CN101663764A - 具有减少的热载流子冷却的光电池 - Google Patents

具有减少的热载流子冷却的光电池 Download PDF

Info

Publication number
CN101663764A
CN101663764A CN200880004753A CN200880004753A CN101663764A CN 101663764 A CN101663764 A CN 101663764A CN 200880004753 A CN200880004753 A CN 200880004753A CN 200880004753 A CN200880004753 A CN 200880004753A CN 101663764 A CN101663764 A CN 101663764A
Authority
CN
China
Prior art keywords
electrode
nano
particle layer
photoelectric material
photocell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880004753A
Other languages
English (en)
Inventor
克日什托夫·肯帕
迈克尔·诺顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solasta Inc
Original Assignee
Solasta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solasta Inc filed Critical Solasta Inc
Publication of CN101663764A publication Critical patent/CN101663764A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光电池,该光电池包括第一电极、被设置与所述第一电极接触的第一纳米颗粒层、第二电极、被设置与所述第二电极接触的第二纳米颗粒层以及位于所述第一纳米颗粒层和所述第二纳米颗粒层之间并且与所述第一纳米颗粒层和所述第二纳米颗粒层接触的薄膜光电材料。

Description

具有减少的热载流子冷却的光电池
相关专利申请的交叉引用
本申请要求2007年2月12日提交的申请号为60/900,709的美国临时申请的权益,该申请通过引用全部并入本文。
技术领域
本发明总体上涉及光电池或太阳能电池领域,更具体地,涉及包含纳米颗粒层和/或纳米晶体光电材料膜的光电池。
背景技术
在现有的热载流子光电(PV)池(也被称为热载流子太阳能电池)技术中,在电极和PV材料之间的界面处的电子-电子相互作用引起PV电池中的不期望的热载流子冷却,并且相应地引起不期望的PV电池能量转换效率的损失。
发明内容
本发明的一种实施方式提供了一种光电池,所述光电池包括第一电极、被设置与所述第一电极接触的第一纳米颗粒层、第二电极、被设置与所述第二电极接触的第二纳米颗粒层、以及位于所述第一纳米颗粒层和所述第二纳米颗粒层之间并且与所述第一纳米颗粒层和所述第二纳米颗粒层接触的光电材料。
附图说明
图1A和图1B是根据本发明实施方式的PV电池的三维示意图。
图2是根据本发明实施方式的PV电池阵列的三维示意图。
图3A是用于形成根据本发明实施方式的PV电池阵列的多腔设备的俯视示意图。
图3B-3G是在图3A的设备中形成PV电池的方法中的步骤的侧视截面图。
图4A是完整的多层PV电池阵列的侧视截面示意图。图4B是所述阵列的电路原理图。
图5是用CdTe量子点(QD)纳米颗粒共形涂层的碳纳米管(CNT)的透射电子显微镜(TEM)图像。
具体实施方式
图1A和图1B分别示出了根据本发明的第一实施方式的光电池1A和根据本发明的第二实施方式的光电池1B。电池1A和电池1B均包括第一电极或内部电极3、第二电极或外部电极5以及位于所述第一电极和所述第二电极之间的光电(PV)材料。在图1B所示的电池1B中,PV材料7还与电极3、电极5电接触。在从第一电极3到第二电极5(即,在图1A和图1B中,从左到右)的方向上的光电材料7的宽度9小于约200nm,例如100nm或更小,优选地在10nm和20nm之间。在与光电材料的宽度大致垂直的方向上(即,在图1A和图1B中的垂直方向)的光电材料的高度11至少为1μm,例如2μm到30μm,例如10μm。术语“大致垂直”既包括空心圆柱形PV材料7的绝对垂直方向,又包括空心椎形PV材料的偏离垂直线1度到45度的方向,所述空心椎具有比顶部更宽或者更窄的基部。可以使用其他合适的PV材料尺寸。
PV材料7的宽度9优选地在与入射在PV电池1A、PV电池1B上的入射太阳辐射大致垂直的方向上延伸。在图1A和图1B中,所述入射太阳辐射(即,日光)是用来以相对于水平宽度9的方向大约70度到110度的角度照射PV材料7,例如85度到95度。优选地,宽度9足够小以充分阻止光电材料中光生电荷载流子向所述电极跃迁期间产生声子。换言之,PV材料7的宽度9必须足够小以在产生大量的声子之前运送足够的电荷载流子至电极3和/或电极5。因此,当入射太阳辐射的入射光子被PV材料吸收并且被转换成电荷载流子(电子、空穴和/或激子)时,所述电荷载流子应该在产生大量声子(所述声子使入射辐射转换成热量,而不是转换成提供光生电流的电荷载流子)之前分别到达电极3、电极5。例如,优选地,入射光子的至少40%(例如40%-100%)被转换成光生电荷载流子,该光生电荷载流子到达各自的电极并且生成光生电流而不是产生声子(即,热量)。在如图1A和图1B所示的实施例中,大约10nm到20nm的宽度9被认为足够小以阻止产生大量的声子。优选地,宽度9足够小以充分阻止由于载流子复合和/或散射而造成的载流子(例如电子和/或空穴)能量损失。例如,对于无定形硅,所述宽度小于约200nm。对不同的材料,所述宽度可以不同。
光电材料7的高度11优选地足够大以使入射太阳辐射中的入射光子的至少90%(例如90%-95%,例如90%-100%)转换成电荷载流子。因此,PV材料7的高度11优选地足够大以收集大部分太阳辐射(即,将大部分光子转换成光生电荷载流子)并且允许入射太阳辐射的10%或更少(例如0%-5%)到达PV电池的底部或者从PV电池的底部射出(即,到达PV电池下面的衬底)。高度11优选地足够大以光电吸收波长范围为50nm到2000nm(所述波长范围优选地为400nm到1000nm)的光子的至少90%(例如90%-100%)。优选地,高度11比半导体材料中的最长光子穿透深度大。这种高度大约为1μm或者对于无定形硅来说要更大。对于不同的材料,所述高度可以不同。优选地,高度11至少比宽度9大10倍,例如至少大100倍,例如大1000倍到10000倍。
第一电极3优选地包括导电纳米棒,例如纳米纤维、纳米管或者纳米线。例如,第一电极3可包括导电碳纳米管,例如金属多壁碳纳米管,或者金属元素纳米线或金属合金纳米线,例如钼纳米线、铜纳米线、镍纳米线、金纳米线或钯纳米线,或者包括具有石墨节(graphitic sections)的碳纤维材料的纳米绳的纳米纤维。所述纳米棒可以是直径为2nm到200nm的圆柱形状,该直径例如30nm到150nm,例如50nm,并且该纳米棒的高度为1μm到100μm,例如10μm到30μm。如果需要,第一电极3也可由导电聚合物材料形成。可选地,所述纳米棒可包括电绝缘材料,例如聚合物材料,该电绝缘材料由导电壳覆盖以形成电极3。例如,可以在衬底上形成导电层,因而在所述纳米棒周围形成导电壳从而形成电极3。聚合物纳米棒例如塑料纳米棒,可通过在模具中模塑聚合物衬底来形成在该衬底的一个表面上的纳米棒,或者通过冲压该衬底的一个表面来形成纳米棒。
