CN101730224A - 基于分布式优化策略的无线传感器网络节点定位方法 - Google Patents

基于分布式优化策略的无线传感器网络节点定位方法 Download PDF

Info

Publication number
CN101730224A
CN101730224A CN200810225400A CN200810225400A CN101730224A CN 101730224 A CN101730224 A CN 101730224A CN 200810225400 A CN200810225400 A CN 200810225400A CN 200810225400 A CN200810225400 A CN 200810225400A CN 101730224 A CN101730224 A CN 101730224A
Authority
CN
China
Prior art keywords
node
hop
nodes
distance
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810225400A
Other languages
English (en)
Other versions
CN101730224B (zh
Inventor
谭民
王硕
郝志凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN2008102254007A priority Critical patent/CN101730224B/zh
Publication of CN101730224A publication Critical patent/CN101730224A/zh
Application granted granted Critical
Publication of CN101730224B publication Critical patent/CN101730224B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及基于分布式优化策略的无线传感器网络节点定位方法,通过测量获得无线传感器网络中1-节点之间的距离和相对角度,进而推算网络中节点间距离,利用多维尺度测量、极大似然估计和分布式优化策略对无线传感器网络中所有节点位置进行定位。本发明在定位中直接测量得到节点间的距离或通过测量值计算得到节点间的距离,与估计距离相比有更高的精度,因此节点的定位精度就更高。此外,在计算节点的相对坐标时,除了初始点及其1-节点利用古典多维尺度计算方法外,其余节点的相对坐标都是用极大似然估计法计算得到的,计算量要小。在优化算法中采用了分布式优化的策略,降低了优化算法的计算量和复杂度。

