CN101701970A - 一种加速度检测方法及装置 - Google Patents

一种加速度检测方法及装置 Download PDF

Info

Publication number
CN101701970A
CN101701970A CN200910237868A CN200910237868A CN101701970A CN 101701970 A CN101701970 A CN 101701970A CN 200910237868 A CN200910237868 A CN 200910237868A CN 200910237868 A CN200910237868 A CN 200910237868A CN 101701970 A CN101701970 A CN 101701970A
Authority
CN
China
Prior art keywords
signal
digital
error
converted
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910237868A
Other languages
English (en)
Inventor
李立京
周海涛
李琳
张晞
张春熹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN200910237868A priority Critical patent/CN101701970A/zh
Publication of CN101701970A publication Critical patent/CN101701970A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种加速度检测方法及装置,属于微弱信号检测技术领域,以解决在现有的微弱信号检测技术中存在难以检测出微弱的加速度变化量的问题。本发明包括将加速度计输出的差分电容变化量转换为电压信号,并将所述电压信号转换为离散的数字量输出到数字信号处理器;通过数字信号处理器对所述离散的数字量进行解调,根据预定的控制算法计算得到数字反馈误差量并输出。本发明通过对加速度计输出量进行模数变换并计算数字反馈误差量,以获得加速度的值,不但能够检测微弱的加速度变化量,还具有方法简单、检测精度高、动态范围大、分辨率高的特点,可有效滤除噪声和各采样点误差的累积,从而保证了整个导航系统的高精度。