光电材料7围绕纳米棒电极3的至少下部,如图1A和图1B所示。PV材料7可包括任何适当小的薄膜半导体材料,该薄膜半导体材料能响应于日光的辐照而产生电压。例如,PV材料可包括无定形无机体薄膜(bulk thin film)半导体材料、单晶无机体薄膜半导体材料或多晶无机体薄膜半导体材料,例如硅(包括无定形硅)、锗或化合物半导体,例如Ge、SiGe、PbSe、PbTe、SnTe、SnSe、Bi2Te3、Sb2Te3、PbS、Bi2Se3、GaAs、InAs、InSb、CdTe、CdS或CdSe以及它们的三元化合物和四元化合物。所述PV材料也可以是半导体纳米颗粒层,例如量子点。PV材料膜7可包括一层或一层以上的相同或不同的半导体材料。例如,PV材料膜7可包括用相反导电类型(即,p和n)的掺杂物掺杂的两种不同导电类型的层以形成pn结。这样就形成了pn结型PV电池。如果需要,在p型区域和n型区域之间可设置本征半导体区域以形成p-i-n型PV电池。可选地,PV材料膜7可包括两层具有相同或不同导电类型的不同的半导体材料以形成异质结。可选地,PV材料膜7可包括单层材料以形成肖特基结型PV电池(即,一种如下所述的电池:该电池中的PV材料与电极一起形成肖特基结而不必须利用pn结)。
有机半导体材料也可用于PV材料7。有机材料的例子包括光电聚合物(包括半导体聚合物)、诸如染料的有机光敏分子材料或者诸如生物半导体材料的生物光敏材料。光敏意指响应于太阳辐射的辐照而产生电荷载流子(即,电流)的能力。有机材料和聚合物材料包括聚苯撑乙烯、酞菁铜(一种蓝色或绿色有机染料)或碳富勒烯。生物材料包括蛋白质、罗丹宁或者DNA(例如,在Appl.Phys.Lett.78,3541(2001)中公开的脱氧鸟苷,该文献通过引用并入本文)。
第二电极5围绕光电材料7以形成所谓的纳米同轴(nanocoax)。电极5可包括任何合适的导电材料,所述合适的导电材料例如导电聚合物,或者诸如铜、镍、铝或它们的合金的金属元素或金属合金。可选地,电极5可包括光学透明且导电的材料,例如透明导电氧化物(TCO),该透明导电氧化物例如铟锡氧化物、铝锌氧化物或铟锌氧化物。
PV电池1A、1B成形为所谓的纳米同轴,所述纳米同轴包括同心圆柱,在该同心圆柱中,电极3包括内部圆柱或核心圆柱,PV材料7包括电极3周围的中间空心圆柱,并且电极5包括PV材料7周围的外部空心圆柱。如上所述,半导体薄膜PV材料的宽度9优选地为大约10nm到20nm以确保被分别深入激发至导带和价带的电荷载流子(即,电子和空穴)在其到达电极之前不会冷却至带沿。所述纳米同轴包括没有频率分割(frequency cut-off)的亚波长传输线,该亚波长传输线能与宽度为10nm到20nm的PV材料一起工作。
优选地,但不是必须地,纳米棒3的上部延伸超出光电材料7的顶部并且形成光电池1A、1B的光学天线3A。术语“顶部”意指PV材料7的远离衬底的一侧,在所述衬底上形成PV电池。因此,纳米棒电极3的高度优选地比PV材料7的高度11大。优选地,天线3A的高度比纳米棒3的直径的三倍大。天线3A的高度可以与入射太阳辐射匹配并且可以包括入射太阳辐射的峰值波长的1/2的整数倍(即,天线高度=(n/2)×530nm,其中,n为整数)。天线3A有助于收集太阳辐射。优选地,天线3A收集多于90%的入射太阳辐射,例如90%-100%。
在可选的实施方式中,由纳米角光收集器增补或者替代天线3A。在这种实施方式中,外部电极5延伸超出PV材料7的高度11并且成形为用于收集太阳辐射的大致如同倒锥的形状。
在另一种可选的实施方式中,PV电池1A具有不同于纳米同轴的形状。例如,PV材料7和/或外部电极5可以在内部电极3周围仅延伸一部分。此外,电极3和电极5可包括平板状电极并且PV材料7可包括在电极3和电极5之间的又薄又高的平板状材料。此外,PV电池1A的宽度9和/或高度11可与上述的那些不同。
图2示出纳米同轴PV电池1的阵列,在该阵列中,每一个电池1的天线3A收集入射太阳辐射,该入射太阳辐射由线条13示意性地表示。如图2、图3B、图3D和图3G所示,可直接在导电衬底15上形成纳米棒内部电极3,该导电衬底例如钢衬底或铝衬底。在这个例子中,所述衬底作为将电极3与PV电池1串联的电接触的一种。对于导电衬底15,例如氧化硅或氧化铝的任选电绝缘层17可位于衬底15和每个外部电极5之间以电隔离衬底15与电极5,如图3E所示。绝缘层17也可填充相邻PV电池1的相邻电极5之间的空间,如图2所示。可选地,如果PV材料7覆盖如图3F所示的衬底15的表面,则可以省略绝缘层17。在另一种可选的结构中,如图3G所示,如果希望串联所有的电极5,PV电池之间的整个侧面空间可由电极5的材料填充。在这种结构中,电极5的材料可位于PV材料7上方,该PV材料7位于PV电池之间的空间内的衬底上。如果需要,绝缘层17可完全被省略,或者如图3G所示,绝缘层17可包括位于PV材料下方的薄层。一种电触头(为清楚起见未示出)与外部电极5连接,而单独的电触头穿过衬底15与内部电极连接。可选地,绝缘衬底15可用来代替导电衬底,并且在PV电池下面为每个内部电极3提供单独的电触头。在这种结构中,如图3G所示的绝缘层17可由导电层代替。所述导电层17可接触内部电极3的基部或者可覆盖每一个整个内部电极3(尤其是如果内部纳米棒由绝缘材料制成)。如果衬底15包括光学透明材料,例如玻璃、石英或塑料,那么纳米线天线或者纳米管天线可在PV电池的衬底的另一侧形成。在透明衬底结构中,可以使太阳辐射穿过衬底15辐照PV电池。可在透明绝缘衬底的表面形成导电光学透明层17以起到与内部电极3连接的底部触头的作用,所述导电光学透明层17例如铟锡氧化物、铝锌氧化物或铟锌氧化物或其它透明、导电金属氧化物。这种导电透明层17可接触内部电极3的基部或者可覆盖整个内部电极3。因此,衬底15可以是柔性的或刚性的、导电的或绝缘的、对可见光透明的或不透明的。
优选地,在PV电池上形成一层或一层以上绝缘、光学透明封装层或抗反射层19。可在一层或一层以上封装层19内封装天线3A。封装层19可包括透明聚合物层和/或无机层,所述透明聚合物层例如EVA或者其它通常用作PV设备中的封装层的聚合物,所述无机层例如氧化硅或其它玻璃层。
在本发明的第一实施方式中,所述PV电池包括至少一层位于电极和薄膜半导体PV材料7之间的纳米颗粒层。被分隔的纳米颗粒层优选地位于PV材料膜7和每个电极3、电极5之间。如图1A所示,内部纳米颗粒层4被设置与内部电极3接触,外部纳米颗粒层6被设置与外部电极5接触。薄膜光电材料7位于内部纳米颗粒层4和外部纳米颗粒层6之间并与内部纳米颗粒层4和外部纳米颗粒层6接触。具体地,内部纳米颗粒层4围绕纳米棒电极3的至少下部,光电材料膜7围绕内部纳米颗粒层4,外部纳米颗粒层6围绕光电材料膜7,并且外部电极5围绕外部纳米颗粒层6以形成纳米同轴。因此,纳米颗粒层4、纳米颗粒层6分别位于PV材料膜7与电极3、电极5之间的界面处。
在纳米颗粒层4和纳米颗粒层6中的纳米颗粒可具有2nm至100nm的平均直径,例如10nm至20nm。优选地,所述纳米颗粒包括半导体纳米晶体或量子点,例如硅量子点、锗量子点或者其他化合物半导体量子点。然而,可改为使用其他材料的纳米颗粒。纳米颗粒层4、纳米颗粒层6具有小于200nm的宽度,例如包括5nm至20nm的2nm至30nm。例如,纳米颗粒层4、纳米颗粒层6可具有小于三个单层纳米颗粒的宽度,诸如一个至两个单层纳米颗粒,从而允许分别贯穿从光电材料膜7到电极3、电极5的纳米颗粒层的共振电荷载流子隧穿。纳米颗粒层4、纳米颗粒层6阻止或者减少所述电极附近的热载流子冷却。换言之,纳米颗粒层4、纳米颗粒层6阻止或者减少跨越所述电极和所述PV材料间的界面的电子-电子相互作用。对所述冷却的阻止或减少降低了热量的产生并提高了PV电池的效率。
