CN101671679B - 一种耐辐射球菌抗逆相关基因及其应用 - Google Patents

一种耐辐射球菌抗逆相关基因及其应用 Download PDF

Info

Publication number
CN101671679B
CN101671679B CN 200910098256 CN200910098256A CN101671679B CN 101671679 B CN101671679 B CN 101671679B CN 200910098256 CN200910098256 CN 200910098256 CN 200910098256 A CN200910098256 A CN 200910098256A CN 101671679 B CN101671679 B CN 101671679B
Authority
CN
China
Prior art keywords
ppri
radiation
seq
gene
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910098256
Other languages
English (en)
Other versions
CN101671679A (zh
Inventor
华跃进
陆辉明
高冠军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 200910098256 priority Critical patent/CN101671679B/zh
Publication of CN101671679A publication Critical patent/CN101671679A/zh
Application granted granted Critical
Publication of CN101671679B publication Critical patent/CN101671679B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种耐辐射球菌抗逆相关基因,名称为Inducer of pleiotropicproteins promoting DNA repair,来源于耐辐射球菌菌株(Deinococcusradiodurans R1,ATCC No.13939,购自美国菌种保藏中心),具有SEQ ID №:11的DNA序列和编码SEQ ID №:12蛋白质序列的多核苷酸。本发明研究发现,可以抵抗比如重金属、干燥以及盐碱等造成细胞内活性氧的环境胁迫因子;可以显著提高这些转基因细胞的抗逆能力,可在制备提高转基因植物耐氧化能力的药物及抗辐射药物中应用。