Description

基于分布式优化策略的无线传感器网络节点定位方法
技术领域
本发明属于无线传感器网络领域,涉及无线传感器网络中节点的相对定位和绝对定位方法。
背景技术
无线传感器网络中的定位方法可分为非距离式定位和距离式定位两类。非距离式定位是利用节点间的跳(英文名为hop)数或求区域质心来计算节点的坐标。N.Bulusu和J.Heidemann提出了一种非距离式定位的中心算法。传感器网络中包含参考节点和普通节点,通过计算k个参考节点的中心来估计普通节点的位置或坐标。这种方法误差较高,要得到较高的定位精度需要很多参考节点且均匀分布在网络的外围。T.He和C.Huang提出的APIT(Approximation Point-in-Triangulation Test)方法是通过计算不同三角形的重叠区域的中心来确定节点的坐标。APIT适用于节点随机分布且不要求各节点通讯能力完全一样的情况,定位精度在很大程度上取决于参考节点的数量和重叠区域的大小。距离式定位一般利用节点间的距离来计算节点的相对位置,定位精度在很大程度上取决于节点间测距的精度。D.Niculescu和B.Nath提出了一种估计节点间距离的方法,这种方法适用于节点规则分布的情况,在节点随机分布的情况下估计距离会产生较大误差。Y.Shang和W.Ruml提出了利用MDS计算节点坐标的方法:MDS-MAP(C)、MDS-MAP(C,R)、MDS-MAP(P)和MDS-MAP(P,R)。这四种方法在节点的连通度高和参考节点比例大时可取得很好的定位效果。此外也有利用移动参考节点对网络中固定节点进行定位的方法。非距离式定位方法的定位精度较低,现有的距离式定位方法的精度虽然比非距离式定位方法的高,但由于在估计节点距离时利用了最短路径等方法而不是直接测量或计算得到的,因此精度也不是很高。
发明内容
为了解决现有技术测量精度低的问题,本发明目的是通过测量无线传感器网络中1跳节点间的距离和相对角度信息,通过计算方法实现对网络中所有节点进行相对定位或绝对定位,为此提供一种基于分布式优化策略的无线传感器网络节点定位方法
为达到所述目的,本发明提供的一种基于分布式优化策略的无线传感器网络节点定位方法,首先要测量无线传感器网络中1跳节点之间的距离和相对角度,利用1跳节点之间的距离和相对角度计算2跳节点之间的距离,再根据以上信息,利用古典多维尺度测量方法(MDS方法)、极大似然估计、分布式优化策略和坐标变换方法相结合的方法计算所有节点的相对坐标或绝对坐标。
本发明的有益效果或优点:本发明在定位过程中用的是直接测量得到的距离(1跳节点间的距离)或通过测量值计算(2跳节点间的距离)得到的,与估计距离相比有更高的精度,因此节点的定位精度就更高。此外,在计算节点的相对坐标时,除了初始点及其1跳节点利用古典多维尺度计算方法外,其余节点的相对坐标都是用极大似然估计法计算得到的,计算量要小。在优化算法中采用了分布式优化的策略,降低了优化算法的计算量和复杂度。
附图说明
图1是本发明基于分布式优化策略的无线传感器网络节点定位算法流程;
图2是本发明无线传感器网络中2跳节点间的距离;
具体实施方式
下面结合附图对采用分布式优化策略的基于节点间距离和相对角度的无线传感器网络节点定位方法进行详细说明。
在图1中给出了算法的流程。在图2中给出了节点间关系。图2中A、B、C表示无线传感器网络中3个节点,节点A与节点B之间可以直接通讯,节点B与节点C之间可以直接通讯,节点A与节点C之间无法直接通讯但可以经节点B转发一次实现相互通讯。节点A与节点B,节点B与节点C互为1跳节点;节点A与节点C互为2跳节点。n跳节点则指该节点至少经过(n-1)次不同节点转发才可与另一节点实现相互通讯,这两个节点互为n跳节点。
基于分布式优化策略的无线传感器网络节点定位方法,其算法步骤包括:
步骤S1:通过测量得到无线传感器网络1跳节点间的距离和相对角度;
无线传感器网络节点间距离的测量可以采用TOA、TDOA或RSSI等测量方法;而无线传感器网络1跳节点间的相对角度的测量主要可以通过接收阵列或多个接收机确定发射节点信号的到达方向来计算相对角度。
步骤S2:利用1跳节点间的距离和相对角度计算传感器网络内2跳节点间的距离;
