CN101664686B - 一种纳米金属硫化物复合半导体光催化材料的制备方法 - Google Patents
一种纳米金属硫化物复合半导体光催化材料的制备方法 Download PDFInfo
- Publication number
- CN101664686B CN101664686B CN2009100935179A CN200910093517A CN101664686B CN 101664686 B CN101664686 B CN 101664686B CN 2009100935179 A CN2009100935179 A CN 2009100935179A CN 200910093517 A CN200910093517 A CN 200910093517A CN 101664686 B CN101664686 B CN 101664686B
- Authority
- CN
- China
- Prior art keywords
- compound semiconductor
- ldhs
- preparation
- nano
- sulfonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 43
- 239000000463 material Substances 0.000 title claims abstract description 33
- 150000001875 compounds Chemical class 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 229910052976 metal sulfide Inorganic materials 0.000 title claims abstract description 15
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 150000001768 cations Chemical class 0.000 claims description 4
- -1 cycloalkyl sulfonate Chemical compound 0.000 claims description 4
- 238000009830 intercalation Methods 0.000 claims description 4
- 230000002687 intercalation Effects 0.000 claims description 4
- 229910001960 metal nitrate Inorganic materials 0.000 claims description 4
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 claims description 2
- 150000008052 alkyl sulfonates Chemical group 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 abstract description 6
- 229960001545 hydrotalcite Drugs 0.000 abstract description 6
- 229910001701 hydrotalcite Inorganic materials 0.000 abstract description 6
- 239000011229 interlayer Substances 0.000 abstract description 6
- 150000001450 anions Chemical class 0.000 abstract description 5
- 229910021645 metal ion Inorganic materials 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract description 3
- 239000004567 concrete Substances 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 4
- 229960000907 methylthioninium chloride Drugs 0.000 description 4
- 239000011941 photocatalyst Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000000593 microemulsion method Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- QANIADJLTJYOFI-UHFFFAOYSA-K aluminum;magnesium;carbonate;hydroxide;hydrate Chemical compound O.[OH-].[Mg+2].[Al+3].[O-]C([O-])=O QANIADJLTJYOFI-UHFFFAOYSA-K 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910000238 buergerite Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