Description

一种加速度检测方法及装置
技术领域
本发明涉及一种加速度检测方法及装置,属于微弱信号检测技术领域。
背景技术
在卫星导航技术领域中,飞行器飞行的环境比较复杂,常常有微小加速度输入到加速度计中,而这种具有微弱变化量的加速度就是一种微弱信号,对于这种微弱信号普遍采用积分的方法进行检测。由于各种信号中几乎都存在噪声的影响,而微弱信号又很容易淹没在噪声干扰中,为了把淹没在噪声中的信号提取出来,传统方法普遍采用抑制噪声并从噪声中检测微弱信号的方法,但由于微弱信号与噪声相比其信号强度已经非常微弱了,导致现有的微弱信号检测方法受到噪声的干扰较大,难以准确从噪声中检测出微弱信号。
因此,在现有的微弱信号检测技术中,存在难以检测出微弱的加速度变化量的问题。
发明内容
本发明提供了一种加速度检测方法及装置,以解决在现有的微弱信号检测技术中,存在难以检测出微弱的加速度变化量的问题。
一种加速度检测方法,包括:
将加速度计输出的差分电容变化量转换为电压信号,并将所述电压信号转换为离散的数字量输出到数字信号处理器;
通过数字信号处理器对所述离散的数字量进行解调,根据预定的控制算法计算得到数字反馈误差量并输出。
一种加速度检测装置,包括:
差分电容检测电路,用于将加速度计输出的差分电容变化量转换为电压信号;
A/D转换电路,用于将所述电压信号转换为离散的数字量输出到数字信号处理器;
数字信号处理器,用于对所述离散的数字量进行解调,根据预定的控制算法计算得到数字反馈误差量。
本发明通过对加速度计输出量进行模数变换并计算数字反馈误差量,以获得加速度的值,不但能够检测微弱的加速度变化量,还具有方法简单、检测精度高、动态范围大、分辨率高的特点,可有效滤除噪声和各采样点误差的累积,从而保证了整个导航系统的高精度。
附图说明
图1是本发明的具体实施方式提供的一种加速度检测方法的流程示意图;
图2是本发明的具体实施方式提供的一种加速度检测装置的结构示意图;
图3是本发明的具体实施方式提供的差分电容检测电路的结构示意图;
图4是本发明的具体实施方式提供的硬件电路的结构示意图;
图5是本发明的具体实施方式提供的数字信号处理器的信号处理流程示意图;
图6是本发明的具体实施方式提供的相关检测原理示意图;
图7是本发明的具体实施方式提供的采用相关检测进行数字信号处理的原理示意图;
图8是本发明的具体实施方式提供的加速度计的整体结构示意图。
具体实施方式
本发明的具体实施方式提供了一种加速度检测方法,首先将检测到的加速度计输出的差分电容变化量转换为电压信号,并将电压信号转换为离散的数字量输出到数字信号处理器;然后通过数字信号处理器对离散的数字量进行解调,根据预定的控制算法计算得到数字反馈误差量并输出。
进一步地,相应的检测加速度计输出的差分电容变化信号包括将差分电容变化信号进行高频载波调制,再经过电荷放大后输出。以及,相应的数字反馈误差量通过相关检测方法得到,并且与电压信号成正比,并通过待测信号与本身的相关性较强且与噪声无相关性的性质,从待测信号与噪声的混合信号中检测待测信号。
另外,该方法还包括将数字信号处理器反馈的数字反馈误差量转换为模拟反馈误差电压信号,并将模拟反馈误差电压信号转换为模拟反馈电流输出到加速度计的电磁力矩上。
本具体实施方式采用相关检测技术的加速度检测方法是建立在以下的电路结构上的:单载波调制差分电容检测电路、A/D转换电路、数字信号处理器、D/A转换电路及电压/电流转换电路,其中单载波调制差分电容检测电路又包括载波信号发生器DDS、电荷放大电路几个模块。为了更清楚的说明本发明的具体实施方式提供的一种加速度检测方法,现结合说明书附图对该方法进行详细说明,如图1所示,该方法具体可以包括:
步骤11,将加速度计输出的差分电容变化量转换为电压信号,并将电压信号转换为离散的数字量输出到数字信号处理器。
当检测到输入的加速度为a时,加速度计表头中的差分电容传感器检测这一变化并产生差分电容变化量ΔC;单载波调制差分电容检测电路将相应的差分电容变化量ΔC进行高频载波调制,再经过电荷放大后转换为电压信号V输出,再将相应的电压信号V经A/D转换变成为离散的数字量输出到数字信号处理器。
此时可以将数字信号处理器反馈的数字反馈误差量转换为模拟反馈误差电压信号,并将模拟反馈误差电压信号转换为模拟反馈电流输出到加速度计的电磁力矩上,产生电磁力矩,使加速度计恢复平衡位置,完成一个周期的加速度检测工作。
步骤12,通过数字信号处理器对离散的数字量进行解调,根据预定的控制算法计算得到数字反馈误差量并输出。
相应的数字反馈误差量可以通过相关检测方法得到,并且与电压信号成正比,通过待测信号与本身的相关性较强且与噪声无相关性的性质,从待测信号与噪声的混合信号中检测待测信号,具体为:首先找到待测信号与噪声之间的差异,相关检测所利用的是信号与噪声相关性的不同,即相关检测技术应用信号的相关性和噪声随机性的特点,通过相关运算,去除噪声,检测出微弱信号。由于信号和噪声是相互独立的过程,根据相关函数的定义,信号只与信号本身相关与噪声无关,它随时间变化缓慢,在不同时刻取值关系密切,相关性强,而噪声随时间变化剧烈,在不同时刻的取值关系松散,相关性弱,就可以利用互相关函数,从噪声和其它无关信号中找出信号两部分之间或两个信号之间的函数关系并根据相关性进行检测和提取,从而达到抑制噪声,提取信号的目的。
上述方法中包含的各步骤的实现功能的具体实施方式在之后的装置实施方式中将会具体描述,在此不再重复描述。
本发明还提供了一种加速度检测装置,如图2所示,具体可以包括差分电容检测电路21、A/D转换电路22、数字信号处理器23、D/A转换电路24和电压/电流转换电路25,差分电容检测电路21用于将加速度计输出的差分电容变化量转换为电压信号,A/D转换电路22用于将电压信号转换为离散的数字量输出到数字信号处理器,数字信号处理器23用于对离散的数字量进行解调,并根据预定的控制算法计算得到数字反馈误差量,D/A转换电路24用于将数字信号处理器反馈的数字反馈误差量转换为模拟反馈误差电压信号,电压/电流转换电路25用于将模拟反馈误差电压信号转换为模拟反馈电流输出到加速度计的电磁力矩上。
进一步地,如图3所示,相应的差分电容检测电路21包括载波信号发生器和电荷放大电路,载波信号发生器用于对差分电容变化信号进行高频载波调制,电荷放大电路用于对高频载波调制差分电容变化信号进行放大并输出,其中的载波信号发生器为图3中的DDS芯片,电荷放大电路为图3中的双路运算放大器和仪表放大器。以及,在数字信号处理器中还包括数字反馈误差量计算的单元,用于通过待测信号与本身的相关性较强且与噪声无相关性的性质,从待测信号与噪声的混合信号中检测待测信号。
本具体实施方式的硬件电路结构图可以参考图4,其中的DDS作为差分电容检测电路21的载波信号发生器,产生的信号经过双运算放大器和仪表放大器后再经过A/D变换后进入数字信号处理器23,数字信号处理器23将输入的信号经过处理获得数字反模误差量后将数字反模误差量输出到导航计算机,并同时将数字反模误差量经过D/A变换和电压/电流变换后输出反馈电流。