如附图2所示,节点A和节点C都是节点B的1跳节点,节点A和节点C互为2跳节点,因此通过1跳节点间的距离和相对角度,利用余弦定理可以计算出2跳节点间的距离。节点B接收到的节点A发射信号的到达角度为α,节点B接收到的节点C发射信号的到达的角度为β,∠ABC表示为r,则有
γ = | α - β | | α - β | ≤ π 2 π - | α - β | | α - β | > π
由于1跳节点间距离可测,所以可设节点A和节点B间的距离为d1,节点B和节点C间的距离为d2,由余弦定理可计算出2跳节点A和节点C间的距离d,如下式所示:
d = d 1 2 + d 2 2 - 2 d 1 d 2 cos γ
根据上述公式,无线传感器网络内的所有2跳节点间的距离都可以计算。进而利用所有1跳节点间和2跳节点间的这些距离信息可以计算各节点的相对坐标。
步骤S3:节点间通过通讯选取1跳节点最多的节点作为初始点;
随机选择一个节点X,节点X向其1跳节点传播节点数目信息和地址信息并将自身的置位寄存器由0置位为1,节点数目信息包括节点X的1跳节点数目和节点标号X,地址信息包括发送信息的节点X;节点X的1跳节点接收到信息后,查看自身的置位寄存器。
若置位寄存器为0,向节点X传播“receive”信号,并保留接收到的信息,如果刚接收到信息的节点的1跳节点数目大于收到的节点数目信息中的1跳节点数目,则用自身的1跳节点数目替换节点数目信息中的1跳节点数目,并用自身的节点标号替换节点数目信息中的节点标号;如果自身的1跳节点数目不大于收到的节点数目信息中的1跳节点数目,则节点数目信息不变;再在地址信息中加入自身节点标号,然后将自身的置位寄存器由0置位为1,并向周围传播节点数目信息和地址信息;
若置位寄存器已经为1,则删除收到的信息。
这样从节点X开始,节点数目信息和地址信息逐渐向外传播并进行更新。当一个节点在传播信息后未收到“receive”信号,说明它的1跳节点都已接受到了节点数目信息和地址信息。未收到“receive”信号的节点按照地址信息中记录的节点标号将节点数目信息传送回X节点。X节点接收到一个返回的节点数目信息后,设定一段延迟时间,在这段时间中如果接收到其他的返回节点数目信息,则重新计时延迟时间;如果没有接收到其他的返回节点数目信息,X节点则停止接收。X节点比较接收到的节点数目信息中的1跳节点数目,选取1跳节点数目最大的节点标号,并向1跳节点数目最大的节点发送“初始点”信号,将1跳节点数目最大的节点作为初始点。
步骤S4:利用古典多维尺度测量方法(MDS方法)计算初始点及其1跳节点形成的子网络中节点的相对坐标并建立相对坐标系,并把这些通过计算获得相对坐标的节点称为已定位节点,其余未计算出相对坐标的节点称为未定位节点;
在一个r(r=2或3)维空间中,假设任意两个节点i和节点j的距离都已知,则距离矩阵D是一个主对角线上元素都为0,其它元素都不为0的对称矩阵,D(2)是由距离的平方构成的矩阵
Figure G2008102254007D0000041
其中dij 2表示节点i与节点j间距离的平方。设B=-0.5×JD(2)J,J=In×n-n-11n×n,In×n为单位矩阵,1n×n为全1矩阵。对矩阵B进行奇异值分解,可得B=QAQ′,则节点的相对坐标X=QA1/2。在计算过程中,矩阵B的奇异值可能存在负值或0,此时选取矩阵B的最大的r个奇异值及对应的奇异向量计算相对坐标
Xr=QrAr 1/2
当距离矩阵D没有误差或误差很小时,Xr基本反映了节点在网络中的相对位置。
步骤S5:建立初始点及其1跳节点的优化目标函数,采用最速下降法对初始点及其1跳节点的相对坐标估计进行优化,当满足误差设定条件时,将优化后的相对坐标作为节点的相对坐标,则结束对初始点及其1跳节点的相对坐标的优化,转入步骤S6;
满足误差设定条件的误差值为优化目标函数第k+1次计算值与优化目标函数第k次计算值之差的绝对值。当该误差值小于给定阈值时即满足误差设定条件。
当初始节点及其1跳节点都完成定位后开始对初始点及其1跳节点的相对坐标进行优化。优化时利用初始点及其1跳节点间的距离,初始点及其1跳节点的优化目标函数f为:
f = Σ i , j ( d ij - p ij ) 2