Description

一种耐辐射球菌抗逆相关基因及其应用
技术领域
本发明属生物工程领域,涉及一种抗逆相关基因pprI与其编码蛋白及应用,特别涉及一种耐辐射球菌抗逆相关基因与其编码蛋白及其应用。
背景技术
耐辐射球菌(Deinococcus radiodurans)是最具辐射抗性的生物体之一,在5kGy的电离辐射下,对数生长期的耐辐射球菌细胞不受任何影响,它可以长期正常生长于60Gy/h高辐射背景的环境之中。稳定生长期的耐辐射球菌可以耐受15kGy的辐射剂量,是大肠杆菌的100多倍,是人类的1000倍。该细菌除了抗电离辐射外,对亚硝基胍、羟胺、甲基硝基亚硝基胍、氧基硝基喹啉等化学毒剂和氧化剂H2O2也具有相当抗性。因此,自从耐辐射球菌被发现以来,倍受微生物学家、放射生物学家和肿瘤研究人员的重视,已经开展研究使其成为核爆地区等高辐射污染地区的生物修复候选微生物之一,也有研究其某些特定基因用于品种的转基因改良,比如作物的耐干旱品质改良、环境工程菌改造、抗辐射药物的开发等。
该细菌含有大量的功能未知的基因,这些基因可能对该细菌的超强抗性有重要贡献。本发明涉及的耐辐射球菌基因对电离辐射、氧化、干旱等逆境胁迫的超强抗性至关重要。
发明内容
本发明的目的是提供一种耐辐射球菌抗逆相关基因与其编码蛋白,本发明耐辐射球菌抗逆相关基因,名称为pprI(Inducer of pleiotropic proteins promotingDNA repair),来源于耐辐射球菌菌株(Deinococcus radiodurans R1,ATCCNo.13939,购自美国菌种保藏中心),具有SEQ ID №:11的DNA序列和编码SEQ ID №:12蛋白质序列的多核苷酸。
与SEQ ID №:11限定的DNA序列具有90%以上同源性,且编码相同功能蛋白质的DNA序列。
SEQ ID №:11的DNA序列由989个碱基对组成,该基因的读码框从5端第1到989个碱基,不含内含子。
耐辐射球菌抗逆相关基因pprI编码蛋白,是具有SEQ ID №:12氨基酸残基序列的蛋白质,或者是将SEQ ID №:12的氨基酸残基序列经过一个或几个氨基酸残基的取代、缺失或添加且具有与SEQ ID №:12的氨基酸残基序列相同活性的由SEQ ID №:12衍生的蛋白质。
SEQ ID №:12的氨基酸残基序列是由328个氨基酸残基组成的蛋白质。
含有本发明基因表达载体、细胞系和转基因生物体均属于本发明的保护范围。
本发明的另一个目的是提供耐辐射球菌抗逆相关基因(PprI)在制备提高转基因植物耐氧化能力的药物中的应用。本发明研究发现,可以抵抗比如重金属、干燥以及盐碱等造成细胞内活性氧的环境胁迫因子。
本发明的再一个目的是提供耐辐射球菌抗逆相关基因(PprI)在制备抗辐射药物中的应用。本发明研究表明可以将活性的PprI蛋白注射于受辐照的病人,可减少辐照造成的损伤。
本发明提供了一个可以提高生物细胞抗电离辐射和耐氧化胁迫的逆境耐性基因pprI以及其编码的蛋白质PprI。将该基因转入到工程细菌、经济植物以及人类细胞,可以显著提高这些转基因细胞的抗逆能力。
附图说明
图1为耐辐射球菌野生型菌株R1和pprI突变株在伽玛射线(A)、紫外线(B)和丝裂霉素(C)等逆境因子胁迫下的存活率。
图2为Western blotting检测PprI在大肠杆菌重组子TGlpprI+中表达。
图3为大肠杆菌重组子TGlpprI+和对照菌株TGlpprI-在伽玛射线(A)和过氧化氢(B)胁迫下的存活曲线。
图4为Western blotting检测PprI在酿酒酵母重组子RDKY2674中的表达。
图5为酿酒酵母重组子RDKY2674和对照株RDKY2673在伽玛射线(A)和紫外线(B)胁迫下的存活曲线。
图6为Western blotting检测PprI在人HeLa细胞重组子HeLa003中的表达。
图7为人HeLa细胞重组子HeLa003和对照细胞系HeLa001在伽玛射线胁迫下的存活曲线。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1:pprI的突变影响耐辐射球菌的多种抗逆能力
以耐辐射球菌野生型菌株(Deinococcus radiodurans R1,ATCC No.13939,购自美国菌种保藏中心)基因组DNA为模板,以引物对(5’CAGGGCAGCGCGGGCGACGTGGACGG3’和5’ATGATGGATCCGGAGGCTTCAGCTTTAGCTTTTGGCC 3’)和引物对(5’CATCTAAGCTTTGCCCGGACGCGACACCCACAGCC 3’和5’GGGCACGTAGCTTTCCTCGCGCACTTCC 3’)分别克隆pprI基因上下游各500个碱基对的DNA片段后,用HindIII和BamHI酶切,并与以同样酶切质粒pRADK得到可表达的卡那霉素抗性基因连接,将该重组DNA片段用CaCl2方法导入到耐辐射球菌野生型菌株R1中后用卡那霉素筛选得到重组子,经PCR鉴定后得到pprI突变株YR1。之后,比较了耐辐射球菌野生株R1和pprI突变株YR1在各种逆境因子胁迫下的细胞存活能力。所有用于DNA损伤胁迫处理的耐辐射球菌都培养到指数生长后期(OD600约1.0),并用10mM磷酸缓冲液(pH 7.4)稀释。在γ射线辐射处理实验中,少量样品经10mmol/L的磷酸缓冲液经合适比例稀释后,用不同的辐照剂量率进行辐照一小时后分别涂板,30℃培养三天后计算菌落数,以三次的平均值作为计数值。不同剂量率通过调整样品和辐射源之间的距离来实现。辐照地点:浙江大学辐照中心。在紫外照射处理实验中,同样先将细胞稀释到合适的浓度,均匀涂布于TGY固体平板培养基后打开培养皿盖,用波长254nm的UV光照射。UV辐照总剂量通过调节辐照时间长短来实现。剂量率由UV强度测量仪测定。30℃恒温培养三天后统计菌落数。实验重复三次。在丝裂霉素C处理实验中,然后加丝裂霉素到终浓度20μg/ml,按时间取样洗3次后将细胞稀释到合适的浓度涂到TGY平板培养基,30℃恒温培养三天后统计菌落数。实验重复三次。
结果发现,pprI的突变导致耐辐射球菌对伽玛射线、紫外线、丝裂霉素和过氧化氢等胁迫因子都变得极其敏感(图1)。
实施例2:转基因PprI的大肠杆菌对电离辐射和氧化胁迫的抗性显著增强