在本发明的另一实施方式中,纳米颗粒层4、纳米颗粒层6均包含至少两组纳米颗粒,所述至少两组纳米颗粒具有不同平均直径和/或不同成分中的至少一种。例如,纳米颗粒层4可包括第一组较大直径的纳米颗粒和第二组较小直径的纳米颗粒。可选地,所述第一组可包括硅纳米颗粒,所述第二组可包括锗纳米颗粒。定制每组纳米颗粒以阻止或者减少所述电极附近的热载流子冷却。可有两组以上纳米颗粒,例如三组至十组。在纳米颗粒层4、纳米颗粒层6中,各组纳米颗粒可以彼此混合。可选地,每组纳米颗粒可包括在相应的纳米颗粒层4、纳米颗粒层6中的薄(即,1单层-2单层厚)的独立的子层。
在图1B中所示的本发明的另一种实施方式中,光电材料7包括纳米晶体薄膜半导体光电材料。换言之,PV材料7包括由诸如硅半导体材料、锗半导体材料或者化合物半导体材料的体半导体材料构成的薄膜,所述体半导体材料具有纳米晶体晶粒结构。因此,所述膜具有300nm或更小的平均晶粒尺寸,例如100nm或更小,例如5nm至20nm。在这种实施方式中,纳米颗粒层4、纳米颗粒层6可以省略,因而PV材料膜7位于内部电极3和外部电极5之间并与内部电极3和外部电极5电接触。可采用诸如LPCVD或者PECVD的化学气相沉积来沉积纳米晶体薄膜,沉积温度要略高于用来沉积无定形膜的温度,但要低于用来沉积大晶粒多晶膜的温度,所述多晶膜例如多晶硅膜。所述纳米晶体晶粒结构还被认为能够减少所述电极附近的热载流子冷却,并且允许在所述电极处的共振电荷载流子隧穿。
图3A示出了用于制造所述PV电池的多腔设备100,图3B-图3G示出了制造根据本发明的另一种实施方式的PV电池1A、PV电池1B的方法的步骤。如图3A和图3B所示,PV电池可在移动的导电衬底15上形成,例如在连续的铝网或铁网或铝带或铁带上,所述铝网、铁网、铝带或铁带从一个线轴或卷轴绕下来(即,非转动)并且在卷带线轴或卷带卷轴上卷紧。衬底15通过位于多腔沉积设备中的若干个沉积站或者沉积腔。可选地,可使用静止的分离的衬底(即,不是连续网或者连续带的矩形衬底)。
首先,如图3C所示,在沉积腔或者沉积站101中,在衬底上沉积纳米棒催化剂颗粒21,例如铁纳米颗粒、钴纳米颗粒、金纳米颗粒或者其他金属纳米颗粒。所述催化剂颗粒可使用湿法电化学方法或者任何其他已知的金属催化剂颗粒沉积方法进行沉积。所述催化剂金属和颗粒尺寸是根据待形成的纳米棒电极3(即,碳纳米管、纳米线等)的类型进行选择的。
在图3D所示的第二步骤中,根据所述催化剂颗粒和纳米棒类型,在沉积腔或者沉积站103中通过顶端生长或者基底生长在所述纳米晶体催化剂的位置选择性地生长纳米棒电极3。例如,碳纳米管纳米棒可用PECVD在低真空中生长,而金属纳米线可用MOCVD生长。垂直于衬底15的表面而形成纳米棒电极3。可选地,如上所述,纳米棒可通过模塑或压印形成。
在图3E所示的第三步骤中,在沉积腔或者沉积站105中,在纳米棒电极3周围的衬底15的暴露面上形成任选的绝缘层17。绝缘层17可通过在空气气氛或者氧气气氛中对暴露金属衬底表面进行低温热氧化形成,或者通过CVD、溅射、旋压玻璃沉积等沉积诸如氧化硅之类的绝缘层形成。可选地,任选的绝缘层17可包括导电层,例如通过溅射、电镀等形成的金属层或者导电金属氧化物层。
如图3F所示的第四步骤中,在沉积腔或者沉积站107中,在纳米棒电极3上和周围以及在可选绝缘层17上形成纳米颗粒层4、PV材料7和纳米颗粒层6。图5示出了用CdTe纳米颗粒共形涂层的碳纳米管(CNT)的示例性TEM图像。
一种形成纳米颗粒层4、纳米颗粒层6的方法包括分别形成或获得商用半导体纳米颗粒或量子点。然后将所述半导体纳米颗粒附着于纳米棒形内部电极3的至少下部,从而形成内部纳米颗粒层4。例如,在绝缘层17上和电极3上可由纳米晶体溶液或悬浮液提供纳米晶体。如果需要,可以用诸如反应基之类的部分对纳米棒电极3(例如碳纳米管)进行官能化,所述反应基通过范德瓦尔斯引力或者共价键与所述纳米晶体结合。然后,采用诸如CVD的任何合适的方法沉积光电材料膜7。然后,采用与形成纳米颗粒层4类似的方法在膜7周围形成第二纳米颗粒层6。
可选地,如果使用图1B中的纳米晶体PV材料膜7,那么可以采用CVD在温度范围为无定形生长温度和多晶生长温度之间的温度形成所述膜。
如图3G所示的第五步骤中,在沉积腔或沉积站109中,在光电材料7(或者外部纳米颗粒层6,如果存在外部纳米颗粒层6)的周围形成外部电极5。外部电极5可使用湿法化学方法形成,例如通过Ni或者Cu的无电镀或者电镀,之后进行退火步骤。可选地,可通过诸如溅射或者蒸发的PVD形成电极5。可通过化学机械抛光对外部电极5和PV材料7抛光和/或选择性地往回刻蚀外部电极5和PV材料7以使PV电池1的上表面平整化并且暴露纳米棒3的上部以形成天线3A。如果需要,在所述PV电池之间可形成额外的绝缘层。然后在天线3A上形成封装层19以完成PV电池阵列。
图4A示出了在衬底15上形成的PV电池的多层阵列。在该阵列中,每个位于较低层的PV电池1A与位于较高层的在PV电池1A上的PV电池1B共享内部纳米棒形电极3。换言之,电极3垂直(即,相对于所述衬底表面垂直)延伸穿过至少两个PV电池1A、1B。然而,所述阵列的位于较低层的电池和位于较高层的电池包括独立的PV材料7A、7B、独立的外部电极5A、5B以及独立的电输出U1和U2。相比于处于较高阵列层的电池1A,可以优先在处于较低阵列层的电池1A中提供不同类型的PV材料(即,不同的纳米晶体尺寸、带隙和/或成分)。绝缘层21位于所述较高层PV电池和较低层PV电池之间。内部电极3延伸穿过绝缘层21。尽管示出了两个层,还可形成三个装置层或者三个以上装置层。此外,内部电极3可延伸超出较高PV电池1B以形成天线。图4B示出了图4A的阵列的电路原理图。
一种操作PV电池1A、PV电池1B的方法包括如图2所示的将所述电池暴露于以第一方向传播的入射太阳辐照13,并且响应所述暴露步骤由PV电池产生电流。如上所述,在与辐照13的方向大致垂直的方向上的位于内部电极3和外部电极5之间的PV材料7的宽度9足够小以充分阻止在光电材料中光生电荷载流子向所述电极中的至少一个电极跃迁期间产生声子并且/或者充分阻止由于载流子的复合和散射造成的载流子能量损耗。在与辐照13大致平行的方向上的PV材料7的高度11足够大以使入射太阳辐射中的入射光子的至少90%(例如90%-95%,例如90%-100%)转换成诸如电子和空穴(包括激子)的电荷载流子和/或光电吸收波长范围为50nm到2000nm的光子的至少90%(例如90%-100%),所述波长范围优选地为400nm到1000nm。如果存在图1A的纳米颗粒层4、纳米颗粒层6,那么分别贯穿从光电材料7到电极3、电极5的纳米颗粒层4、纳米颗粒层6的共振电荷载流子隧穿优选地发生,同时纳米颗粒层阻止或者减少电极附近的热载流子冷却。
如果存在图1B中的纳米晶体PV材料7,那么所述纳米晶体光电材料阻止或者减少电极附近的热载流子冷却。
本发明前面的描述是为了举例说明和描述的目的,这不是为了穷尽本发明或者将本发明限定于所公开的精确形式,而根据上述教导可进行修改或变化或者可从本发明的实践中得到所述修改和变化。进行所述描述是为了解释本发明的实质和实际应用。本发明的范围是由所附权利要求及其等同内容进行限定的。