其中节点i和节点j至少有一个为需进行坐标优化的节点且互为1跳或2跳节点,节点i和节点j为初始点及其1跳节点中的点,dij表示节点间的实测距离(1跳节点间的距离)或根据1跳节点间距离和相对角度计算出的距离(2跳节点间的距离),节点i和节点j间的估计距离pij为:
p ij = ( x i - x j ) 2 + ( y i - y j ) 2 + ( z i - z j ) 2
上式中(xi,yi,zi)和(xj,yj,zj)分别为节点i和节点j的相对估计坐标。
采用最速下降法,将目标函数f对节点i的坐标xi,yi,zi分别求导得:
∂ f ∂ x i = Σ i , j 2 ( x i - x j ) ( 1 - d ij p ij ) ∂ f ∂ y i = Σ i , j 2 ( y i - y j ) ( 1 - d ij p ij ) ∂ f ∂ z i = Σ i , j 2 ( z i - z j ) ( 1 - d ij p ij )
则节点i相对坐标的第k+1(k≥0)次优化估计值(xi(k+1),yi(k+1),zi(k+1))表示为
x i ( k + 1 ) = x i ( k ) - ∂ f ∂ x i Δ y i ( k + 1 ) = y i ( k ) - ∂ f ∂ y i Δ z i ( k + 1 ) = z i ( k ) - ∂ f ∂ z i Δ
其中Δ表示修正系数,可取值为0.001。
Figure G2008102254007D0000063
Figure G2008102254007D0000064
Figure G2008102254007D0000065
为目标函数相对于xi、yi、zi的偏导数;按上式迭代计算,修正初始点及其1跳节点的相对坐标,直至目标函数f满足误差设定条件|f(k)-f(k+1)|≤ε,则结束对初始点及其1跳节点相对坐标的优化过程;
其中ε为一个小的正实数值,可取值为0.001。
步骤S6:通过计算得到的已定位的节点向周围未定位的节点广播自身的相对坐标,最远传到已定位节点的2跳节点为止;
步骤S7:n>1(n为正整数)的初始点n跳节点,根据接收到的已定位的(n-1)跳和(n-2)跳节点的相对坐标,再利用极大似然法计算初始点的n跳节点的相对坐标,当(n-2)为0时,表示初始点本身,并称这些通过计算得出相对坐标的节点为已定位节点,其余未计算出自身相对坐标的节点称为未定位节点;
设在三维环境中,未知节点坐标为X(x,y,z),收到的k(k≥4)个已定位的(n-1)跳和(n-2)跳节点的坐标分别为(x1,y1,z1),(x2,y2,z2),...,(xk,yk,zk),它们到未知节点的距离分别为d1,d2,...,dk,则有
( x 1 - x ) 2 + ( y 1 - y ) 2 + ( z 1 - z ) 2 = d 1 2 ( x 2 - x ) 2 + ( y 2 - y ) 2 + ( z 2 - z ) 2 = d 2 2 . . . ( x k - x ) 2 + ( y k - y ) 2 + ( z k - z ) 2 = d k 2
从第一个方程开始分别减去最后一个方程,得:
x 1 2 - x k 2 - 2 ( x 1 - x k ) x + y 1 2 - y k 2 - 2 ( y 1 - y k ) y + z 1 2 - z k 2 - 2 ( z 1 - z k ) z = d 1 2 - d k 2 x 2 2 - x k 2 - 2 ( x 2 - x k ) x + y 2 2 - y k 2 - 2 ( y 2 - y k ) y + z 2 2 + z k 2 - 2 ( z 2 - z k ) z = d 2 2 - d k 2 . . . x k - 1 2 - x k 2 - 2 ( x k - 1 - x k ) x + y k - 1 2 - y k 2 - 2 ( y k - 1 - y k ) y + z k - 1 2 - z k 2 - 2 ( z k - 1 - z k ) z = d k - 1 2 - d k 2
上述线性方程可表示为:AX=b,其中
A = 2 ( x 1 - x k ) 2 ( y 1 - y k ) 2 ( z 1 - z k ) . . . . . . . . . 2 ( x k - 1 - x k ) 2 ( y k - 1 - y k ) 2 ( z k - 1 - z k )