以耐辐射球菌野生型菌株R1的基因组DNA为模板,用引物对(5’TAACTAGTGCCCAGTGCCAACGTC3’和5’TACATATGGTTCACTGTGCA GCGTC3’),PCR扩增纯化后的PCR产物连接到亚克隆载体pGEM-T Easy(Promega),重组质粒用Spe I和Nde I酶切消化后,片段连入用相同酶酶切消化后的pRADZ3质粒,命名为pRADZ3pprI,将空质粒pRADZ3转入E.coli作对照。
将pRADZ3pprI和对照空质粒分别导入到大肠杆菌TG1菌株内,用氨苄青霉素筛选得到重组子,之后以PprI抗血清免疫印迹的方法在重组大肠杆菌菌株内检测到pprI编码蛋白PprI(图2)。比较含有pprI基因的重组大肠杆菌和对照大肠杆菌TG1菌株在电离辐射和氧化胁迫下的存活能力。细菌生长到指数生长期,离心,悬浮在10mlPBS溶液中,取1ml在不同的辐射剂量下辐照1小时(50Gy-300Gy),同样的样品放在室温1小时作为对照。涂LB平板,37℃培养直至统计菌落数,重复三次以统计最终的生存率。在检测过氧化氢抗性时,将转化菌和对照菌用LB培养基培养至指数生长期,加入H2O2至终浓度20mmol/l,一小时内每隔20min取一次菌液,作平板计数,计算存活率。
结果发现PprI蛋白的表达显著提高大肠杆菌的电离辐射抗性和抗氧化胁迫能力(图3)。而现今,随着核能开发利用以及五十年多的核试验导致地球上辐射污染地区增加,而在开发铀矿等放射性矿产同时,也伴随着重金属污染。如何探测和治理开发后的放射性矿区以及核试验场的多元素污染是一个难题。现有部分细菌被进行遗传改造成可以清除环境污染物的工程菌,包括清除分解有机污染物和富集或还原无机重金属污染。这些工程菌可以在无辐射背景下进行分解有机污染物或还原有生物毒性的无机重金属,但是通常这些工程菌的电离辐射抗性较差,一般难以在有所有辐射背景下工作。因此,PprI这种特性可以改良一些用于高辐射背景下工程菌的抗电离辐射能力和抗氧化能力。
实施例3:转基因PprI的酿酒酵母对电离辐射和的抗性显著增强
以耐辐射球菌野生株R1的全基因组DNA做PCR模板,以引物对(5’CAGGATCCAGCCACCTGGAAATGGGAATGCCCAGTGCCAACGTCAG3’和5’GCCGGATCCGTTCAGTCTGTGCAGCGTCCTG3’)进行PCR扩增克隆pprI基因,后将PCR产物用DNA纯化回收试剂盒(Qiagen)纯化回收后的DNA片段连接到pGEM-T Easy载体(Promega)再转化至DH5α感受态细胞。经限制性酶切和测序鉴定正确后,用HindIII酶切含pprI基因的pGEM-T载体并纯化回收,再将pprI基因片段连接到经同样酶切并且磷酸酶处理过的酿酒酵母表达载体pDB20上,经酶切验证,得到正向连接到载体上的pprI毕氏酵母表达载体pDB20::pprI。将pDB20::pprI和pDB20空载体以LiAc/PEG法导入酿酒酵母RDKY2672菌株,并用Minimal SD-URA/Glucose(参考制造商Clontech说明书)筛选。如图4所示用PprI抗血清免疫印迹检测到PprI在酵母细胞系中稳定表达。用以下方法检测酵母电离辐射抗性:将酵母PprI表达株和对照菌株在30℃培养至OD600约1.5,然后到浙江大学辐照中心做电离辐照处理。不同剂量率按调整样品和放射源之间的距离得以实现。辐照室温下下进行1小时,之后将细胞稀释到合适浓度涂至YPD平板培养基,放置于30℃至克隆出现再计数。实验重复三次。将酵母在30℃培养至OD600约1.5,之后将细胞稀释到合适浓度涂至YPD平板培养基,打开培养皿盖,做254nm紫外线辐照。不同剂量通过调整辐照时间来实现。辐照后,置于30℃至克隆出现再计数。实验重复三次。结果发现,含有pprI基因的重组酿酒酵母细胞比对照细胞系在伽玛辐射和紫外辐射(图5)胁迫下的存活能力有显著提高。
实施例4:表达PprI的人类HeLa细胞对电离辐射的抗性显著增强
以耐辐射球菌野生株R1的全基因组DNA做PCR模板,以引物对(5’CAGAATTCAGCCACCTGGAAATGGGAATGCCCAGTGCCAACGTCAG3’和(5’TCTGGATCCTCACTGTGCAGCGTCCTGCGGCTC 3’)进行PCR扩增克隆pprI基因,后将PCR产物用DNA纯化回收试剂盒(Qiagen)纯化回收后的DNA片段连接到pGEM-T Easy(Promega)载体再转化至DH5α感受态细胞。经限制性酶切和测序鉴定正确后,用EcoRI和BamHI酶切含pprI基因的pGEM-T easy载体并纯化回收,再将pprI基因片段连接到经同样酶切表达载体pIRESneo2(Clontech)上,经酶切验证,得到正确的pprI哺乳动物表达载体pIRESneo2::pprI。将pprI哺乳动物表达载体pIRESneo2::pprI和对照空质粒用Lipofectamine 2000(Invitrogen)转染试剂盒根据制造商提供的方法导入到Hela细胞中,并用G418筛选得到稳定表达的细胞系。如图6所示用PprI抗血清免疫印迹检测到PprI在HeLa细胞系中稳定表达。电离辐照处理前天,取上述经Western blotting检测成阳性的PprI表达株和对照株,用全血清培养基经梯度稀释后各加入到盛有8ml全血清培养基的9ml培养皿内,轻轻晃动使细胞均匀分散,之后置于培养箱内培养10小时。次日,将除对照外的培养皿放到希望城辐照中心做辐照处理。剂量根据辐照时间调整来实现。辐照后的培养皿重新置于37℃,5%CO2培养直至克隆出现。等单克隆出现后,倒掉培养基,用PBS轻轻清洗细胞一次,后用10g/L结晶紫染色20min后用清水轻轻漂洗一次。克隆细胞经结晶紫染色后成蓝紫色,便于细胞计数。实验重复三次。结果发现,含有pprI基因的重组HeLa细胞系比对照细胞系在电离辐射胁迫下的存活能力有显著提高(图7)。
综合实例3和实例4,我们发现PprI可以提高真核细胞的电离辐射抗性,包括酵母细胞和人类细胞。由于现有研究发现,电离辐射对细胞造成的损伤主要是由于电离辐射造成的细胞内大量活性氧所致,因此PprI在异源真核细胞中的表达或者存在可能可以保护细胞免收电离辐射产生的活性氧的攻击。因此,将PprI用于转基因植物可以提高植物耐氧化能力,比如重金属、干燥以及盐碱等等容易造成细胞内活性氧的环境胁迫因子。另外,基于本发明中的数据可以将PprI用于抗辐射药物的开发。比如将活性的PprI蛋白注射于受辐照的病人,可能减少辐照造成的损伤。
本发明涉及的序列
<160>12
<210>1