一种纳米金属硫化物复合半导体光催化材料的制备方法,属于复合半导体材料技术领域。具体制备工艺包括以下步骤:利用水滑石的层板金属离子可调变性和层间阴离子可交换性,将半导体先驱金属元素以氢氧化物的形式引入LDHs层板,然后将LDHs粉体材料置于H2S气氛中,经气固相反应合成纳米金属硫化物复合半导体材料。本发明的优点在于:所制备的纳米复合半导体材料粒子分散均匀、粒径可调,实现了半导体纳米粒子在分子水平的分散;通过调变层板金属元素的摩尔比,可制备得到组成可调的纳米复合半导体光催化材料。
Description
技术领域
本发明属于复合半导体材料技术领域,具体涉及一种纳米金属硫化物复合半导体光催化材料的制备方法。
背景技术
金属硫化物半导体纳米材料(ZnS、CdS)具有优良的光电性质,在太阳能电池、光催化以及传感器件等领域具有潜在的应用优势,因而受到广泛关注。近年来的研究表明,复合半导体(主要是二元半导体)表现出高于单一半导体的光电性质,有些还可使激发光波长扩展到可见光范围,因而纳米复合半导体材料的合成方法、性能协同优化成为当前半导体材料研究的热点。
目前可以制备ZnS/CdS复合半导体纳米材料的方法很多,如水热法、微乳液法、原位法等,每种制备方法都有各自的优缺点。水热法(Tong Ren,Zhibin Lei,Guoyou Luan,Guoqing Jia,Jing Zhang,Rui Yu,Can Li,Thin Solid Films.2006,513,99-102)可制得晶粒尺寸可调的复合硫化物,但是无法实现粒子的均匀分散。微乳液法(Alexandre R.Loukanov,Ceco D.Dushkin,Karolina I.Papazova,Andrey V.Kirov,Miroslav V.Abrashev,Eiki Adachi,Colloids and Surfaces A:Physicochem.Eng.Aspects.2004,245,9-14)可制备粒径小且分布窄的纳米复合半导体材料,但所制备的纳米粒子在油相体系中易发生团聚。原位法(Aparna Deshpande,PallaviShah,R.S.Gholap,Narendra M.Gupta,Journal of Colloid and InterfaceScience.2009,333,263-268)可得到组成可调的纳米复合材料,但所用的基底多为有机聚合物,分散的均匀性受到限制。因此如何获得性能稳定、均匀分散、粒径分布窄、组成可控的复合半导体纳米材料成为复合半导体光催化材料的一个重要研究方向。
水滑石(层状双金属复合氢氧化物Layered Double Hydroxides,简写为LDHs)是一种新型多功能层状材料,具有良好的热稳定性和化学稳定性,且LDHs层板金属离子的组成及摩尔比可调变,层间阴离子具有可交换性。因此将其作为前体制备纳米复合半导体材料,可实现粒子的均匀分散。通过调控层板元素和层间阴离子,可实现调变层板化学组成及反应环境的目的,为制备高效、组成可调的纳米复合半导体光催化材料提供了可行途径。
发明内容
本发明目的在于提供一种纳米金属硫化物复合半导体光催化材料的制备方法,利用水滑石(LDHs)的层板金属离子可调变性和层间阴离子可交换性,将半导体先驱金属元素以氢氧化物的形式引入LDHs层板,根据该金属元素更易形成稳定的硫化物的性质采用气固相反应在LDHs层板上原位合成金属硫化物半导体纳米粒子,进而实现半导体在LDHs层板上的均匀分散;通过调变层板金属的配比,制备得到粒径、组成、带隙均 可调控的复合半导体纳米光催化材料。
本发明的金属硫化物复合半导体纳米光催化材料的组成为:以层板中含Zn、Cd元素的LDHs为前体,向水滑石粉体中通入足量H2S气体,经气固反应得到均匀分散的纳米金属硫化物复合半导体光催化材料。
本发明的纳米复合半导体光催化材料的制备步骤如下:
a配置可溶性二价金属硝酸盐、三价金属硝酸盐、以及磺酸盐的混合溶液,其中二价、三价金属阳离子摩尔比为M2+/M3+=2~4,配制浓度为0.5~4.0mol/L的NaOH或KOH碱溶液;
b将步骤a配制的碱溶液滴加到步骤a配制的混合盐溶液中,至pH为6~10,在室温条件下晶化2~24h,产物用去CO2水充分洗涤、离心,真空室温干燥,得到磺酸盐插层的LDHs;
c将步骤b制得的磺酸盐插层的LDHs置于反应装置中,在60℃~150℃下,通入H2S气体10~200min,产物在N2气氛中保留1~12h,得到纳米金属硫化物复合半导体材料。
本发明所述的LDHs主体层板选择二价金属阳离子Zn2+、Cd2+、Ni2+中的任何两种与三价金属阳离子Al3+、Cr3+中的任何一种组合;且二价金属阳离子摩尔比为M1/M2=0.1~10。
所述的磺酸盐为烷基磺酸盐、芳基磺酸盐、烷基芳基磺酸盐、环烷基磺酸盐或烷基环烷基磺酸盐。
H2S气体的流速为10~100ml/min。