Claims (23)

1、一种光电池,包括:
第一电极;
被设置与所述第一电极接触的第一纳米颗粒层;
第二电极;
被设置与所述第二电极接触的第二纳米颗粒层;以及
位于所述第一纳米颗粒层和所述第二纳米颗粒层之间并且与所述第一纳米颗粒层和所述第二纳米颗粒层接触的光电材料。
2、根据权利要求1所述的光电池,其中:
所述光电材料包括薄膜或者纳米颗粒材料;
在从所述第一电极到所述第二电极的方向上的所述光电材料的宽度小于约200纳米;以及
在与所述光电材料的宽度大致垂直的方向上的所述光电材料的高度至少为1微米。
3、根据权利要求2所述的光电池,其中:
所述光电材料的宽度在10纳米到20纳米之间;以及
所述光电材料的高度至少为2微米到30微米。
4、根据权利要求1所述的光电池,其中:
在与入射太阳辐射的预期方向大致垂直的方向上的所述光电材料的宽度足够小以充分阻止下列至少之一:在所述光电材料中光生电荷载流子向所述第一电极和所述第二电极中的至少一个电极跃迁期间产生声子或者由于电荷载流子复合和散射造成的电荷载流子能量损失;以及
在与入射太阳辐射的所述预期方向大致平行的方向上的所述光电材料的高度足够大以实现下列至少之一:将所述入射太阳辐射中的入射光子的至少90%转换成电荷载流子或者光电吸收波长范围为50纳米到2000纳米的光子的至少90%。
5、根据权利要求1所述的光电池,其中:
所述第一电极包括纳米棒;
所述第一纳米颗粒层围绕所述纳米棒的至少下部;
所述光电材料围绕所述第一纳米颗粒层;
所述第二纳米颗粒层围绕所述光电材料;并且
所述第二电极围绕所述第二纳米颗粒层以形成纳米同轴。
6、根据权利要求5所述的光电池,其中,所述纳米棒包括碳纳米管或者导电纳米线。
7、根据权利要求6所述的光电池,其中,所述纳米棒的上部延伸超出所述光电材料并且形成所述光电池的光学天线。
8、根据权利要求1所述的光电池,其中,所述光电材料包括半导体薄膜,并且所述第一纳米颗粒层包括宽度小于三个单层以允许贯穿从所述光电材料到所述第一电极的所述第一纳米颗粒层的共振电荷载流子隧穿。
9、根据权利要求1所述的光电池,其中,所述第一纳米颗粒层包括至少两组纳米颗粒,所述至少两组纳米颗粒具有不同平均直径或不同成分中的至少一种。
10、根据权利要求1所述的光电池,其中,所述光电材料包括硅并且所述第一纳米颗粒层中的纳米颗粒包括硅量子点或锗量子点。
11、根据权利要求1所述的光电池,其中,所述第一纳米颗粒层阻止或减少所述电极附近的热载流子冷却。
12、一种光电池,包括:
第一电极;
第二电极;以及
位于所述第一电极和所述第二电极之间并且与所述第一电极和所述第二电极电接触的纳米晶体薄膜半导体光电材料;
其中:
在从所述第一电极到所述第二电极的方向上的所述光电材料的宽度小于约200纳米;以及
在与所述光电材料的宽度大致垂直的方向上的所述光电材料的高度至少为1微米。
13、一种光电池的制造方法,包括:
形成第一电极;
形成与所述第一电极接触的第一纳米颗粒层;
形成与所述第一纳米颗粒层接触的半导体光电材料;
形成与所述光电材料接触的第二纳米颗粒层;并且
形成与所述第二纳米颗粒层接触的第二电极。
14、根据权利要求13所述的方法,所述方法还包括:
形成与衬底垂直的所述第一电极;
在所述第一电极的至少下部周围形成所述第一纳米颗粒层;
在所述第一纳米颗粒层周围形成所述光电材料;
在所述光电材料周围形成所述第二纳米颗粒层;并且
在所述第二纳米颗粒层周围形成所述第二电极。
15、根据权利要求14所述的方法,其中:
所述形成第一纳米颗粒层的步骤包括提供半导体纳米颗粒,并在提供所述半导体纳米颗粒之后将所提供的半导体纳米颗粒附着在纳米棒形第一电极的至少下部;以及
所述光电材料包括薄膜或者纳米颗粒材料。
16、根据权利要求14所述的方法,其中,所述第一电极、所述第二电极和所述光电材料沉积在移动的导电衬底上。
17、根据权利要求16所述的方法,所述方法还包括在所述衬底上形成光电池阵列。
18、根据权利要求17所述的方法,所述方法还包括:
从第一卷轴向第二卷轴缠绕网形导电衬底;
在所述导电衬底上形成多个金属催化剂颗粒;
从所述金属催化剂颗粒生长多个纳米棒形第一电极;并且
在所述第一电极之间的衬底上形成绝缘层。
19、根据权利要求14所述的方法,其中:
在从所述第一电极到所述第二电极的方向上的所述光电材料的宽度小于约200纳米;以及
在与所述光电材料的宽度大致垂直的方向上的所述光电材料的高度至少为1微米。
20、一种操作光电池的方法,所述光电池包括第一电极、被设置与所述第一电极接触的第一纳米颗粒层、第二电极、被设置与所述第二电极接触的第二纳米颗粒层和位于所述第一纳米颗粒层和所述第二纳米颗粒层之间并且与所述第一纳米颗粒层和所述第二纳米颗粒层接触的光电材料,所述方法包括:
将所述光电池暴露于以第一方向传播的入射太阳辐射;并且
响应所述暴露步骤由所述光电池产生电流,因而贯穿从所述光电材料到所述第一电极的所述第一纳米颗粒层的共振电荷载流子隧穿发生,同时所述第一纳米颗粒层阻止或减少所述电极附近的热载流子冷却。
21、根据权利要求20所述的方法,其中:
所述光电材料包括薄膜或者纳米颗粒材料;
在与所述第一方向大致垂直的第二方向上的所述第一电极和所述第二电极之间的光电材料的宽度足够小以充分阻止下列至少之一:在所述光电材料中光生电荷载流子向所述第一电极和所述第二电极中的至少一个电极跃迁期间产生声子或者由于电荷载流子复合和散射造成的电荷载流子能量损失;以及
在与所述第一方向大致平行的方向上的所述光电材料的高度足够大以实现下列至少之一:将所述入射太阳辐射中的入射光子的至少90%转换成电荷载流子或者光电吸收波长范围为50纳米到2000纳米的光子的至少90%。
22、一种操作光电池的方法,所述光电池包括第一电极、第二电极、位于所述第一电极层和所述第二电极层之间并且与所述第一电极层和所述第二电极层接触的薄膜纳米晶体半导体光电材料,所述方法包括:
将所述光电池暴露于以第一方向传播的入射太阳辐射;并且
响应所述暴露步骤由所述光电池产生电流,因而所述纳米晶体光电材料阻止或者减少所述电极附近的热载流子冷却。
23、根据权利要求22所述的方法,其中:
在与所述第一方向大致垂直的第二方向上的所述第一电极和所述第二电极之间的光电材料的宽度足够小以充分阻止下列至少之一:在所述光电材料中光生电荷载流子向所述第一电极和所述第二电极中的至少一个电极跃迁期间产生声子或者由于电荷载流子复合和散射造成的电荷载流子能量损失;以及
在与所述第一方向大致平行的方向上的所述光电材料的高度足够大以实现下列至少之一:将所述入射太阳辐射中的入射光子的至少90%转换成电荷载流子或者光电吸收波长范围为50纳米到2000纳米的光子的至少90%。
CN200880004753A 2007-02-12 2008-02-11 具有减少的热载流子冷却的光电池 Pending CN101663764A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90070907P 2007-02-12 2007-02-12
US60/900,709 2007-02-12