<211>16
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
cagggcagcg cgggcgacgt ggacgg
<210>2
<211>37
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
ATGATGGATC CGGAGGCTTC AGCTTTAGCT TTTGGCC
<210>3
<211>35
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
catctaagct ttgcccggac gcgacaccca cagcc
<210>4
<211>18
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
GGGCACGTAG CTTTCCTCGC GCACTTCC
<210>5
<211>14
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
TAACTAGTGC CCAGTGCCAA CGTC
<210>6
<211>14
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
TACATATGGT TCACTGTGCA GCGTC
<210>7
<211>46
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
CAGGATCCAG CCACCTGGAA ATGGGAATGC CCAGTGCCAA CGTCAG
<210>8
<211>31
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
GCCGGATCCG TTCAGTCTGT GCAGCGTCCT G
<210>9
<211>46
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
CAGAATTCAG CCACCTGGAA ATGGGAATGC CCAGTGCCAA CGTCAG
<210>10
<211>31
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
GCCGGATCCG TTCAGTCTGT GCAGCGTCCT G
<210>11
<211>987
<212>DNA
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
gtgcccagtgccaacgtcagccccccttgcccctctggggtaaggggcggggggatgggg  60
ccaaaagctaaagctgaagcctccaagccccacccccaaatccctgttaagctcccattc  120
gtgaccgcccccgacgccctcgccgccgccaaagccaggatgcgcgacctggcggcggcc  180
tacgtggcggccctgcccggacgcgacacccacagcctgatggcgggggtgcccggcgta  240
gacctcaaattcatgccgctcggctggcgcgacggggcgttcgaccccgagcacaacgtc  300
atcctcatcaactcggcggcccgccccgaacgccagcgcttcaccctcgcccacgaaatc  360
gggcacgcgattttactcggcgacgacgacctgctctccgacatccacgacgcctacgag  420
ggcgagcggctcgaacaggtcatcgaaacgctgtgcaacgtggcggcggcggcgattttg  480
atgcccgaacccgtcatcgcggaaatgctggaacgcttcggccccaccgggcgcgccctc  540
gccgaactcgccaagcgggccgaagtcagcgcgtcgtcggcgctctacgccctgaccgag  600
cagaccccggtgcccgtcatctacgcggtctgtgcgccgggcaagcctccgcgtgagcag  660
gccgcaagcgacgaggacgctggcccaagcacagaaaaagtcctgacggtccgcgccagc  720
agctcgacgcggggcgtcaagtacaccctggcgagcggcacgccggtacccgccgaccac  780
ccggcggcgcttgccctcgccacgggcatggaagtgcgcgaggaaagctacgtgcccttt  840
cgctcgggccggaaaatgaaggcggaggtggacgcctacccgtcgcgcggcatcgtggcc  900
gtcagtttcgagttcgaccccgcccgcctgggccgcaaggacagcgagcaggccgaccgg  960
gacgagccgcaggacgctgcacagtga                                   987
<210>12
<211>328
<212>PRT
<213>耐辐射球菌(Deinococcus radiodurans)
<400>1
MPSANVSPPC PSGVRGGGMG PKAKAEASKP HPQIPVKLPF VTAPDALAAA KARMRDLAAA 60
YVAALPGRDT HSLMAGVPGV DLKFMPLGWR DGAFDPEHNV ILINSAARPE RQRFTLAHEI 120
GHAILLGDDD LLSDIHDAYE GERLEQVIET LCNVAAAAIL MPEPVIAEML ERFGPTGRAL 180
AELAKRAEVS ASSALYALTE QTPVPVIYAV CAPGKPPREQ AASDEDAGPS TEKVLTVRAS 240
SSTRGVKYTL ASGTPVPADH PAALALATGM EVREESYVPF RSGRKMKAEV DAYPSRGIVA 300
VSFEFDPARL GRKDSEQADR DEPQDAAQ                                    328