将上述材料进行XRD、TEM、元素分析等表征,证明该方法成功制备镶嵌于LDHs层板的ZnS/CdS纳米复合半导体光催化材料。XRD谱图基线低平且各衍射峰尖耸,显示ZnCdAl-LDHs具有完整的LDHs结构,其特征衍射峰(003),(006),(009)较NO3 -型LDHs而言,均向小角度方向移动,表示层间距增大,磺酸盐进入层间。通入H2S气体后,XRD结构参数显示硫化后均出现了新的谱峰,这些衍射峰的强度较弱,半峰宽较宽,这说明生成的ZnS/CdS粒径较小,在28°附近出现了ZnS/CdS混合晶体的(002)晶体衍射峰,46°及53°分别出现了明显的(110)与(112)的晶体衍射峰。通过元素分析表征得到S/ZnCd近似等于1,证实LDHs层板中的Cd和Zn元素已经完全硫化。TEM照片显示硫化后生成了粒径约为4nm的晶体颗粒,两组不同的晶面间距同(101),(103)晶面相对应,证明所得到的ZnS/CdS纳米晶为纤锌矿六方晶系,且均匀分布在LDHs层板上。通过调变样品中的Cd元素含量,可以实现对纳米复合半导体材料组成的调控。
将上述水滑石基ZnS/CdS复合半导体用于可见光催化降解亚甲基蓝溶液,表现出很高的光降解效率,且可以通过改变Zn/Cd实现光催化降解效率的调控。具体操作如下:将30mg粉末催化剂分散到1×10-5mol/L亚甲基蓝(MB)溶液(100mL)中,然后在暗处搅拌30min,充分混合均匀以建立吸附/脱附平衡。待吸附完全后,开启光源(氙灯 /UVcut),每隔一段时间取出4ml液体,用高速离心机离心分离,取上清液分析。如附图3所示,较块体ZnS/CdS而言,以LDHs为前体制备的复合半导体光催化材料由于其粒径小且分布均匀,因而具有更高的催化活性;对比Cd2Al1-DS-LDHs硫化物可证实复合半导体光催化材料能有效分离光生电子-空穴对,进而显著提高材料的光催化性能;通过改变LDHs层板Zn/Cd,对复合硫化物半导体的组成及带隙进行调变,进而调控其光催化活性。
本发明的优点:利用LDHs的层板金属离子可调变性和层间阴离子可交换性,将半导体先驱金属元素以氢氧化物的形式引入层板,采用气固相反应在LDHs层板上原位合成金属硫化物半导体纳米粒子,进而实现半导体在LDHs层板上的均匀分散;通过调变层板金属的配比,制备得到粒径、组成、带隙均可调控的复合半导体纳米光催化材料。
附图说明:
图1为实施例1制备的水滑石前体及其硫化产物的X-射线衍射谱图(曲线a为LDHs前体样品,曲线b为LDHs硫化产物)。
图2为实施例1制备的LDHs硫化产物的透射电子显微镜照片(a)及选区电子衍射谱图(b)。
图3为实施例1中以不同Zn/Cd值的水滑石基ZnS/CdS复合半导体作为光催化剂降解亚甲基蓝溶液(曲线a为Cd1Zn2Al1-DS-LDHs硫化物,曲线b为Cd2Zn1Al1-DS-LDHs硫化物,曲线c为Cd2Al1-DS-LDHs硫化物,曲线d为块体CdS/ZnS,曲线e为空白实验)。
具体实施方式
实施例1
步骤A:将0.01mol硝酸锌(Zn(NO3)2·6H2O),0.02mol硝酸镉(Cd(NO3)2·4H2O)与0.01mol硝酸铝(Al(NO3)3·9H2O)溶于16ml去CO2中。另取0.02mol十二烷基硫酸钠(C12H25SO4Na)溶于85ml去CO2水中,搅拌溶解均匀后加入到金属离子混合溶液中。再用去CO2水配制2mol/L的NaOH溶液,备用。
步骤B:将步骤A配置的NaOH溶液以2-3滴/秒的速度滴加到步骤A配制的混合盐溶液中,直至反应体系的pH值达到8.0,之后在室温条件下晶化6h。产物用去CO2水和乙醇各离心洗涤3次,除去表面吸附的金属离子及十二烷基硫酸钠。离心完成后,将样品在室温下真空干燥,制得Zn1Cd2Al1-DS-LDHs粉体。
步骤C:将干燥好的LDHs粉末置于反应装置中,在80℃下通入H2S气体,反应30min,所得产物在N2气氛中保留6小时。制得Zn/Cd=1/2的水滑石基ZnS/CdS复合半导体材料。
实施例2
步骤A:将0.02mol硝酸锌(Zn(NO3)2·6H2O),0.01mol硝酸镉(Cd(NO3)2·4H2O)与0.01mol硝酸铝(Al(NO3)3·9H2O)溶于16ml去CO2水中。另取0.02mol十二烷基硫酸钠(C12H25SO4Na)溶于85ml去CO2水中,搅拌溶解均匀后加入到金属离子混合溶液中。再用去CO2水配制2mol/L的NaOH溶液,备用。
步骤B:将步骤A配置的NaOH溶液以2-3滴/秒的速度滴加到步骤A配制的混合盐 溶液中,直至反应体系的pH值达到8.0,之后在室温条件下晶化12h。产物用去CO2水和乙醇各离心洗涤3次,除去表面吸附的金属离子及十二烷基硫酸钠。离心完成后,将样品在室温下真空干燥,制得Zn1Cd2Al1-DS-LDHs粉体。
步骤C:将干燥好的LDHs粉末置于反应装置中,在120℃下通入H2S气体,反应60min,所得产物在N2气氛中保留8小时。制得Zn/Cd=2/1的水滑石基ZnS/CdS复合半导体材料。
实施例3
步骤A:将0.006mol硝酸锌(Zn(NO3)2·6H2O),0.024mol硝酸镉(Cd(NO3)2·4H2O)与0.01mol硝酸铝(Al(NO3)3·9H2O)溶于16ml去CO2水中。另取0.02mol十二烷基硫酸钠(C12H25SO4Na)溶于85ml去CO2水中,搅拌溶解均匀后加入到金属离子混合溶液中。再用去CO2水配制2mol/L的NaOH溶液,备用。