Publications (1)

Publication Number Publication Date
CN101663764A true CN101663764A (zh) 2010-03-03

Family

ID=39714509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880004753A Pending CN101663764A (zh) 2007-02-12 2008-02-11 具有减少的热载流子冷却的光电池

Country Status (7)

Country Link
US (1) US20080202581A1 (zh)
EP (1) EP2115784A2 (zh)
JP (1) JP2010518623A (zh)
KR (1) KR20090120474A (zh)
CN (1) CN101663764A (zh)
TW (1) TW200849613A (zh)
WO (1) WO2008143721A2 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511464A (ja) * 2008-02-03 2011-04-07 ンリテン エナジー コーポレイション 薄膜光起電力デバイスおよび関連製造方法
SE533090C2 (sv) * 2008-07-09 2010-06-22 Qunano Ab Nanostrukturerad ljusdiod
KR20100073757A (ko) * 2008-12-23 2010-07-01 삼성전자주식회사 마이크로 로드를 이용한 발광소자 및 그 제조방법
KR101100109B1 (ko) * 2009-06-12 2011-12-29 한국철강 주식회사 광기전력 장치의 제조 방법
KR101106480B1 (ko) * 2009-06-12 2012-01-20 한국철강 주식회사 광기전력 장치의 제조 방법
CN102549775A (zh) * 2009-07-03 2012-07-04 新南创新有限公司 热载流子能量转换结构及其制造方法
KR101072472B1 (ko) * 2009-07-03 2011-10-11 한국철강 주식회사 광기전력 장치의 제조 방법
US9349970B2 (en) 2009-09-29 2016-05-24 Research Triangle Institute Quantum dot-fullerene junction based photodetectors
ES2723523T3 (es) 2009-09-29 2019-08-28 Res Triangle Inst Dispositivos optoelectrónicos con la unión de punto cuántico-fullereno
US9054262B2 (en) 2009-09-29 2015-06-09 Research Triangle Institute Integrated optical upconversion devices and related methods
US20130019924A1 (en) * 2009-11-25 2013-01-24 The Trustees Of Boston College Nanoscopically Thin Photovoltaic Junction Solar Cells
KR101417882B1 (ko) * 2009-11-26 2014-07-09 디아이씨 가부시끼가이샤 광전 변환 소자용 재료 및 광전 변환 소자
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
KR101745616B1 (ko) * 2010-06-07 2017-06-12 삼성전자주식회사 불연속 영역을 포함하는 나노 구조체 및 이를 포함하는 열전 소자
US8476637B2 (en) 2010-06-08 2013-07-02 Sundiode Inc. Nanostructure optoelectronic device having sidewall electrical contact
US8659037B2 (en) 2010-06-08 2014-02-25 Sundiode Inc. Nanostructure optoelectronic device with independently controllable junctions
US8431817B2 (en) * 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
CN103843149B (zh) * 2011-06-23 2017-03-22 大型太阳能有限公司 包括有涂覆步骤的制造结构的方法和对应的结构及装置
US20130092222A1 (en) * 2011-10-14 2013-04-18 Nanograss Solar Llc Nanostructured Solar Cells Utilizing Charge Plasma
US20130112243A1 (en) * 2011-11-04 2013-05-09 C/O Q1 Nanosystems (Dba Bloo Solar) Photovoltaic microstructure and photovoltaic device implementing same
US20130112236A1 (en) * 2011-11-04 2013-05-09 C/O Q1 Nanosystems (Dba Bloo Solar) Photovoltaic microstructure and photovoltaic device implementing same
GB201301683D0 (en) 2013-01-30 2013-03-13 Big Solar Ltd Method of creating non-conductive delineations with a selective coating technology on a structured surface
DE102013221758B4 (de) * 2013-10-25 2019-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtungen zur aussendung und/oder zum empfang elektromagnetischer strahlung und verfahren zur bereitstellung derselben
GB2549134B (en) 2016-04-07 2020-02-12 Power Roll Ltd Asymmetric groove
GB2549132A (en) 2016-04-07 2017-10-11 Big Solar Ltd Aperture in a semiconductor
GB2549133B (en) 2016-04-07 2020-02-19 Power Roll Ltd Gap between semiconductors
GB201617276D0 (en) 2016-10-11 2016-11-23 Big Solar Limited Energy storage
CN108963003B (zh) * 2017-05-24 2020-06-09 清华大学 太阳能电池
CN109065722B (zh) * 2018-07-12 2020-12-01 西南大学 一种基于热载流子的太阳能电池及其制备方法
CN111261737B (zh) * 2020-01-21 2022-08-12 广东工业大学 一种SnSe/Bi2Se3纳米片异质结及其制备方法