载波信号发生器对差分电容变化信号进行高频载波调制载波类型选择正弦波,具有单一的频率成分,基本无失真。载波信号发生器可选用直接数字频率合成器(DDS,Direct Digital Synthesis)产生正弦波,这是一种根据已有的固定频率高精度时钟信号,采用数字处理模块来产生频率和相位可调的输出信号的技术,具有波形好,频率稳定度高等优点。
电荷放大电路由一个双运放芯片和一个仪表放大器组成,输出Uo1用公式表示输出为:
U o 1 = V m sin ω 0 t × 2 ΔC C f × G - - - ( 1 )
其中Vmsinω0t为正弦载波信号,Vm为载波信号的幅值,ω0为载波角频率,ΔC为差分电容的变化量,Cf为放大器偏置电容,G为仪表放大器的增益。
A/D转换电路22可采用模数转换芯片AD7810,将模拟电压量转化为数字量传送给数字信号处理器23。
数字信号处理器23可采用互相关检测技术对离散的数字信号进行检测,对信号的处理流程如图5所示,首先将经过A/D转换的数据进行相关运算得到反馈数字量,然后分别输出到导航计算机和加速度计。数字信号处理器23可以由相关器、信号通道和参考通道组成,相关器完成被测信号与参考信号互相关函数的运算,包括乘法器和积分器两部分;乘法器的作用是将检测信号与参考信号相乘,积分器的作用一是对误差信号进行放大,二是数字滤波。其中相关器的原理图如图6所示,PSD为乘法器,LPF为低通滤波器并由积分器实现,信号通道位于相关器之前,用于传输待测信号,参考通道在触发信号的同步下输出等幅的、相位可调的、与输入信号同频的正弦波。
相关器输出正比于输入信号的幅值与输入参考信号的相位差的余弦值的积。由于随机噪声的平均值为零,信号与噪声的互相关函数为零,因此互相关接收只有信号与数字参考信号的相关输出,去掉了噪声项,因此它的输出信噪比高,图7为采用相关检测技术进行数字信号处理的原理示意图,加速度计输出的信号经过差分电容检测电路21和A/D转换器22后由数字信号处理器23经过相关检测后输出给导航计算机,并且数字信号处理器23还将经过相关检测后的信号经过D/A转换器24和电压/电流转换电路反馈给加速度计,公式示意如下所示。
设x(t)为待检测正弦信号,r(t)为与之同频的参考正弦信号,
x(t)=Vscos(ω0t+θ)    (2)
r(t)=Vrcos(ω0t)       (3)
式(2)中Vs为输入待测信号的幅值,即为式(1)中的
Figure G2009102378682D0000051
式(3)中Vr为参考信号的幅值,θ为待测信号与参考信号之间的相位差。输出信号Up(t)为:
Up(t)=x(t)·r(t)
=Vscos(ω0t+θ)·Vrcos(ω0t)
=0.5VsVrcosθ+0.5VsVrcos(2ω0t+θ)  (4)
式(4)中第一项为差频分量,第二项为和频分量,输出经过积分器低频滤波,和频项被滤掉,低频带以外的噪声也被滤掉,输出变为:
Uo(t)=0.5VsVrcosθ                  (5)
则实际相关检测输出为:
U o = V m × ΔC C f × G × V r × cos θ - - - ( 6 )
输出正比于待测信号和参考信号的相位差的余弦、载波信号的幅值、差分电容的变化量、仪表放大器的增益及参考信号的幅值。由此可以看出,相关检测的方法滤除掉了高频带的噪声,而只保留与待测信号幅值成正比的输出信号,消除了信号误差干扰,提高了检测精度。
D/A转换电路24可采用数模转换芯片DAC7616,将数字量转化为反馈电压输出,经电压/电流转换电路25变为电流反馈信号。电压/电流转换电路25产生与输入电压信号成正比的驱动电流信号,输送到加速度计的电磁力矩器上形成恢复力矩,使石英摆片回到平衡位置。加速度计的整体结构可以参考图8,主要包括力矩器、石英摆片、差分电容和模拟闭环伺服电路。
通过本具体实施方式的描述并经过对会对检测性能造成影响的载波信号稳定性、调制信号与参考信号频率一致等因素的关注,使此检测装置的检测精度、分辨率、稳定性指标基本达到了预期的要求,具有动态范围大,抗干扰能力强,系统精度高等优点。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种加速度检测方法,其特征在于,包括:
将加速度计输出的差分电容变化量转换为电压信号,并将所述电压信号转换为离散的数字量输出到数字信号处理器;
通过数字信号处理器对所述离散的数字量进行解调,根据预定的控制算法计算得到数字反馈误差量并输出。
2.根据权利要求1所述的方法,其特征在于,所述将差分电容变化量转换为电压信号包括:
将所述差分电容变化信号进行高频载波调制,再经过电荷放大后输出。
3.根据权利要求1所述的方法,其特征在于,所述数字反馈误差量通过相关检测方法得到,并且与所述电压信号成正比。
4.根据权利要求3所述的方法,其特征在于,所述相关检测方法是通过待测信号与本身的相关性较强且与噪声无相关性的性质,从待测信号与噪声的混合信号中检测待测信号。
5.根据权利要求1至4任意一项所述的方法,其特征在于,该方法还包括:
将数字信号处理器反馈的数字反馈误差量转换为模拟反馈误差电压信号,并将所述模拟反馈误差电压信号转换为模拟反馈电流输出到加速度计的电磁力矩上。
6.一种加速度检测装置,其特征在于,包括:
差分电容检测电路,用于将加速度计输出的差分电容变化量转换为电压信号;
A/D转换电路,用于将所述电压信号转换为离散的数字量输出到数字信号处理器;
数字信号处理器,用于对所述离散的数字量进行解调,根据预定的控制算法计算得到数字反馈误差量。
7.根据权利要求6所述的装置,其特征在于,所述差分电容检测电路包括:
载波信号发生器,用于对所述差分电容变化信号进行高频载波调制;
电荷放大电路,用于对高频载波调制差分电容变化信号进行放大并输出。
8.根据权利要求7所述的装置,其特征在于,在数字信号处理器中还包括数字反馈误差量计算的单元,用于通过待测信号与本身的相关性较强且与噪声无相关性的性质,从待测信号与噪声的混合信号中检测待测信号。
9.根据权利要求6至8任意一项所述的装置,其特征在于,该装置还包括:
D/A转换电路,用于将数字信号处理器反馈的数字反馈误差量转换为模拟反馈误差电压信号;
电压/电流转换电路,用于将所述模拟反馈误差电压信号转换为模拟反馈电流输出到加速度计的电磁力矩上。
CN200910237868A 2009-11-12 2009-11-12 一种加速度检测方法及装置 Pending CN101701970A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910237868A CN101701970A (zh) 2009-11-12 2009-11-12 一种加速度检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910237868A CN101701970A (zh) 2009-11-12 2009-11-12 一种加速度检测方法及装置