步骤B:将步骤A配置的NaOH溶液以2-3滴/秒的速度滴加到步骤A配制的混合盐溶液中,直至反应体系的pH值达到8.0,之后在室温条件下晶化2h。产物用去CO2水和乙醇各离心洗涤3次,除去表面吸附的金属离子及十二烷基硫酸钠。离心完成后,将样品在室温下真空干燥,制得Zn1Cd2Al1-DS-LDHs粉体。
步骤C:将干燥好的LDHs粉末置于置于反应装置中,在100℃下通入H2S气体,反应120min,所得产物在N2气氛中保留12小时。即可制得Zn/Cd=1/4的水滑石基ZnS/CdS复合半导体材料。
Claims (3)
1.一种纳米金属硫化物复合半导体光催化材料的制备方法,其特征在于:制备步骤为:
a配置可溶性二价金属硝酸盐、三价金属硝酸盐、以及磺酸盐的混合溶液,其中二价、三价金属阳离子摩尔比为M2+/M3+=2~4,配制浓度为0.5~4.0mol/L的NaOH或KOH碱溶液;所述的二价金属阳离子为Zn2+或Cd2+,三价金属阳离子Al3+;
b将步骤a配制的碱溶液滴加到步骤a配制的混合盐溶液中,至pH为6~10,在室温条件下晶化2~24h,产物用去CO2水充分洗涤、离心,真空室温干燥,得到磺酸盐插层的LDHs;
c将步骤b制得的磺酸盐插层的LDHs置于反应装置中,在60℃~150℃下,通入H2S气体10~200min,产物在N2气氛中保留1~12h,得到纳米金属硫化物复合半导体材料。
2.根据权利要求1所述的方法,其特征在于:所述的磺酸盐为烷基磺酸盐、芳基磺酸盐、烷基芳基磺酸盐、环烷基磺酸盐或烷基环烷基磺酸盐。
3.根据权利要求1所述的方法,其特征在于:H2S气体的流速为10~100ml/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100935179A CN101664686B (zh) | 2009-10-12 | 2009-10-12 | 一种纳米金属硫化物复合半导体光催化材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100935179A CN101664686B (zh) | 2009-10-12 | 2009-10-12 | 一种纳米金属硫化物复合半导体光催化材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101664686A CN101664686A (zh) | 2010-03-10 |
CN101664686B true CN101664686B (zh) | 2012-06-06 |
Family
ID=41801558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100935179A Expired - Fee Related CN101664686B (zh) | 2009-10-12 | 2009-10-12 | 一种纳米金属硫化物复合半导体光催化材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101664686B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103191783B (zh) * | 2013-04-18 | 2014-11-05 | 北京化工大学 | 一种硫化锌与苯甲酸纳米复合光催化材料及其制备方法 |
CN103240125B (zh) * | 2013-05-21 | 2014-08-20 | 北京化工大学 | 一种染料敏化金属硫化物半导体纳米材料的制备方法 |
CN106571465B (zh) * | 2016-10-19 | 2019-04-09 | 北京化工大学 | 水滑石前驱体法氮硫共掺杂碳负载过渡金属硫化物固溶体及其制备方法和应用 |
-
2009
- 2009-10-12 CN CN2009100935179A patent/CN101664686B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101664686A (zh) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance | |
Geetha et al. | High performance photo-catalyst based on nanosized ZnO–TiO2 nanoplatelets for removal of RhB under visible light irradiation | |
Chen et al. | Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment | |
Senasu et al. | Photocatalytic performance of CdS nanomaterials for photodegradation of organic azo dyes under artificial visible light and natural solar light irradiation | |