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312870A (en) * 1964-03-13 1967-04-04 Hughes Aircraft Co Electrical transmission system
US3711848A (en) * 1971-02-10 1973-01-16 I D Eng Inc Method of and apparatus for the detection of stolen articles
US4019924A (en) * 1975-11-14 1977-04-26 Mobil Tyco Solar Energy Corporation Solar cell mounting and interconnecting assembly
US4445050A (en) * 1981-12-15 1984-04-24 Marks Alvin M Device for conversion of light power to electric power
US4197142A (en) * 1979-03-07 1980-04-08 Canadian Patents & Development Ltd. Photochemical device for conversion of visible light to electricity
US4445080A (en) * 1981-11-25 1984-04-24 The Charles Stark Draper Laboratory, Inc. System for indirectly sensing flux in an induction motor
DE3700792C2 (de) * 1987-01-13 1996-08-22 Hoegl Helmut Photovoltaische Solarzellenanordnung und Verfahren zu ihrer Herstellung
US5185208A (en) * 1987-03-06 1993-02-09 Matsushita Electric Industrial Co., Ltd. Functional devices comprising a charge transfer complex layer
US5009958A (en) * 1987-03-06 1991-04-23 Matsushita Electric Industrial Co., Ltd. Functional devices comprising a charge transfer complex layer
CH674596A5 (zh) * 1988-02-12 1990-06-15 Sulzer Ag
US4803688A (en) * 1988-03-28 1989-02-07 Lawandy Nabil M Ordered colloidal suspension optical devices
JP2752687B2 (ja) * 1989-03-29 1998-05-18 三菱電機株式会社 ヘテロ分子接合に基づく光素子
US5105305A (en) * 1991-01-10 1992-04-14 At&T Bell Laboratories Near-field scanning optical microscope using a fluorescent probe
JP2968080B2 (ja) * 1991-04-30 1999-10-25 ジェイエスアール株式会社 高分解能光学顕微鏡および照射スポット光作成用マスク
EP0532969B1 (en) * 1991-09-18 1997-12-17 Fujitsu Limited Process for fabricating an optical device for generating a second harmonic optical beam
US5493628A (en) * 1991-10-17 1996-02-20 Lawandy; Nabil M. High density optically encoded information storage using second harmonic generation in silicate glasses
US5253258A (en) * 1991-10-17 1993-10-12 Intellectual Property Development Associates Of Connecticut, Inc. Optically encoded phase matched second harmonic generation device and self frequency doubling laser material using semiconductor microcrystallite doped glasses
FR2694451B1 (fr) * 1992-07-29 1994-09-30 Asulab Sa Cellule photovoltaïque.
EP0641029A3 (de) * 1993-08-27 1998-01-07 Twin Solar-Technik Entwicklungs-GmbH Element einer photovoltaischen Solarzelle und Verfahren zu seiner Herstellung sowie deren Anordnung in einer Solarzelle
US5448582A (en) * 1994-03-18 1995-09-05 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action
JP2692591B2 (ja) * 1994-06-30 1997-12-17 株式会社日立製作所 光メモリ素子及びそれを用いた光回路
US5489774A (en) * 1994-09-20 1996-02-06 The Board Of Trustees Of The Leland Stanford University Combined atomic force and near field scanning optical microscope with photosensitive cantilever
US5604635A (en) * 1995-03-08 1997-02-18 Brown University Research Foundation Microlenses and other optical elements fabricated by laser heating of semiconductor doped and other absorbing glasses
US6518494B1 (en) * 1995-08-22 2003-02-11 Matsushita Electric Industrial Co., Ltd. Silicon structure, method for producing the same, and solar battery using the silicon structure
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
JP3290586B2 (ja) * 1996-03-13 2002-06-10 セイコーインスツルメンツ株式会社 走査型近視野光学顕微鏡
US5888371A (en) * 1996-04-10 1999-03-30 The Board Of Trustees Of The Leland Stanford Jr. University Method of fabricating an aperture for a near field scanning optical microscope
ATE366418T1 (de) * 1996-04-25 2007-07-15 Bioarray Solutions Ltd Licht-regulierte, elektrokinetische zusammensetzung von partikeln an oberflächen
JP2000516708A (ja) * 1996-08-08 2000-12-12 ウィリアム・マーシュ・ライス・ユニバーシティ ナノチューブ組立体から作製された巨視的操作可能なナノ規模の装置
US5747861A (en) * 1997-01-03 1998-05-05 Lucent Technologies Inc. Wavelength discriminating photodiode for 1.3/1.55 μm lightwave systems
JP3639684B2 (ja) * 1997-01-13 2005-04-20 キヤノン株式会社 エバネッセント波検出用の微小探針とその製造方法、及び該微小探針を備えたプローブとその製造方法、並びに該微小探針を備えたエバネッセント波検出装置、近視野走査光学顕微鏡、情報再生装置
US6038060A (en) * 1997-01-16 2000-03-14 Crowley; Robert Joseph Optical antenna array for harmonic generation, mixing and signal amplification
US6700550B2 (en) * 1997-01-16 2004-03-02 Ambit Corporation Optical antenna array for harmonic generation, mixing and signal amplification
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP3249419B2 (ja) * 1997-03-12 2002-01-21 セイコーインスツルメンツ株式会社 走査型近接場光学顕微鏡
US5973316A (en) * 1997-07-08 1999-10-26 Nec Research Institute, Inc. Sub-wavelength aperture arrays with enhanced light transmission
DE69724159T2 (de) * 1997-09-19 2004-05-06 International Business Machines Corp. Optische lithographie mit extrem hoher auflösung
US6043496A (en) * 1998-03-14 2000-03-28 Lucent Technologies Inc. Method of linewidth monitoring for nanolithography
US6233045B1 (en) * 1998-05-18 2001-05-15 Light Works Llc Self-mixing sensor apparatus and method
US6538194B1 (en) * 1998-05-29 2003-03-25 Catalysts & Chemicals Industries Co., Ltd. Photoelectric cell and process for producing metal oxide semiconductor film for use in photoelectric cell
US6203864B1 (en) * 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
US6212292B1 (en) * 1998-07-08 2001-04-03 California Institute Of Technology Creating an image of an object with an optical microscope
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
EP1119068B1 (en) * 1999-06-30 2012-11-28 JGC Catalysts and Chemicals Ltd. Photoelectric cell
WO2001006296A1 (en) * 1999-07-20 2001-01-25 Martin Moskovits High q-factor micro tuning fork by thin optical fiber for nsom