Claims (2)

1.一种耐辐射球菌抗逆相关基因在制备抗电离辐射药物中的应用,所述基因的DNA序列如SEQ ID No:11所示,该基因转录翻译得到的蛋白质的氨基酸序列如SEQ ID No:12所示,所述SEQ ID No:11的DNA序列由987个碱基对组成,该基因的读码框从5端第1到987个碱基,不含内含子,所述SEQ ID No:12的氨基酸残基序列是由328个氨基酸残基组成的蛋白质。
2.一种耐辐射球菌抗逆相关蛋白在制备抗电离辐射药物中的应用,所述蛋白的氨基酸序列如SEQ ID No:12所示。
CN 200910098256 2009-04-30 2009-04-30 一种耐辐射球菌抗逆相关基因及其应用 Expired - Fee Related CN101671679B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910098256 CN101671679B (zh) 2009-04-30 2009-04-30 一种耐辐射球菌抗逆相关基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910098256 CN101671679B (zh) 2009-04-30 2009-04-30 一种耐辐射球菌抗逆相关基因及其应用

Publications (2)

Publication Number Publication Date
CN101671679A CN101671679A (zh) 2010-03-17
CN101671679B true CN101671679B (zh) 2013-09-18

Family

ID=42019101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910098256 Expired - Fee Related CN101671679B (zh) 2009-04-30 2009-04-30 一种耐辐射球菌抗逆相关基因及其应用

Country Status (1)