Yu et al. | Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation | |
Prabhakar Vattikuti et al. | ZrO 2/MoS 2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange | |
Pal et al. | A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent | |
Rahdar | Effect of 2-mercaptoethanol as capping agent on ZnS nanoparticles: structural and optical characterization | |
Samadi-maybodi et al. | Aqueous synthesis and characterization of CdS quantum dots capped with some amino acids and investigations of their photocatalytic activities | |
CN101254467A (zh) | 具有高可见光催化活性纳米CdxZn1-xS光催化剂的沉淀-水热制备方法 | |
Junploy et al. | Photocatalytic degradation of methylene blue by Zn2SnO4-SnO2 system under UV visible radiation | |
Yavari et al. | Synthesis of ZnO nanostructures with controlled morphology and size in ionic liquids | |
Habibi et al. | Novel sulfur-doped niobium pentoxide nanoparticles: fabrication, characterization, visible light sensitization and redox charge transfer study | |
CN113145134B (zh) | 一种基于矿物复合材料的可见光催化剂及其制备方法 | |
Muruganandam et al. | Synthesis and structural, optical and thermal properties of CdS: Zn 2+ nanoparticles | |
Kale et al. | Paper templated synthesis of nanostructured Cu–ZnO and its enhanced photocatalytic activity under sunlight | |
Tian et al. | Facile synthesis of Ag2Se quantum dots and their application in Dye/Ag2Se co-sensitized solar cells | |
CN112495419A (zh) | 利用聚多巴胺制备石墨相氮化碳基纳米复合光催化剂的方法 | |
Prakash et al. | Construction of novel metal-free graphene oxide/graphitic carbon nitride nanohybrids: a 2D–2D amalgamation for the effective dedyeing of waste water | |
Rahdar et al. | Study of structural and optical properties of ZnS: Cr nanoparticles synthesized by co-precipitation method | |
CN101664686B (zh) | 一种纳米金属硫化物复合半导体光催化材料的制备方法 | |
Zhang et al. | Morphology modulation of SnO photocatalyst: from microplate to hierarchical architectures self-assembled with thickness controllable nanosheets | |
Liu et al. | Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity | |
Dris et al. | A study of cadmium sulfide nanoparticles with starch as a capping agent | |
CN103191783B (zh) | 一种硫化锌与苯甲酸纳米复合光催化材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120606 Termination date: 20141012 |
|
EXPY | Termination of patent right or utility model |