AU772539B2 (en) * 1999-07-29 2004-04-29 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
FR2799014B1 (fr) * 1999-09-27 2001-12-07 Univ Paris 13 Procede et installation de nanolithographie par interferometrie atomique
IL134631A0 (en) * 2000-02-20 2001-04-30 Yeda Res & Dev Constructive nanolithography
SE0103740D0 (sv) * 2001-11-08 2001-11-08 Forskarpatent I Vaest Ab Photovoltaic element and production methods
US7291284B2 (en) * 2000-05-26 2007-11-06 Northwestern University Fabrication of sub-50 nm solid-state nanostructures based on nanolithography
US20020031602A1 (en) * 2000-06-20 2002-03-14 Chi Zhang Thermal treatment of solution-processed organic electroactive layer in organic electronic device
JP2004510678A (ja) * 2000-10-04 2004-04-08 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー コロイドナノ結晶の合成
US6365466B1 (en) * 2001-01-31 2002-04-02 Advanced Micro Devices, Inc. Dual gate process using self-assembled molecular layer
CA2442985C (en) * 2001-03-30 2016-05-31 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6642129B2 (en) * 2001-07-26 2003-11-04 The Board Of Trustees Of The University Of Illinois Parallel, individually addressable probes for nanolithography
US6869545B2 (en) * 2001-07-30 2005-03-22 The Board Of Trustees Of The University Of Arkansas Colloidal nanocrystals with high photoluminescence quantum yields and methods of preparing the same
JP4051988B2 (ja) * 2002-04-09 2008-02-27 富士ゼロックス株式会社 光電変換素子および光電変換装置
US7485799B2 (en) * 2002-05-07 2009-02-03 John Michael Guerra Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
US7291782B2 (en) * 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
US6852920B2 (en) * 2002-06-22 2005-02-08 Nanosolar, Inc. Nano-architected/assembled solar electricity cell
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US7013708B1 (en) * 2002-07-11 2006-03-21 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube sensors
US7005378B2 (en) * 2002-08-26 2006-02-28 Nanoink, Inc. Processes for fabricating conductive patterns using nanolithography as a patterning tool
WO2004023527A2 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US20040077156A1 (en) * 2002-10-18 2004-04-22 Loucas Tsakalakos Methods of defect reduction in wide bandgap thin films using nanolithography
US7019209B2 (en) * 2002-12-11 2006-03-28 General Electric Company Structured dye sensitized solar cell
US6849798B2 (en) * 2002-12-17 2005-02-01 General Electric Company Photovoltaic cell using stable Cu2O nanocrystals and conductive polymers
US6985223B2 (en) * 2003-03-07 2006-01-10 Purdue Research Foundation Raman imaging and sensing apparatus employing nanoantennas
US7511217B1 (en) * 2003-04-19 2009-03-31 Nanosolar, Inc. Inter facial architecture for nanostructured optoelectronic devices
KR101132076B1 (ko) * 2003-08-04 2012-04-02 나노시스, 인크. 나노선 복합체 및 나노선 복합체로부터 전자 기판을제조하기 위한 시스템 및 프로세스
US6897158B2 (en) * 2003-09-22 2005-05-24 Hewlett-Packard Development Company, L.P. Process for making angled features for nanolithography and nanoimprinting
KR100548030B1 (ko) * 2003-12-26 2006-02-02 한국전자통신연구원 투명 태양전지 모듈 및 그 제조 방법
WO2005065326A2 (en) * 2003-12-31 2005-07-21 Pettit John W Optically controlled electrical switching device based on wide bandgap semiconductors
US7053351B2 (en) * 2004-03-30 2006-05-30 Matsushita Electric Industrial, Co., Ltd Near-field scanning optical microscope for laser machining of micro- and nano- structures
US20060024438A1 (en) * 2004-07-27 2006-02-02 The Regents Of The University Of California, A California Corporation Radially layered nanocables and method of fabrication
US7323657B2 (en) * 2004-08-03 2008-01-29 Matsushita Electric Industrial Co., Ltd. Precision machining method using a near-field scanning optical microscope
US7541062B2 (en) * 2004-08-18 2009-06-02 The United States Of America As Represented By The Secretary Of The Navy Thermal control of deposition in dip pen nanolithography
US7151244B2 (en) * 2004-09-02 2006-12-19 Matsushita Electric Industrial Co., Ltd Method and apparatus for calibration of near-field scanning optical microscope tips for laser machining
US7035498B2 (en) * 2004-09-28 2006-04-25 General Electric Company Ultra-fast all-optical switch array
US20060070653A1 (en) * 2004-10-04 2006-04-06 Palo Alto Research Center Incorporated Nanostructured composite photovoltaic cell
KR100661116B1 (ko) * 2004-11-22 2006-12-22 가부시키가이샤후지쿠라 전극, 광전 변환 소자 및 색소 증감 태양 전지
US7208793B2 (en) * 2004-11-23 2007-04-24 Micron Technology, Inc. Scalable integrated logic and non-volatile memory
US20060110618A1 (en) * 2004-11-24 2006-05-25 General Electric Company Electrodes for photovoltaic cells and methods for manufacture thereof
US7049999B1 (en) * 2005-02-16 2006-05-23 Applied Concepts, Inc. Modulation circuit for a vehicular traffic surveillance Doppler radar system
US7394016B2 (en) * 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
US7649665B2 (en) * 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
US7754964B2 (en) * 2005-08-24 2010-07-13 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanocoax structures
US8017860B2 (en) * 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
WO2008057629A2 (en) * 2006-06-05 2008-05-15 The Board Of Trustees Of The University Of Illinois Photovoltaic and photosensing devices based on arrays of aligned nanostructures
US8716594B2 (en) * 2006-09-26 2014-05-06 Banpil Photonics, Inc. High efficiency photovoltaic cells with self concentrating effect
WO2009039247A1 (en) * 2007-09-18 2009-03-26 Reflexite Corporation Solar arrays with geometric-shaped, three-dimensional structures and methods thereof

