底,以除去表面残留的杂质和污染物;
C采用高纯氮气和甲烷为反应溅射气体,溅射镍靶和钛靶制备含氢纳米结构CNx梯度薄膜;N2+Ar流量保持在40sccm,CH4流量100sccm,沉积气压约为0.5Pa,沉积功率约为1000W,基底偏压在-100V,样品盘与靶的距离为140mm,沉积时间为100-1500min。
本发明制备的薄膜的结构用红外光谱(FTIR)、X-射线光电子能谱(XPS)和透射电子显微镜(TEM)进行了表征。结构表明,在不锈钢基底上成功制备出了不含过渡层的含氢纳米结构CNx梯度薄膜,此薄膜为碳化物和过度金属及其化合物纳米颗粒镶嵌在无定形结构,这种薄膜具有优良的摩擦学性能。
本发明制备的薄膜的电化学腐蚀实验所用的仪器是CH I660B电化学工作站。电化学腐蚀结果表明,在不锈钢基底上制备的不含过渡层的硼碳氮薄膜,在离子液体中,腐蚀电流密度很小,具有优良的抗腐蚀性能。
本发明利用磁控溅射工艺成熟、设备简单、沉积温度低、成膜均匀、可大面积沉积等特点。该方法成本低廉而且容易操作,制备的薄膜均匀,薄膜与基底的结合良好。用这种方法制得的含氢纳米结构CNx梯度薄膜结合力好,抗摩擦磨损行为得到改善。
具体实施方式
为了更好的理解本发明,通过实例进行说明。
实施例1:
首先选择表面光洁的不锈钢片三片,用稀盐酸溶液预清洗,等其干燥后再将其放入丙酮、乙醇中超声清洗各20分钟,取出不锈钢片,放在滤纸上自然干燥,然后转入真空腔基底上,开始抽真空。待真空抽到小于3.0×10-3帕时,通入氩气(200sccm),调整气压为0.8.帕,在脉冲电压800伏特、导通比为0.8的情况下,进行等离子体清洗,持续20分钟。清洗完成后,通入甲烷(100sccm)和氩气(40sccm),调节气压为0.5帕,在脉冲偏压100伏特、导通比0.8的条件下沉积薄膜。溅射靶是对偶中频磁控溅射,基底放在两个靶等离子体交叠处,距靶140cm。在沉积过程中N2流量40min内逐步升到40sccm,Ar流量逐渐减小到0sccm.然后保持80min.膜厚达到1.5um沉积时间2小时。
Raman光谱图出现明显的D峰和G峰,呈现典型的类金刚石碳薄膜结构特征。FTIR光谱图中在2800cm-1~3000cm-1范围内出现甲基、亚甲基及氨基的特征振动吸收峰,表明得到的类金刚石碳膜是含氢的。X射线光电子能谱分析发现薄膜碳原子的结合能与相同沉积条件下在硅基底上沉积的类金刚石碳膜中碳原子的结果一致,表明薄膜具有典型的类金刚石碳薄膜的结构与特征。透射电镜测试的结果表明薄膜中含有碳化物和过度金属及其化合物纳米颗粒,且分散均匀。
采用美国CETR公司制造的UMT-2MT型摩擦磨损试验机上评价BCN薄膜的摩擦学性能,采用往复滑动方式,滑动频率为10Hz振幅为2.5mm,摩擦时间为60min,法向载荷为5N,偶件为
Figure G2008101899438D00031
的Si3N4球,实验结果表明薄膜具有优异的摩擦学特性,其摩擦系数可达到0.05。

Claims (1)

1.一种含氢纳米结构CNx梯度薄膜的制备方法,其特征在于该方法包括以下步骤:
A将预先清洁后的不锈钢片放入丙酮、乙醇中超声清洗,然后在去离子水中冲洗,吹干,置于真空室;抽真空直到腔内真空度小于3.0×10-3Pa;
B通入Ar气至0.8Pa,基底加脉冲偏压为-800V,导通比0.8,利用等离子体辉光清洗衬底,以除去表面残留的杂质和污染物;
C采用高纯氮气和甲烷为反应溅射气体,溅射镍靶和钛靶制备含氢纳米结构CNx梯度薄膜;N2+Ar流量保持在40sccm,甲烷流量100sccm,沉积气压为0.5Pa,沉积功率为1000W,基底偏压在-100V,样品盘与靶的距离为140mm,沉积时间为100-1500min。
CN2008101899438A 2008-12-29 2008-12-29 一种含氢纳米结构CNx梯度薄膜的制备方法 Expired - Fee Related CN101768722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101899438A CN101768722B (zh) 2008-12-29 2008-12-29 一种含氢纳米结构CNx梯度薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101899438A CN101768722B (zh) 2008-12-29 2008-12-29 一种含氢纳米结构CNx梯度薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN101768722A CN101768722A (zh) 2010-07-07
CN101768722B true CN101768722B (zh) 2011-11-30