Publications (1)

Publication Number Publication Date
CN101701970A true CN101701970A (zh) 2010-05-05

Family

ID=42156890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910237868A Pending CN101701970A (zh) 2009-11-12 2009-11-12 一种加速度检测方法及装置

Country Status (1)

Country Link
CN (1) CN101701970A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546090A (zh) * 2013-10-23 2014-01-29 苏州贝克微电子有限公司 一种电机控制电路
CN106154053A (zh) * 2016-07-16 2016-11-23 司承电子科技(上海)有限公司 一种基于载波调制和相敏解调实现的微弱电容的检测芯片
CN107144767A (zh) * 2017-07-20 2017-09-08 云南电网有限责任公司电力科学研究院 一种故障指示装置及故障信号检测方法
CN107478859A (zh) * 2017-06-27 2017-12-15 浙江大学 一种脉宽双加矩型加速度传感器电路
CN109186638A (zh) * 2018-10-17 2019-01-11 西安微电子技术研究所 一种电流标度因数可控的加速度计伺服电路及其制造工艺
CN109696114A (zh) * 2019-01-08 2019-04-30 中山大学 调制解调波生成方法、生成器及在电容位移检测中的应用
CN110501520A (zh) * 2019-08-29 2019-11-26 北京云庐科技有限公司 一种三轴加速度传感器的轴加速度获取方法及装置
CN114720716A (zh) * 2022-04-03 2022-07-08 中国人民解放军国防科技大学 反馈跟踪和电荷平衡型电流数字转换电路
CN115865096A (zh) * 2022-11-01 2023-03-28 北京自动化控制设备研究所 一种分立式Sigma-delta电路