b = x 1 2 - x k 2 + y 1 2 - y k 2 + z 1 2 - z k 2 + d k 2 - d 1 2 . . . x k - 1 2 - x k 2 + y k - 1 2 - y k 2 + z k - 1 2 - z k 2 + d k 2 - d k - 1 2 ;
使用最小均方差估计方法可以得到节点的坐标为:
X ^ = ( A T A ) - 1 A T b ;
步骤S8:建立初始点的n跳节点的优化目标函数,采用最速下降法对初始点的n跳节点的相对坐标估计进行优化,当满足误差设定条件时结束对初始点的n跳节点的相对坐标的优化,转入步骤S9;
满足误差设定条件的误差值为优化目标函数第k+1次计算值与优化目标函数第k次计算值之差的绝对值。当该误差值小于给定阈值时即满足误差设定条件。
当初始点的n跳节点都完成定位后开始对初始点的n跳节点的相对坐标进行优化。优化时只利用1跳节点或2跳节点间的距离,初始点的n跳节点的优化目标函数f为
f = Σ i , j ( d ij - p ij ) 2
其中节点i和节点j至少有一个为需进行坐标优化的节点且互为1跳或2跳节点,dij表示节点间的实测距离(1跳节点间的距离)或根据1跳节点间距离和相对角度计算出的距离(2跳节点间的距离),pij为节点i和节点j间的估计距离为:
p ij = ( x i - x j ) 2 + ( y i - y j ) 2 + ( z i - z j ) 2
上式中(xi,yi,zi)和(xj,yj,zj)分别为节点i和j的相对估计坐标。
若节点i为需进行坐标优化的节点,采用最速下降法,将目标函数f对节点i的坐标xi,yi,zi分别求导可得:
∂ f ∂ x i = Σ i , j 2 ( x i - x j ) ( 1 - d ij p ij ) ∂ f ∂ y i = Σ i , j 2 ( y i - y j ) ( 1 - d ij p ij ) ∂ f ∂ z i = Σ i , j 2 ( z i - z j ) ( 1 - d ij p ij )
则节点i相对坐标的第k+1(k≥0)次优化估计值(xi(k+1),yi(k+1),zi(k+1))可表示为
x i ( k + 1 ) = x i ( k ) - ∂ f ∂ x i Δ y i ( k + 1 ) = y i ( k ) - ∂ f ∂ y i Δ z i ( k + 1 ) = z i ( k ) - ∂ f ∂ z i Δ
其中Δ表示修正系数,可取值为0.001。按照上式修正初始点的n跳节点的相对坐标,直至目标函数f满足误差设定条件|f(k)-f(k+1)|≤ε,则结束对n跳节点相对坐标的优化过程;
其中ε为一个小的正实数值,可取值为0.001。
步骤S9:若无线传感器网络内的全部节点都已完成定位或满足预先设定的递推计算次数停止条件,则转入步骤S10,否则返回步骤S6;
当递推计算次数达到(与初始节点间跳数最大的节点的跳数-1)次时即满足停止条件。
步骤S10:利用装有全球定位系统的参考节点的已知绝对坐标及其通过计算获得的相对坐标求取相对坐标系到绝对坐标系的变换矩阵;
设T=[T1,T2,T3,…,Tn]3×n表示n个节点在绝对坐标系下的绝对坐标,R=[R1,R2,R3,…,Rn]3×n表示这n个节点对应的在相对坐标系下的相对坐标。若已知参考节点1,2,3,4的绝对坐标和相对坐标,则根据线性变换存在Q3×3使得[T1-T1,T2-T1,T3-T1,T4-T1]=Q[R1-R1,R2-R1,R3-R1,R4-R1],由上式可以求出相对坐标系到绝对坐标系的变换矩阵Q:
Q=[T2-T1,T3-T1,T4-T1]/[R2-R1,R3-R1,R4-R1]
步骤S11:利用变换矩阵将无线传感器网络节点的相对坐标转换为绝对坐标。
节点i的绝对坐标可依据下式获得:
Ti=Q[Ri-R1]+T1
其中Ti为节点i的绝对坐标,Ri为节点i的相对坐标,T1为已知参考节点1的绝对坐标,R1为参考节点1的相对坐标,Q为相对坐标系到绝对坐标系的变换矩阵。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.基于分布式优化策略的无线传感器网络节点定位方法,其特征在于,包括步骤如下:
步骤S1:通过测量得到无线传感器网络中1跳节点间的距离和相对角度;
步骤S2:利用1跳节点间的距离和相对角度计算无线传感器网络内2跳节点间的距离;
步骤S3:节点之间通过通讯选取1跳节点最多的节点作为初始点;
步骤S4:利用古典多维尺度测量方法计算初始点及其1跳节点形成的子网络中各节点的相对坐标并建立相对坐标系,将相对坐标的节点称为已定位节点,其余未计算出相对坐标的节点称为未定位节点;
步骤S5:建立初始点及其1跳节点的优化目标函数,采用最速下降法对初始点及其1跳节点的相对坐标估计进行优化,当满足误差设定条件时转入步骤S6;
步骤S6:已定位的节点向周围未定位的节点广播自身的坐标,最远传到已定位节点的2跳节点为止;
步骤S7:n>1的初始点的n跳节点,根据接收到的已定位的(n-1)跳和(n-2)跳节点的相对坐标,再利用极大似然法计算初始点的n跳节点的相对坐标,当(n-2)为0时,表示初始点本身,将相对坐标的节点称为已定位节点,其余未计算出自身相对坐标的节点称为未定位节点;
步骤S8:建立初始点的n跳节点的优化目标函数,采用最速下降法对初始点的n跳节点的相对坐标估计进行优化,当满足误差设定条件时转入步骤S9;
步骤S9:若无线传感器网络内的全部节点都已完成定位或满足预先设定的停止条件,则转入步骤S10,否则返回步骤S6;
步骤S10:利用装有全球定位系统的参考节点的已知绝对坐标及其通过计算获得的相对坐标求取相对坐标系到绝对坐标系的变换矩阵;
步骤S11:利用变换矩阵将无线传感器网络节点的相对坐标转换为绝对坐标。
2.根据权利要求1的定位方法,其特征在于:当无线传感器网络中初始点的所有n跳节点都计算出相对坐标后,当n>1时,对初始点的所有n跳节点的相对坐标进行优化。
3.根据权利要求1的定位方法,其特征在于:所述优化是利用1跳节点或2跳节点间的距离,初始点的n跳节点的优化目标函数f为:
f = Σ i , j ( d ij - p ij ) 2
其中节点i和节点j至少有一个为需进行坐标优化的节点且互为1跳或2跳节点,dij表示1跳节点间的实测距离或根据1跳节点间距离和相对角度计算出的2跳节点间距离,pij为节点i和j间的估计距离:
p ij = ( x i - x j ) 2 + ( y i - y j ) 2 + ( z i - z j ) 2
上式中(xi,yi,zi)和(xj,yj,zj)分别为节点i和j的相对估计坐标。
4.根据权利要求1的定位方法,其特征在于:所述采用最速下降法优化节点i坐标,节点i相对坐标的第k+1次优化估计值(xi(k+1),yi(k+1),zi(k+1))表示为:
x i ( k + 1 ) = x i ( k ) - ∂ f ∂ x i Δ y i ( k + 1 ) = y i ( k ) - ∂ f ∂ y i Δ z i ( k + 1 ) = z i ( k ) - ∂ f ∂ z i Δ
其中Δ表示修正系数;
Figure F2008102254007C0000024
为目标函数相对于xi、yi、zi的偏导数;初始点的n跳节点经过第k+1次修正后计算目标函数f(k+1)并判断是否满足式:|f(k)-f(k+1)|≤ε,若满足,则结束对该节点坐标的优化,否则继续进行优化;k≥0,其中ε为一个小的正实数值。
CN2008102254007A 2008-10-29 2008-10-29 基于分布式优化策略的无线传感器网络节点定位方法 Expired - Fee Related CN101730224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102254007A CN101730224B (zh) 2008-10-29 2008-10-29 基于分布式优化策略的无线传感器网络节点定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102254007A CN101730224B (zh) 2008-10-29 2008-10-29 基于分布式优化策略的无线传感器网络节点定位方法