Also Published As

Publication number Publication date
US20080202581A1 (en) 2008-08-28
KR20090120474A (ko) 2009-11-24
TW200849613A (en) 2008-12-16
JP2010518623A (ja) 2010-05-27
EP2115784A2 (en) 2009-11-11
WO2008143721A2 (en) 2008-11-27
WO2008143721A3 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
CN101627479B (zh) 光电池及其制造方法
CN101663764A (zh) 具有减少的热载流子冷却的光电池
Nehra et al. 1D semiconductor nanowires for energy conversion, harvesting and storage applications
CN101779296B (zh) 分布式同轴光伏装置
Mei et al. Recent progress in perovskite-based photodetectors: the design of materials and structures
US20080230120A1 (en) Photovoltaic device with nanostructured layers
US20080066802A1 (en) Photovoltaic device containing nanoparticle sensitized carbon nanotubes
US20080142075A1 (en) Nanophotovoltaic Device with Improved Quantum Efficiency
JP2007142386A (ja) 導電性ナノワイヤーアレイ電極を備えた光起電力構造体
CN106098842A (zh) 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器
WO2011005013A2 (ko) p-i-n 나노선을 이용한 태양전지
US20120227787A1 (en) Graphene-based photovoltaic device
US20130269762A1 (en) Core-shell nanostructure based photovoltaic cells and methods of making same
CN101960611B (zh) 具有高纵横比纳米结构的光伏装置
رمزي رضا عبيد An Overview of Nanoscale Techniques for Photovoltaics and Solar Cell Fabrication

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100303