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546090A (zh) * 2013-10-23 2014-01-29 苏州贝克微电子有限公司 一种电机控制电路
CN106154053A (zh) * 2016-07-16 2016-11-23 司承电子科技(上海)有限公司 一种基于载波调制和相敏解调实现的微弱电容的检测芯片
CN107478859A (zh) * 2017-06-27 2017-12-15 浙江大学 一种脉宽双加矩型加速度传感器电路
CN107478859B (zh) * 2017-06-27 2019-08-20 浙江大学 一种脉宽双加矩型加速度传感器电路
CN107144767A (zh) * 2017-07-20 2017-09-08 云南电网有限责任公司电力科学研究院 一种故障指示装置及故障信号检测方法
CN107144767B (zh) * 2017-07-20 2023-06-02 云南电网有限责任公司电力科学研究院 一种故障指示装置及故障信号检测方法
CN109186638A (zh) * 2018-10-17 2019-01-11 西安微电子技术研究所 一种电流标度因数可控的加速度计伺服电路及其制造工艺
CN109696114A (zh) * 2019-01-08 2019-04-30 中山大学 调制解调波生成方法、生成器及在电容位移检测中的应用
CN110501520A (zh) * 2019-08-29 2019-11-26 北京云庐科技有限公司 一种三轴加速度传感器的轴加速度获取方法及装置
CN110501520B (zh) * 2019-08-29 2021-06-29 北京云庐科技有限公司 一种三轴加速度传感器的轴加速度获取方法及装置
CN114720716A (zh) * 2022-04-03 2022-07-08 中国人民解放军国防科技大学 反馈跟踪和电荷平衡型电流数字转换电路
CN115865096A (zh) * 2022-11-01 2023-03-28 北京自动化控制设备研究所 一种分立式Sigma-delta电路

Similar Documents

Publication Publication Date Title
CN101701970A (zh) 一种加速度检测方法及装置
US7054778B2 (en) Method and device for processing analogue output signals from capacitive sensors
CN102353393B (zh) 基于π/2相位调制的干涉型光传感器的正交解调装置
CN102109345B (zh) 微机械陀螺数字信号处理方法与装置
US9297826B2 (en) System and method for monitoring an accelerometer
CN101709971B (zh) 一种抑制光纤陀螺振动误差的信号解调方法
CN101285692A (zh) 一种微弱信号检测装置
CN101688884A (zh) 角速度测量方法和振动微机械角速度传感器
US8922779B2 (en) Digital signal processing method and device of fiber-optic gyroscope, and fiber-optic gyroscope
CN105044798A (zh) 旋转加速度计重力梯度仪加速度计标度因子反馈调整方法
CN111624671B (zh) 旋转加速度计重力梯度仪重力梯度解调相位角确定方法及装置
CN102072729A (zh) 用于测量旋转飞行器姿态的测量装置及其测量方法
CN104320092A (zh) 一种微弱信号测量的宽频带低噪声差分放大电路
CN109212620B (zh) 动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN103148847B (zh) 一种基于作差消除微机械陀螺同相误差系统及方法
CN104678126A (zh) 基于寄生电阻的电容式微机械加速度计相移温度补偿方法
CN103983257B (zh) 一种能消除微机械陀螺仪正交误差的信号处理方法
CN103968819A (zh) 测量陀螺飞轮高速转子两维摆角的非接触式测量传感器
CN103162679A (zh) 一种基于乘法消除微机械陀螺同相误差系统及方法
RU2411522C1 (ru) Компенсационный акселерометр
CN109212629B (zh) 旋转加速度计重力梯度仪角运动误差补偿装置及方法
US20020135414A1 (en) Acceleration signal amplifier with signal centering control technology
CN203163737U (zh) 一种基于乘法消除微机械陀螺同相误差系统
CN106123971B (zh) 基于数字锁相技术的差分涡轮流量传感器及其检测方法
CN105955247B (zh) 一种基于解耦控制的力平衡闭环方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100505