Publications (2)

Publication Number Publication Date
CN101730224A true CN101730224A (zh) 2010-06-09
CN101730224B CN101730224B (zh) 2012-01-18

Family

ID=42450212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102254007A Expired - Fee Related CN101730224B (zh) 2008-10-29 2008-10-29 基于分布式优化策略的无线传感器网络节点定位方法

Country Status (1)

Country Link
CN (1) CN101730224B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594747A (zh) * 2012-03-12 2012-07-18 浙江工业大学 一种具有信噪比约束的无线传感器网络滚动时域信噪比估计方法
CN103929808A (zh) * 2014-05-05 2014-07-16 重庆大学 一种无线传感器网络中基于极大似然气体源定位方法
CN105120517A (zh) * 2015-07-29 2015-12-02 重庆邮电大学 基于多维尺度分析的室内wlan信号平面图构建与定位方法
WO2015184609A1 (zh) * 2014-06-05 2015-12-10 华为技术有限公司 资源优化的方法和装置
CN115766779A (zh) * 2022-11-03 2023-03-07 北京邮电大学 物联网中目标节点高精度定位方法、系统、设备及介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118280B (zh) * 2007-08-31 2011-06-01 西安电子科技大学 分布式无线传感器网络节点自身定位方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594747A (zh) * 2012-03-12 2012-07-18 浙江工业大学 一种具有信噪比约束的无线传感器网络滚动时域信噪比估计方法
CN102594747B (zh) * 2012-03-12 2014-10-29 浙江工业大学 一种具有信噪比约束的无线传感器网络滚动时域信噪比估计方法
CN103929808A (zh) * 2014-05-05 2014-07-16 重庆大学 一种无线传感器网络中基于极大似然气体源定位方法
WO2015184609A1 (zh) * 2014-06-05 2015-12-10 华为技术有限公司 资源优化的方法和装置
CN105120517A (zh) * 2015-07-29 2015-12-02 重庆邮电大学 基于多维尺度分析的室内wlan信号平面图构建与定位方法
CN105120517B (zh) * 2015-07-29 2018-05-11 重庆邮电大学 基于多维尺度mds分析的室内wlan信号平面图构建与定位方法
CN115766779A (zh) * 2022-11-03 2023-03-07 北京邮电大学 物联网中目标节点高精度定位方法、系统、设备及介质

Also Published As

Publication number Publication date
CN101730224B (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
CN103402258B (zh) 一种基于Wi‑Fi的室内定位系统和方法
CN101726725B (zh) 基于全局式优化策略的无线传感器网络节点定位方法
CN104655137B (zh) 行人航迹推测辅助的Wi‑Fi信号指纹定位算法
CN102460202B (zh) 基于包括多个天线的无线通信装置的定位系统和方法
KR101457279B1 (ko) 동시 무선 송신기 매핑 및 이동국 위치결정
CN102802260B (zh) 基于矩阵相关的wlan室内定位方法
CN102291817B (zh) 移动通信网络中的基于位置测量样本的群定位方法
CN109690655A (zh) 与便携式设备的位置的确定相关的方法和装置
US20130100850A1 (en) Time of arrival based positioning for wireless communication systems
CN102231912A (zh) 一种基于rssi测距的室内无线传感器网络定位方法
CN106162555A (zh) 室内定位方法及系统
TWI557418B (zh) 用於gnss使能設備之通用混合導航資訊計算方法及系統
CN106597363A (zh) 一种室内wlan环境下的行人定位方法
US20130072220A1 (en) Hybrid tdoa and toa based positioning system
CN103096462A (zh) 一种无线传感器网络非测距节点定位方法
CN101730224B (zh) 基于分布式优化策略的无线传感器网络节点定位方法
CN101835259A (zh) 一种基于距离辅助的无线传感网络节点定位方法
US20130072218A1 (en) Time difference of arrival based positioning system
CN100407852C (zh) 一种移动通讯中移动终端的定位方法
US20160182164A1 (en) Signal Strength Distribution Establishing Method and Wireless Positioning System
JP2010071686A (ja) 測位装置、コンピュータプログラム及び測位方法
CN104507097A (zh) 一种基于WiFi位置指纹的半监督训练方法
CN102395198A (zh) 无线传感网络基于信号强度的节点定位方法及装置
CN106961659A (zh) 一种类指纹的蓝牙定位方法
CN110132281A (zh) 一种基于询问应答模式的水下高速目标高精度自主声学导航方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120118

Termination date: 20211029