Country Link
CN (1) CN101671679B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559827B (zh) * 2012-01-04 2013-08-14 浙江大学 一种培养耐辐射奇球菌生产天然类胡萝卜素的方法
CN102807990B (zh) * 2012-08-15 2014-05-14 中国农业科学院生物技术研究所 耐辐射异常球菌R1 trkA基因培育抗旱植物的应用
CN104278031B (zh) * 2013-07-10 2017-02-08 中国科学院过程工程研究所 一种受黄嘌呤调控的启动子a及其重组表达载体和应用
CN103937814A (zh) * 2014-04-16 2014-07-23 苏州大学 一种DNA分子及毕赤酵母重组质粒和高效表达耐辐射球菌PprI蛋白的毕赤酵母重组菌
CN104212783B (zh) * 2014-06-13 2016-03-02 浙江大学 蛋白酶
CN104212782B (zh) * 2014-06-13 2016-03-02 浙江大学 耐辐射奇球菌蛋白酶PprI的酶活性启动和提高方法
CN104830873B (zh) * 2015-05-11 2017-06-30 中国农业科学院生物技术研究所 一种位点突变的嗜热异常球菌IrrE蛋白及其应用
CN109055417B (zh) * 2018-08-28 2020-07-07 浙江新和成股份有限公司 一种重组微生物、其制备方法及其在生产辅酶q10中的应用
CN112662580B (zh) * 2019-11-27 2021-12-24 中国农业科学院生物技术研究所 一种嗜氧类芽孢杆菌及其应用
CN114107110B (zh) * 2021-11-29 2023-06-09 中国医学科学院放射医学研究所 一种具有高抗氧化功能的耐辐射玫瑰考克氏菌rp1及其设备
CN114990044B (zh) * 2022-06-30 2024-04-23 浙江大学 一种降解高氯酸盐的抗辐射细菌的制备及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445362A (zh) * 2003-04-09 2003-10-01 浙江大学 辐射诱导提高耐辐射球菌超氧化物歧化酶产量的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445362A (zh) * 2003-04-09 2003-10-01 浙江大学 辐射诱导提高耐辐射球菌超氧化物歧化酶产量的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
White O. et al.Q9RXY7.《EMBL》.2000, *
乐东海等.耐辐射球菌pprI在大肠杆菌中表达增强细胞抗氧化能力的研究.《微生物学报》.2004,第44卷(第3期),324-327. *

Also Published As

Publication number Publication date
CN101671679A (zh) 2010-03-17

Similar Documents

Publication Publication Date Title
CN101671679B (zh) 一种耐辐射球菌抗逆相关基因及其应用
Elkenawy et al. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation
Britt Repair of DNA damage induced by ultraviolet radiation.
McCready et al. UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1
Parry et al. The effects of “cell age” upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae
Boccazzi et al. Generation of dominant selectable markers for resistance to pseudomonic acid by cloning and mutagenesis of the ileS gene from the archaeon Methanosarcina barkeri Fusaro
Feng et al. Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme
Kumar et al. Inactivation of cyanobacterial nitrogenase after exposure to ultraviolet-B radiation
Feng et al. High NH3N tolerance of a cheR2-deletion Rhodobacter capsulatus mutant for photo-fermentative hydrogen production using cornstalk
Kubitschek Mutation without segregation
Velizarov Electric and magnetic fields in microbial biotechnology: possibilities, limitations, and perspectives
Chen et al. Little or no repair of cyclobutyl pyrimidine dimers is observed in the organellar genomes of the young Arabidopsis seedling
Zhang et al. Creation of an ethanol-tolerant Saccharomyces cerevisiae strain by 266 nm laser radiation and repetitive cultivation
Pittman et al. Evidence for the genetic control of photoreactivation
Zhu et al. Effects of ambient temperature on the redistribution efficiency of nutrients by desert cyanobacteria-Scytonema javanicum
CN110452864A (zh) 一种提高根瘤菌usda110竞争结瘤能力的方法
Liu et al. Heavy‐ion mutagenesis significantly enhances enduracidin production by Streptomyces fungicidicus
Hu et al. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger
Alejandre-Durán et al. The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and α-tomatine from tomato plant
KR101994049B1 (ko) 방사성물질 제거를 위한 생물학적 미생물처리제
Song et al. Cellulose hydrolysis by a methanogenic culture enriched from landfill waste in a semi-continuous reactor
Massardo et al. Complete absence of mitochondrial DNA in the petite-negative yeast Schizosaccharomyces pombe leads to resistance towards the alkaloid lycorine
Gao et al. Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater
Danko et al. Effect of arabinose concentration on dark fermentation hydrogen production using different mixed cultures
CN104946682A (zh) 一种检测水体重金属铅的微生物学方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130918

CF01 Termination of patent right due to non-payment of annual fee