Family

ID=42501821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101899438A Expired - Fee Related CN101768722B (zh) 2008-12-29 2008-12-29 一种含氢纳米结构CNx梯度薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN101768722B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345092A (zh) * 2010-07-29 2012-02-08 鸿富锦精密工业(深圳)有限公司 涂层、具有该涂层的被覆件及该被覆件的制备方法
CN102345091A (zh) * 2010-07-29 2012-02-08 鸿富锦精密工业(深圳)有限公司 涂层、具有该涂层的被覆件及该被覆件的制备方法
CN101962747B (zh) * 2010-10-26 2011-12-07 中国航天科技集团公司第五研究院第五一○研究所 一种电弧离子镀cn薄膜的方法
CN107502868A (zh) * 2017-09-06 2017-12-22 蚌埠玻璃工业设计研究院 一种高透、高阻w掺杂cn薄膜的制备方法
CN107686972A (zh) * 2017-09-07 2018-02-13 蚌埠玻璃工业设计研究院 一种共掺杂类金刚石薄膜的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205608A (zh) * 2006-12-22 2008-06-25 中国科学院兰州化学物理研究所 纳米多晶氮化碳薄膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205608A (zh) * 2006-12-22 2008-06-25 中国科学院兰州化学物理研究所 纳米多晶氮化碳薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平8-158040A 1996.06.18

Also Published As

Publication number Publication date
CN101768722A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
Zou et al. Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings
Ou et al. Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering
Cao et al. Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology
Braic et al. Characteristics of (TiAlCrNbY) C films deposited by reactive magnetron sputtering
Xu et al. Mechanical and corrosion-resistant properties of Ti–Nb–Si–N nanocomposite films prepared by a double glow discharge plasma technique
Ma et al. A study of structure and properties of Ti-doped DLC film by reactive magnetron sputtering with ion implantation
Abd El-Rahman et al. A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti–Si–C–N nanocomposite coatings
Ma et al. Mechanical and corrosive characteristics of Ta/TaN multilayer coatings
CN101768722B (zh) 一种含氢纳米结构CNx梯度薄膜的制备方法
Hassani et al. Mechanical, tribological and erosion behaviour of super-elastic hard Ti–Si–C coatings prepared by PECVD
Liu et al. Corrosion and tribological behaviors of chromium oxide coatings prepared by the glow-discharge plasma technique
Hong et al. Effects of Cr interlayer on mechanical and tribological properties of Cr-Al-Si-N nanocomposite coating
Liu et al. Excellent adhered thick diamond-like carbon coatings by optimizing hetero-interfaces with sequential highly energetic Cr and C ion treatment
CN107587133B (zh) 一种钨探针复合类金刚石涂层及其制备方法
US8372524B2 (en) Coated article
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
Niu et al. Structure and tribological behavior of GLCH/nitride coupled coatings on Ti6Al4V by nitriding and magnetron sputtering
Li et al. Direct coating adherent diamond films on Fe-based alloy substrate: the roles of Al, Cr in enhancing interfacial adhesion and promoting diamond growth
Grögler et al. Erosion resistance of CVD diamond-coated titanium alloy for aerospace applications
Zheng et al. Properties of Zr–ZrC–ZrC/DLC gradient films on TiNi alloy by the PIIID technique combined with PECVD
Zhang et al. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles
Kukiełka et al. Composition, mechanical properties and friction behavior of nickel/hydrogenated amorphous carbon composite films
Sheeja et al. Mechanical and tribological characterization of diamond-like carbon coatings on orthopedic materials
Zhao et al. Multi-arc ion plating and DC magnetron sputtering integrated technique for high-performance Al, C-co-doped δ-TiN quaternary films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111130

Termination date: 20211229